首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu S  Fan F  Flores SC  Mei F  Cheng X 《Biochemistry》2006,45(51):15318-15326
Exchange proteins directly activated by cAMP (Epac) make up a family of cAMP binding domain-containing proteins that play important roles in mediating the effects of cAMP through the activation of downstream small GTPases, Ras-proximate proteins. To delineate the mechanism of Epac activation, we probed the conformation and structural dynamics of Epac using amide hydrogen-deuterium (H-D) exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and structural modeling. Our studies show that unlike that of cAMP-dependent protein kinase (PKA), the classic intracellular cAMP receptor, binding of cAMP to Epac does not induce significant changes in overall secondary structure and structural dynamics, as measured by FT-IR and the rate of H-D exchange, respectively. These results suggest that Epac activation does not involve significant changes in the amount of exposed surface areas as in the case of PKA activation, and conformational changes induced by cAMP in Epac are most likely confined to small local regions. Homology modeling and comparative structural analyses of the CBDs of Epac and PKA lead us to propose a model of Epac activation. On the basis of our model, Epac activation by cAMP employs the same underlying structural principal utilized by PKA, although the detailed structural and conformational changes associated with Epac and PKA activation are significantly different. In addition, we predict that during Epac activation the first beta-strand of the switchboard switches its conformation to a alpha-helix, which folds back to the beta-barrel core of the CBD and interacts directly with cAMP to form the base of the cAMP-binding pocket.  相似文献   

2.
Epac2, a guanine nucleotide exchange factor, regulates a wide variety of intracellular processes in response to second messenger cAMP. In this study, we have used peptide amide hydrogen/deuterium exchange mass spectrometry to probe the solution structural and conformational dynamics of full-length Epac2 in the presence and absence of cAMP. The results support a mechanism in which cAMP-induced Epac2 activation is mediated by a major hinge motion centered on the C terminus of the second cAMP binding domain. This conformational change realigns the regulatory components of Epac2 away from the catalytic core, making the later available for effector binding. Furthermore, the interface between the first and second cAMP binding domains is highly dynamic, providing an explanation of how cAMP gains access to the ligand binding sites that, in the crystal structure, are seen to be mutually occluded by the other cAMP binding domain. Moreover, cAMP also induces conformational changes at the ionic latch/hairpin structure, which is directly involved in RAP1 binding. These results suggest that in addition to relieving the steric hindrance imposed upon the catalytic lobe by the regulatory lobe, cAMP may also be an allosteric modulator directly affecting the interaction between Epac2 and RAP1. Finally, cAMP binding also induces significant conformational changes in the dishevelled/Egl/pleckstrin (DEP) domain, a conserved structural motif that, although missing from the active Epac2 crystal structure, is important for Epac subcellular targeting and in vivo functions.  相似文献   

