首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PCNA is an essential factor for DNA replication and repair. It forms a ring shaped structure of 86 kDa by the symmetric association of three identical protomers. The ring encircles the DNA and acts as a docking platform for other proteins, most of them containing the PCNA Interaction Protein sequence (PIP-box). We have used NMR to characterize the interactions of PCNA with several other proteins and fragments in solution. The binding of the PIP-box peptide of the cell cycle inhibitor p21 to PCNA is consistent with the crystal structure of the complex. A shorter p21 peptide binds with reduced affinity but retains most of the molecular recognition determinants. However the binding of the corresponding peptide of the tumor suppressor ING1 is extremely weak, indicating that slight deviations from the consensus PIP-box sequence dramatically reduce the affinity for PCNA, in contrast with a proposed less stringent PIP-box sequence requirement. We could not detect any binding between PCNA and the MCL-1 or the CDK2 protein, reported to interact with PCNA in biochemical assays. This suggests that they do not bind directly to PCNA, or they do but very weakly, with additional unidentified factors stabilizing the interactions in the cell. Backbone dynamics measurements show three PCNA regions with high relative flexibility, including the interdomain connector loop (IDCL) and the C-terminus, both of them involved in the interaction with the PIP-box. Our work provides the basis for high resolution studies of direct ligand binding to PCNA in solution.  相似文献   

2.
3.
DNA damage-induced proliferating cell nuclear antigen (PCNA) ubiquitination serves as the key event mediating post-replication repair. Post-replication repair involves either translesion synthesis (TLS) or damage avoidance via template switching. In this study, we have identified and characterized C1orf124 as a regulator of TLS. C1orf124 co-localizes and interacts with unmodified and mono-ubiquitinated PCNA at UV light-induced damage sites, which require the PIP box and UBZ domain of C1orf124. C1orf124 also binds to the AAA-ATPase valosin-containing protein via its SHP domain, and cellular resistance to UV radiation mediated by C1orf124 requires its interactions with valosin-containing protein and PCNA. Interestingly, C1orf124 binds to replicative DNA polymerase POLD3 and PDIP1 under normal conditions but preferentially associates with TLS polymerase η (POLH) upon UV damage. Depletion of C1orf124 compromises PCNA monoubiquitination, RAD18 chromatin association, and RAD18 localization to UV damage sites. Thus, C1orf124 acts at multiple steps in TLS, stabilizes RAD18 and ubiquitinated PCNA at damage sites, and facilitates the switch from replicative to TLS polymerase to bypass DNA lesion.  相似文献   

4.
Ubiquitin conjugation provides a crucial signaling role in hundreds of cellular pathways; however, a structural understanding of ubiquitinated substrates is lacking. One important substrate is monoubiquitinated PCNA (PCNA-Ub), which signals for recruitment of damage-tolerant polymerases in the translesion synthesis (TLS) pathway of DNA damage avoidance. We use a novel and efficient enzymatic method to produce PCNA-Ub at high yield with a native isopeptide bond and study its Usp1/UAF1-dependent deconjugation. In solution we find that the ubiquitin moiety is flexible relative to the PCNA, with its hydrophobic patch mostly accessible for recruitment of TLS polymerases, which promotes the interaction with polymerase η. The studies are a prototype for the nature of the ubiquitin modification.  相似文献   