3.
Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized “hinge” motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Targeted mutagenesis was then performed to test the functional importance of hinge bending for Epac activation. We show that substitution of the conserved residue phenylalanine 435 with glycine (F435G) facilitates the hinge bending and leads to a constitutively active Epac2 capable of stimulating nucleotide exchange in the absence of cAMP. In contrast, substitution of the same residue with a bulkier side chain, tryptophan (F435W), impedes the hinge motion and results in a dramatic decrease in Epac2 catalytic activity. Structural parameters determined by small angle x-ray scattering further reveal that whereas the F435G mutant assumes a more extended conformation in the absence of cAMP, the F435W mutant is incapable of adopting the fully extended and active conformation in the presence of cAMP. These findings demonstrate the importance of hinge motion in Epac activation. Our study also suggests that phenylalanine at position 435 is the optimal size side chain to keep Epac closed and inactive in the absence of cAMP while still allowing the proper hinge motion for full Epac extension and activation in the presence of cAMP.Exchange proteins directly activated by cAMP (Epac)2 are a family of novel intracellular sensors for the second messenger cAMP (1, 2). Unlike the classic eukaryotic cAMP receptor, cAMP-dependent protein kinase (protein kinase A; PKA), Epac proteins do not function as protein kinases that phosphorylate downstream substrates. Instead, they act as guanine nucleotide exchange factors and exert their functions by activating small GTP-binding proteins, Rap1 and Rap2. At the cellular level, Epac proteins assume distinct subcellular localization (3), and depending upon the specific cellular environment, Epac and PKA may act independently, converge synergistically, or oppose each other in regulating a specific cellular function (4, 5).Both Epac and PKA share a common cyclic nucleotide binding domain (CBD), a compact and evolutionarily conserved structural motif found in a variety of proteins with diverse cellular functions (6). CBDs act as molecular switches for sensing intracellular second messenger cAMP levels and regulate the functionality of the domain(s) to which they are linked (6, 7). In depth structural and biophysical analyses of CBDs in several CBD-containing families, including cAMP receptor proteins, PKAs, and cyclic nucleotide-gated ion channels, have revealed a conserved structural core as well as functional motifs important for cyclic nucleotide-induced activation (811). The CBD is composed of an eight-strand β-barrel core that forms the base of the nucleotide binding pocket and a lateral α-helical bundle subdomain. Although the β-barrel core remains relatively constant between the ligand-free and nucleotide-bound states, binding of cAMP to a CBD leads to significant conformational changes in the overall arrangement of the α-helical bundle subdomain. A general mechanism of cyclic nucleotide-induced activation of CBD-containing proteins has been recently proposed (12). In this model, binding of cAMP leads to the retraction of the phosphate-binding cassette toward the cyclic nucleotide binding pocket and consequently releases the steric hindrance imposed on the α-helix C-terminal to the β-barrel, termed the CBD lid, by a conserved hydrophobic residue within the phosphate-binding cassette. These structural changes result in a hinge motion that allows the lid to move closer to the β-barrel core and to interact with the base of the cyclic nucleotide.The recently solved crystal structure of Epac2 reveals that, unlike other CBD-containing proteins, the corresponding lid region in Epac points away from the cAMP binding pocket as a two-strand β-sheet that forms the first part of the five-strand β-sheet “switchboard” structure (13). Although this major structural difference suggests that the detailed mechanisms of PKA and Epac activation by cAMP will most likely be different at the atomic level, it is not clear if the aforementioned general mechanism, namely the hinge motion, is conserved during Epac activation. To address this important question, we determined the effects of targeted hinge perturbations on Epac activation using site-directed mutagenesis that specifically targeted a key residue in the hinge region of Epac2.  相似文献   

4.
Epac1 is a guanine nucleotide exchange factor for Rap1 that is activated by direct binding of cAMP. In vitro studies suggest that cAMP relieves the interaction between the regulatory and catalytic domains of Epac. Here, we monitor Epac1 activation in vivo by using a CFP-Epac-YFP fusion construct. When expressed in mammalian cells, CFP-Epac-YFP shows significant fluorescence resonance energy transfer (FRET). FRET rapidly decreases in response to the cAMP-raising agents, whereas it fully recovers after addition of cAMP-lowering agonists. Thus, by undergoing a cAMP-induced conformational change, CFP-Epac-YFP serves as a highly sensitive cAMP indicator in vivo. When compared with a protein kinase A (PKA)-based sensor, Epac-based cAMP probes show an extended dynamic range and a better signal-to-noise ratio; furthermore, as a single polypeptide, CFP-Epac-YFP does not suffer from the technical problems encountered with multisubunit PKA-based sensors. These properties make Epac-based FRET probes the preferred indicators for monitoring cAMP levels in vivo.  相似文献   

5.
The recent discovery of Epac, a novel cAMP receptor protein, opens up a new dimension in studying cAMP-mediated cell signaling. It is conceivable that many of the cAMP functions previously attributed to cAMP-dependent protein kinase (PKA) are in fact also Epac-dependent. The finding of an additional intracellular cAMP receptor provides an opportunity to further dissect the divergent roles that cAMP exerts in different cell types. In this study, we probed cross-talk between cAMP signaling and the phosphatidylinositol 3-kinase/PKB pathways. Specifically, we examined the modulatory effects of cAMP on PKB activity by monitoring the specific roles that Epac and PKA play individually in regulating PKB activity. Our study suggests a complex regulatory scheme in which Epac and PKA mediate the opposing effects of cAMP on PKB regulation. Activation of Epac leads to a phosphatidylinositol 3-kinase-dependent PKB activation, while stimulation of PKA inhibits PKB activity. Furthermore, activation of PKB by Epac requires the proper subcellular targeting of Epac. The opposing effects of Epac and PKA on PKB activation provide a potential mechanism for the cell type-specific differential effects of cAMP. It is proposed that the net outcome of cAMP signaling is dependent upon the dynamic abundance and distribution of intracellular Epac and PKA.  相似文献   