5.
Fanconi Anemia (FA) is a rare recessive disease characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The FA proteins and the familial breast cancer susceptibility gene products, BRCA1 and FANCD1/BRCA2, function cooperatively in the FA-BRCA pathway to repair damaged DNA and to prevent cellular transformation. Activation of this pathway occurs via the mono-ubiquitination of the FANCD2 protein, targeting it to nuclear foci where it co-localizes with FANCD1/BRCA2, RAD51, and PCNA. The regulation of the mono-ubiquitination of FANCD2, as well as its function in DNA repair remain poorly understood. In this study, we have further characterized the interaction between the FANCD2 and PCNA proteins. We have identified a highly conserved, putative FANCD2 PCNA interaction motif (PIP-box), and demonstrate that mutation of this motif disrupts FANCD2-PCNA binding and precludes the mono-ubiquitination of FANCD2. Consequently, the FANCD2 PIP-box mutant protein fails to correct the mitomycin C hypersensitivity of FA-D2 patient cells. Our results suggest that PCNA may function as a molecular platform to facilitate the mono-ubiquitination of FANCD2 and activation of the FA-BRCA pathway.Fanconi anemia (FA)2 is a rare recessive disorder characterized by developmental abnormalities, progressive bone marrow failure, and pronounced cancer susceptibility (1). FA patients are particularly susceptible to early-onset acute myelogenous leukemia and squamous cell carcinoma of the head, neck, and gynecologic regions (2). FA patient cells are hypersensitive to the clastogenic effects of DNA cross-linking agents, e.g. mitomycin C (MMC), and agents that inhibit DNA replication, e.g. aphidicolin (APH) (3, 4). There are currently thirteen genetically defined FA complementation groups (A, B, C, D1, D2, E, F, G, I, J, L, M, and N), and all thirteen genes have been identified (5).A central step in the activation of the FA-BRCA pathway is the mono-ubiquitination of the FANCD2 and FANCI proteins, catalyzed by the core FA E2/E3 holoenzyme complex (5, 6). The mono-ubiquitination of FANCD2 and FANCI signals their translocation to discrete nuclear foci, where they co-localize with the BRCA1 and RAD51 DNA repair proteins, as well as the major cellular DNA polymerase processivity factor PCNA (3, 4, 79). Several studies have suggested an important role for the FA-BRCA pathway in a DNA replication-associated DNA repair process, e.g. homologous recombination (HR), and/or translesion DNA synthesis (TLS) (3, 4, 1012). Accordingly, additional proteins with established roles in the DNA replication stress response, including ATR, CHK1, HCLK2, and RPA, modulate DNA damage-inducible FANCD2 mono-ubiquitination (1315). Our understanding of the regulation of this critical post-translational modification, however, is incomplete.We, and others (4, 7) have previously reported an association between FANCD2 and PCNA. FANCD2 and PCNA co-localize in nuclear foci following treatment with agents that inhibit DNA replication. Like FANCD2, PCNA is mono-ubiquitinated following exposure to DNA-damaging agents (16, 17). While FANCD2 and PCNA are mono-ubiquitinated by different E3 ubiquitin ligases, FANCL and RAD18 (1619), respectively, both proteins are de-ubiquitinated by the USP1 enzyme (20, 21). The functional significance of the FANCD2-PCNA interaction, however, has not been determined.In addition to its role as a DNA polymerase processivity factor, PCNA interacts with many DNA repair proteins, e.g. MSH3, XPG, and p21Cip1/Waf1 (22). These interactions typically occur in a hydrophobic pocket of the PCNA homotrimer, termed the interdomain connecting loop (ICL). Proteins that interact with the PCNA ICL harbor a highly conserved PCNA-binding motif called the PIP-box, defined by the amino acid sequence QXXhXXaa, where h represents amino acids with moderately hydrophobic side chains, e.g. leucine, isoleucine, or methionine (L, I, M), a represents amino acids with highly hydrophobic, aromatic side chains, e.g. phenylalanine and tyrosine (F, Y), and X is any amino acid (23).Here, we describe an important functional interaction between FANCD2 and PCNA. We have identified a highly conserved putative PIP-box in FANCD2, and demonstrate that mutation of this motif disrupts the FANCD2-PCNA interaction, and precludes both the spontaneous and DNA damage-inducible mono-ubiquitination of FANCD2. Consequently, the FANCD2 PIP-box mutant fails to correct the MMC hypersensitivity of FA-D2 patient-derived cells. However, the mutant protein retains the ability to localize to chromatin, interact with FANCE, and undergo DNA damage-inducible phosphorylation. Our results suggest that PCNA may act as a molecular platform for the mono-ubiquitination of FANCD2 and for the activation of the FA-BRCA pathway.  相似文献   

6.
In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I- and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793–809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.  相似文献   