6.
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that, in eukaryotes, was believed to act only on cAMP-dependent protein kinase A (PKA) and cyclic nucleotide-regulated ion channels. Recently, guanine nucleotide exchange factors specific for the small GTP-binding proteins Rap1 and Rap2 (Epacs) were described, which are also activated directly by cAMP. Here, we have determined the three-dimensional structure of the regulatory domain of Epac2, which consists of two cyclic nucleotide monophosphate (cNMP)-binding domains and one DEP (Dishevelled, Egl, Pleckstrin) domain. This is the first structure of a cNMP-binding domain in the absence of ligand, and comparison with previous structures, sequence alignment and biochemical experiments allow us to delineate a mechanism for cyclic nucleotide-mediated conformational change and activation that is most likely conserved for all cNMP-regulated proteins. We identify a hinge region that couples cAMP binding to a conformational change of the C-terminal regions. Mutations in the hinge of Epac can uncouple cAMP binding from its exchange activity.  相似文献   

7.
Neurotensin (NT), a gut peptide, plays important roles in gastrointestinal secretion, inflammation, and growth of normal and neoplastic tissues. cAMP regulates the secretion of hormones via its effector proteins protein kinase A (PKA) or Epac (exchange protein directly activated by cAMP). The small GTPase Rap1 can be activated by both PKA and Epac; however, the role of Rap1 in hormone secretion is unknown. Here, using the BON human endocrine cell line, we found that forskolin (FSK)-stimulated NT secretion was reduced by inhibition of Rap1 expression and activity. FSK-stimulated NT secretion was enhanced by overexpression of either wild-type or constitutively active Rap1. Epac activators and wild-type Epac enhanced NT release and Rap1 activity. In contrast, overexpression of a cAMP binding mutant, EpacR279E, decreased NT release and Rap1 activity. PKA activation increased NT release and Rap1 activity. FSK-stimulated NT release was reduced by PKA inhibition and the dominant negative Rap1N17. NT secretion, stimulated by Epac activation, was reduced by PKA inhibition; NT release, stimulated by PKA activation, was enhanced by wild-type Epac but reduced by the mutant EpacR279E. Finally, prostaglandin E2 (PGE2), a physiological agent that increases cAMP, stimulated NT secretion via cAMP/PKA/Rap1. Importantly, we demonstrate that PKA and Epac mediate the cAMP-induced NT secretion synergistically by converging at the common downstream target protein Rap1. Moreover, PGE2, a potent mediator of inflammation and associated with colorectal carcinogenesis, stimulates NT release suggesting a possible link between PGE2 and NT on intestinal inflammatory disorders and colorectal cancers.  相似文献   

8.
The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 microM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca(2+), cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracellular zymogen activation; cAMP enhances both zymogen activation and reverses the suppression of secretion. In addition to stimulating cAMP-dependent protein kinase (PKA), recent studies using cAMP analogs that lack a PKA response have shown that cAMP can also act through the cAMP-binding protein, Epac (exchange protein directly activated by cyclic AMP). The roles of PKA and Epac in cAMP responses were examined in isolated pancreatic acini. The activation of both cAMP-dependent pathways or the selective activation of Epac was found to enhance amylase secretion induced by physiological and supraphysiological concentrations of the muscarinic agonist carbachol. Similarly, activation of both PKA or the specific activation of Epac enhanced carbachol-induced activation of trypsinogen and chymotrypsinogen. Disorganization of the apical actin cytoskeleton has been linked to the decreased secretion observed with supraphysiological concentrations of carbachol and caerulein. Although stimulation of PKA and Epac or Epac alone could largely overcome the decreased secretion observed with either supraphysiological carbachol or caerulein, stimulation of cAMP pathways did not reduce the disorganization of the apical cytoskeleton. These studies demonstrate that PKA and Epac pathways are coupled to both secretion and zymogen activation in the pancreatic acinar cell.  相似文献   

9.
The signaling molecule cAMP primarily mediates its effects by activating PKA and/or exchange protein activated by cAMP (Epac). Epac has been implicated in many responses in cells, but its precise roles have been difficult to define in the absence of Epac inhibitors. Epac, a guanine nucleotide exchange factor for the low molecular weight G protein Rap, is directly activated by cAMP. Using a bioluminescence resonance energy transfer-based assay (CAMYEL) to examine modulators of Epac activity, we took advantage of its intramolecular movement that occurs upon cAMP binding to assess Epac activation. We found that the use of CAMYEL can detect the binding of cAMP analogs to Epac and their modulation of its activity and can distinguish between agonists (cAMP), partial agonists (8-chlorophenylthio-cAMP), and super agonists (8-chlorophenylthio-2′-O-Me-cAMP). The CAMYEL assay can also identify competitive and uncompetitive Epac inhibitors, e.g. (Rp)-cAMPS and CE3F4, respectively. To confirm the results with the CAMYEL assay, we used Swiss 3T3 cells and assessed the ability of cyclic nucleotide analogs to modulate the activity of Epac or PKA, determined by Rap1 activity or VASP phosphorylation, respectively. We used computational molecular modeling to analyze the interaction of analogs with Epac1. The results reveal a rapid means to identify modulators (potentially including allosteric inhibitors) of Epac activity that also provides insight into the mechanisms of Epac activation and inhibition.  相似文献   

10.
Epac1 is a cAMP-responsive exchange factor for the small G-protein Rap. It consists of a regulatory region containing a cyclic nucleotide binding (CNB) domain and a catalytic region that activates Rap. In the absence of cAMP, access of Rap to the catalytic site is blocked by the regulatory region. We analyzed the conformational states of the CNB domain in the absence and in the presence of cAMP and cAMP analogues by NMR spectroscopy, resulting in the first direct insights into the activation mechanism of Epac. We prove that the CNB domain exists in equilibrium between the inactive and the active conformation, which is shifted by binding of cAMP. cAMP binding results in conformational changes in both the ligand binding pocket and the outer helical segments. We used two different cAMP antagonists that block these successive changes to elucidate the steps of this process. Highlighting the role of dynamics, the superactivator 8-pCPT-2'-O-Me-cAMP induces similar conformational changes as cAMP but causes different internal mobility. The results reveal the critical elements of the CNB domain of Epac required for activation and highlight the role of dynamics in this process.  相似文献   

11.
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.  相似文献   

12.
In diverse neuronal processes ranging from neuronal survival to synaptic plasticity cyclic adenosine monophosphate (cAMP)-dependent signaling is tightly connected with the protein kinase B (PKB)/Akt pathway but the precise nature of this connection remains unknown. In the current study we investigated the effect of two mainstream pathways initiated by cAMP, cAMP-dependent protein kinase (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) on PKB/Akt phosphorylation in primary cortical neurons and HT-4 cells. We demonstrate that PKA activation leads to a reduction of PKB/Akt phosphorylation, whereas activation of Epac has the opposite effect. This effect of Epac on PKB/Akt phosphorylation was mediated by Rap activation. The increase in PKB/Akt phosphorylation after Epac activation could be blocked by pretreatment with Epac2 siRNA and to a somewhat smaller extent by Epac1 siRNA. PKA, PKB/Akt and Epac were all shown to establish complexes with neuronal A-kinase anchoring protein150 (AKAP150). Interestingly, activation of Epac increased phosphorylation of PKB/Akt complexed to AKAP150. From experiments using PKA-binding deficient AKAP150 and peptides disrupting PKA anchoring to AKAPs, we conclude that AKAP150 acts as a key regulator in the two cAMP pathways to control PKB/Akt phosphorylation.  相似文献   

13.
In cardiac myocytes there is evidence that activation of some receptors can regulate protein kinase A (PKA)-dependent responses by stimulating cAMP production that is limited to discrete intracellular domains. We previously developed a computational model of compartmentalized cAMP signaling to investigate the feasibility of this idea. The model was able to reproduce experimental results demonstrating that both beta(1)-adrenergic and M(2) muscarinic receptor-mediated cAMP changes occur in microdomains associated with PKA signaling. However, the model also suggested that the cAMP concentration throughout most of the cell could be significantly higher than that found in PKA-signaling domains. In the present study we tested this counterintuitive hypothesis using a freely diffusible fluorescence resonance energy transfer-based biosensor constructed from the type 2 exchange protein activated by cAMP (Epac2-camps). It was determined that in adult ventricular myocytes the basal cAMP concentration detected by the probe is approximately 1.2 muM, which is high enough to maximally activate PKA. Furthermore, the probe detected responses produced by both beta(1) and M(2) receptor activation. Modeling suggests that responses detected by Epac2-camps mainly reflect what is happening in a bulk cytosolic compartment with little contribution from microdomains where PKA signaling occurs. These results support the conclusion that even though beta(1) and M(2) receptor activation can produce global changes in cAMP, compartmentation plays an important role by maintaining microdomains where cAMP levels are significantly below that found throughout most of the cell. This allows receptor stimulation to regulate cAMP activity over concentration ranges appropriate for modulating both higher (e.g., PKA) and lower affinity (e.g., Epac) effectors.  相似文献   