7.
Arterial injury-induced vascular smooth muscle cell (VSMC) proliferation in intima is the important etiologic factor in vascular proliferative disorders such as atherosclerosis, hypertension and restenosis after balloon angioplasty. Butyrate, a naturally occurring short chain fatty acid, is produced by bacterial fermentation of dietary fiber and by mammary glands of certain mammals. Studies have shown that butyrate at millimolar concentrations, which are physiological, induces growth arrest, differentiation and apoptosis. We examined the effect of physiological concentrations of butyrate on rat VSMC proliferation and proliferation-induced PCNA expression to determine anti-atherogenic potential of butyrate. Butyrate concentrations, closer to physiological range, exhibited antiproliferative effects on both serum-induced proliferation of serum-starved quiescent VSMCs and actively proliferating non-confluent VSMCs. Treatment of serum-starved quiescent VSMCs with 1-8 mmol/l concentration of butyrate caused a concentration-dependent decrease in serum-induced VSMC proliferation and cell proliferation-associated increase in total cellular proteins and RNA levels. Similarly, exposure of actively growing VSMCs to 5 mmol/l butyrate resulted in the inhibition of cell proliferation and proliferation-induced increase in cellular proteins and RNA levels. Furthermore, cellular morphology was significantly altered. Analysis of cell cycle regulatory proteins indicated that levels of PCNA, an excellent marker for cell proliferation, was significantly altered by butyrate both in actively proliferating and serum-induced quiescent VSMCs. These observations suggest that butyrate exhibits potential antiatherogenic capability by inhibiting VSMC proliferation and proliferation-associated increase in PCNA expression and thus merits further investigations regarding therapeutic significance of butyrate in vascular proliferative disorders.  相似文献   

8.
Mismatch Repair (MMR) is closely linked to DNA replication; however, other than the role of the replicative sliding clamp (PCNA) in various MMR functions, the linkage between DNA replication and MMR has been difficult to investigate. Here we use an in vitro DNA replication system based on simian virus 40, to investigate MMR recruitment to replicating DNA. Both DNA replication and MMR proteins are recruited to replicating DNA in an origin-dependent fashion. Primer synthesis is required for recruitment of both PCNA and MMR proteins, but not for recruitment of the single-stranded DNA-binding protein (RPA). Blocking PCNA recruitment to replicating DNA with a p21-based polypeptide blocks PCNA and MMR, but not RPA recruitment. Once PCNA and subsequent proteins required for replication are loaded onto DNA, addition of p21 leaves PCNA on the replicating DNA, but actively displaces MMR proteins. These findings indicate that the MMR machinery is recruited to replicating DNA through its interaction with PCNA, and suggests that this occurs via binding of the MMR proteins to the multi-protein interaction sites on PCNA. These studies demonstrate the utility of this system for further investigation of the role of DNA replication in MMR.  相似文献   

9.
10.
Eukaryotic proliferating cell nuclear antigen (PCNA) is a replication accessory protein that functions in DNA replication, repair, and recombination. The various functions of PCNA are regulated by posttranslational modifications including mono-ubiquitylation, which promotes translesion synthesis, and sumoylation, which inhibits recombination. To understand how SUMO modification regulates PCNA, we generated a split SUMO-modified PCNA protein and showed that it supports cell viability and stimulates DNA polymerase δ activity. We then determined its X-ray crystal structure and found that SUMO occupies a position on the back face of the PCNA ring, which is distinct from the position occupied by ubiquitin in the structure of ubiquitin-modified PCNA. We propose that the back of PCNA has evolved to be a site of regulation that can be easily modified without disrupting ongoing reactions on the front of PCNA, such as normal DNA replication. Moreover, these modifications likely allow PCNA to function as a tool belt, whereby proteins can be recruited to the replication machinery via the back of PCNA and be held in reserve until needed.  相似文献   

11.
经6.6×105个克隆筛选,从装在λ噬菌体载体Charon30中的人基因库中筛选到了一个含人分裂细胞核抗原(PCNA)基因的克隆。经Southern杂交分析插入基因长约14kb,有较长的5'上游区,但3'端缺少一部分。经亚克隆和测序已确定从5'上游1263bp到3'端与λ载体接点共4969bpPCNA基因片段的核苷酸序列。将PCNA基因启动子核苷酸序列与DNA聚合酶α,拓扑异构酶Ⅱα,胸苷酸激酶基因的启动子进行比较有30%以上同源性,具有“看家基因”特征。在转录起始点的5'上游几百bp的范围内都有与CAT,SP1,E2F,NFHB,Oct1和ATF等转录因子的结合位点相似的核苷酸序列。  相似文献   