14.
Cigarette smoke-induced release of pro-inflammatory cytokines including interleukin-8 (IL-8) from inflammatory as well as structural cells in the airways, including airway smooth muscle (ASM) cells, may contribute to the development of chronic obstructive pulmonary disease (COPD). Despite the wide use of pharmacological treatment aimed at increasing intracellular levels of the endogenous suppressor cyclic AMP (cAMP), little is known about its exact mechanism of action. We report here that next to the β(2)-agonist fenoterol, direct and specific activation of either exchange protein directly activated by cAMP (Epac) or protein kinase A (PKA) reduced cigarette smoke extract (CSE)-induced IL-8 mRNA expression and protein release by human ASM cells. CSE-induced IκBα-degradation and p65 nuclear translocation, processes that were primarily reversed by Epac activation. Further, CSE increased extracellular signal-regulated kinase (ERK) phosphorylation, which was selectively reduced by PKA activation. CSE decreased Epac1 expression, but did not affect Epac2 and PKA expression. Importantly, Epac1 expression was also reduced in lung tissue from COPD patients. In conclusion, Epac and PKA decrease CSE-induced IL-8 release by human ASM cells via inhibition of NF-κB and ERK, respectively, pointing at these cAMP effectors as potential targets for anti-inflammatory therapy in COPD. However, cigarette smoke exposure may reduce anti-inflammatory effects of cAMP elevating agents via down-regulation of Epac1.  相似文献   

15.
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.  相似文献   

16.
cAMP stimulates proliferation in many cell types. For many years, cAMP-dependent protein kinase (PKA) represented the only known cAMP effector. PKA, however, does not fully mimic the action of cAMP, indicating the existence of a PKA-independent component. Since cAMP-mediated activation of the G-protein Rap1 and its phosphorylation by PKA are strictly required for the effects of cAMP on mitogenesis, we hypothesized that the Rap1 activator Epac might represent the PKA-independent factor. Here we report that Epac acts synergistically with PKA in cAMP-mediated mitogenesis. We have generated a new dominant negative Epac mutant that revealed that activation of Epac is required for thyroid-stimulating hormone or cAMP stimulation of DNA synthesis. We demonstrate that Epac's action on cAMP-mediated activation of Rap1 and cAMP-mediated mitogenesis depends on the subcellular localization of Epac via its DEP domain. Disruption of the DEP-dependent subcellular targeting of Epac abolished cAMP-Epac-mediated Rap1 activation and thyroid-stimulating hormone-mediated cell proliferation, indicating that an Epac-Rap-PKA signaling unit is critical for the mitogenic action of cAMP.  相似文献   

17.
Elevation of the intracellular cAMP concentration ([cAMP]i) regulates metabolism, cell proliferation, and differentiation and plays roles in memory formation and neoplastic growth. cAMP mediates its effects mainly through activation of protein kinase A (PKA) as well as Epac1 and Epac2, exchange factors activating the small GTPases Rap1 and Rap2. However, how cAMP utilizes these effectors to induce distinct biological responses is unknown. We here studied the specific roles of PKA and Epac in neuroendocrine PC12 cells. In these cells, elevation of [cAMP]i activates extracellular signal-regulated kinase (ERK) 1/2 and induces low-degree neurite outgrowth. The present study showed that specific stimulation of PKA triggered ERK1/2 activation that was considerably more transient than that observed upon simultaneous activation of both PKA and Epac. Unexpectedly, the PKA-specific cAMP analog induced cell proliferation rather than neurite outgrowth. The proliferative signaling pathway activated by the PKA-specific cAMP analog involved activation of the epidermal growth factor receptor and ERK1/2. Activation of Epac appeared to extend the duration of PKA-dependent ERK1/2 activation and converted cAMP from a proliferative into an anti-proliferative, neurite outgrowth-promoting signal. Thus, the present study showed that the outcome of cAMP signaling can depend heavily on the set of cAMP effectors activated.  相似文献   

18.
The cAMP-dependent protein kinase (PKA I and II) and the cAMP-stimulated GDP exchange factors (Epac1 and -2) are major cAMP effectors. The cAMP affinity of the PKA holoenzyme has not been determined previously. We found that cAMP bound to PKA I with a K(d) value (2.9 microM) similar to that of Epac1. In contrast, the free regulatory subunit of PKA type I (RI) had K(d) values in the low nanomolar range. The cAMP sites of RI therefore appear engineered to respond to physiological cAMP concentrations only when in the holoenzyme form, whereas Epac can respond in its free form. Epac is phylogenetically younger than PKA, and its functional cAMP site has presumably evolved from site B of PKA. A striking feature is the replacement of a conserved Glu in PKA by Gln (Epac1) or Lys (Epac2). We found that such a switch (E326Q) in site B of human RIalpha led to a 280-fold decreased cAMP affinity. A similar single switch early in Epac evolution could therefore have decreased the high cAMP affinity of the free regulatory subunit sufficiently to allow Epac to respond to physiologically relevant cAMP levels. Molecular dynamics simulations and cAMP analog mapping indicated that the E326Q switch led to flipping of Tyr-373, which normally stacks with the adenine ring of cAMP. Combined molecular dynamics simulation, GRID analysis, and cAMP analog mapping of wild-type and mutated BI and Epac1 revealed additional differences, independent of the Glu/Gln switch, between the binding sites, regarding space (roominess), hydrophobicity/polarity, and side chain flexibility. This helped explain the specificity of current cAMP analogs and, more importantly, lays a foundation for the generation of even more discriminative analogs.  相似文献   

19.
cAMP mediates its intracellular effects through activation of protein kinase A (PKA), nucleotide-gated ion channels, or exchange protein directly activated by cAMP (Epac). Although elevation of cAMP in lymphocytes leads to suppression of immune functions by a PKA-dependent mechanism, the effector mechanisms for cAMP regulation of immune functions in monocytes and macrophages are not fully understood. In this study, we demonstrate the presence of Epac1 in human peripheral blood monocytes and activation of Rap1 in response to cAMP. However, by using an Epac-specific cAMP analog (8-CPT-2'-O-Me-cAMP), we show that monocyte activation parameters such as synthesis and release of cytokines, stimulation of cell adhesion, chemotaxis, phagocytosis, and respiratory burst are not regulated by the Epac1-Rap1 pathway. In contrast, activation of PKA by a PKA-specific compound (6-Bnz-cAMP) or physiological cAMP-elevating stimuli like PGE(2) inhibits monocyte immune functions. Furthermore, we show that the level of Epac1 increases 3-fold during differentiation of monocytes into macrophages, and in monocyte-derived macrophages cAMP inhibits FcR-mediated phagocytosis via both PKA and the Epac1-Rap1 pathway. However, LPS-induced TNF-alpha production is only inhibited through the PKA pathway in these cells. In conclusion, the Epac1-Rap1 pathway is present in both monocytes and macrophages, but only regulates specific immune effector functions in macrophages.  相似文献   

20.
Optical reporters for cAMP represent a fundamental advancement in our ability to investigate the dynamics of cAMP signaling. These fluorescent sensors can measure changes in cAMP in single cells or in microdomains within cells as opposed to whole populations of cells required for other methods of measuring cAMP. The first optical cAMP reporters were FRET-based sensors utilizing dissociation of purified regulatory and catalytic subunits of PKA, introduced by Roger Tsien in the early 1990s. The utility of these sensors was vastly improved by creating genetically encoded versions that could be introduced into cells with transfection, the first of which was published in the year 2000. Subsequently, improved sensors have been developed using different cAMP binding platforms, optimized fluorescent proteins, and targeting motifs that localize to specific microdomains. The most common sensors in use today are FRET-based sensors designed around an Epac backbone. These rely on the significant conformational changes in Epac when it binds cAMP, altering the signal between FRET pairs flanking Epac. Several other strategies for optically interrogating cAMP have been developed, including fluorescent translocation reporters, dimerization-dependent FP based biosensors, BRET (bioluminescence resonance energy transfer)-based sensors, non-FRET single wavelength reporters, and sensors based on bacterial cAMP-binding domains. Other newly described mammalian cAMP-binding proteins such as Popdc and CRIS may someday be exploited in sensor design. With the proliferation of engineered fluorescent proteins and the abundance of cAMP binding targets in nature, the field of optical reporters for cAMP should continue to see rapid refinement in the coming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号