12.
13.
Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNAF/F) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNAF/F MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT mice contain significantly more adipocytes than those isolated from PCNAF/F mice. This study identifies a critical role for PCNA in adipose tissue development, and for the first time identifies a role of the core DNA replication machinery at the interface between proliferation and differentiation.  相似文献   

14.
DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV) that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA). This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein). The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.  相似文献   

15.
All cells rely on genomic stability mechanisms to protect against DNA alterations. PCNA is a master regulator of DNA replication and S-phase-coupled repair. PCNA post-translational modifications by ubiquitination and SUMOylation dictate how cells stabilize and re-start replication forks stalled at sites of damaged DNA. PCNA mono-ubiquitination recruits low fidelity DNA polymerases to promote error-prone replication across DNA lesions. Here, we identify the mono-ADP-ribosyltransferase PARP10/ARTD10 as a novel PCNA binding partner. PARP10 knockdown results in genomic instability and DNA damage hypersensitivity. Importantly, we show that PARP10 binding to PCNA is required for translesion DNA synthesis. Our work identifies a novel PCNA-linked mechanism for genome protection, centered on post-translational modification by mono-ADP-ribosylation.  相似文献   

16.
Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA) is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM). Thus inhibiting PCNA’s protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells’ sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.  相似文献   

17.
18.
19.
To understand the role of POL30 in mutation suppression, 11 Saccharomyces cerevisiae pol30 mutator mutants were characterized. These mutants were grouped based on their mutagenic defects. Many pol30 mutants harbor multiple mutagenic defects and were placed in more than one group. Group A mutations (pol30-52, -104, -108, and -126) caused defects in mismatch repair (MMR). These mutants exhibited mutation rates and spectra reminiscent of MMR-defective mutants and were defective in an in vivo MMR assay. The mutation rates of group A mutants were enhanced by a msh2 or a msh6 mutation, indicating that MMR deficiency is not the only mutagenic defect present. Group B mutants (pol30-45, -103, -105, -126, and -114) exhibited increased accumulation of either deletions alone or a combination of deletions and duplications (4 to 60 bp). All deletion and duplication breakpoints were flanked by 3 to 7 bp of imperfect direct repeats. Genetic analysis of one representative group B mutant, pol30-126, suggested polymerase slippage as the likely mutagenic mechanism. Group C mutants (pol30-100, -103, -105, -108, and -114) accumulated base substitutions and exhibited synergistic increases in mutation rate when combined with msh6 mutations, suggesting increased DNA polymerase misincorporation as a mutagenic defect. The synthetic lethality between a group A mutant, pol30-104, and rad52 was almost completely suppressed by the inactivation of MSH2. Moreover, pol30-104 caused a hyperrecombination phenotype that was partially suppressed by a msh2 mutation. These results suggest that pol30-104 strains accumulate DNA breaks in a MSH2-dependent manner.  相似文献   

20.
Yeast proliferating cell nuclear antigen (yPCNA) is a cell-cycle-regulated protein that has been shown to be required for the efficient elongation of primed DNA templates by DNA polymerase δin vitro.We have expressed yPCNA to a high level (≥30% of the total cellular protein) with and without a six-residue histidine tag at its amino-terminus. Both forms of the recombinant protein were found to be biologically active and no significant differences were observed between the two forms. In this report we describe an efficient method of extraction of DNA binding proteins, such as yPCNA, overexpressed inEscherichia coli.The presence of a (His)6tag on the polypeptide permitted rapid and high-yield single-step purification of the protein (60 mg of purified yPCNA per liter of induced cell culture) by immobilized metal affinity chromatography using an imidazole gradient elution procedure. The purified yPCNA was used to characterize the biological activity and tertiary structure of the protein. Chemical crosslinking and size-exclusion FPLC studies indicated that both forms of the protein have a trimeric–oligomeric structure in solution. Taken together these results indicate that both forms of the recombinant yPCNA were similar to the endogenous protein in their biochemical properties. The strategies presented here are designed to maximize the yield of recombinant protein and should prove useful to the purification of other recombinant DNA binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号