首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ArgBP2, a member of the SoHo family of adapter proteins, is a regulator of actin-dependent processes such as cell adhesion and migration. Recent data from our lab revealed that by regulating adhesion and migration of pancreatic cancer cells, ArgBP2 is endowed with an anti-tumoral function. We could show that part of the molecular mechanism involved the interaction of ArgBP2 with the Arp2/3 activator WAVE1, the tyrosine phosphatase PTP-PEST, and the tyrosine kinase c-Abl. As ArgBP2 shares common structural organization and overlapping functions with the two other members of this protein family, CAP and Vinexin, it raises the question whether these two other proteins could also be involved in cancer diseases. The control of cell migration being an important issue in tumor treatment, these recent findings suggest that ArgBP2 family-dependent signaling pathways represents potential targets for the development of therapeutic strategies, and highlight the importance of elucidating their molecular mechanisms of cytoskeletal regulation.  相似文献   

2.
CAP/Ponsin belongs to the SoHo family of adaptor molecules that includes ArgBP2 and Vinexin. These proteins possess an N-terminal sorbin homology (SoHo) domain and three C-terminal SH3 domains that bind to diverse signaling molecules involved in a variety of cellular processes. Here, we show that CAP binds to the cytoskeletal proteins paxillin and vinculin. CAP localizes to cell-extracellular matrix (ECM) adhesion sites, and this process requires binding to vinculin. Overexpression of CAP induces the aggregation of paxillin, vinculin and actin at cell-ECM adhesion sites. Moreover, CAP inhibits adhesion-dependent processes such as cell spreading and focal adhesion turnover, whereas a CAP mutant that is unable to localize to cell-ECM adhesion sites is incapable of exerting these effects. Finally, depletion of CAP by siRNA-mediated knockdown leads to enhanced cell spreading, migration and the activation of the PAK/MEK/ERK pathway in REF52 cells. Taken together, these results indicate that CAP is a cytoskeletal adaptor protein involved in modulating adhesion-mediated signaling events that lead to cell migration.  相似文献   

3.
CAP/ArgBP2/vinexin family proteins, adaptor proteins characterized by three SH3 domains at their C-termini and a SoHo domain towards their N-termini, are known to regulate cell adhesion, cytoskeletal organization, and growth factor signaling. Here we present the isolation and ovarian expression of the BmCAP gene which encodes CAP/ArgBP2/vinexin family proteins in the silkmoth, Bombyx mori. Screening for full-length cDNA clones identified three mRNA isoforms, BmCAP-A1, BmCAP-A2 and BmCAP-B, which show expression throughout ovarian follicular development. Using an antibody raised against a unique region between the SoHo and SH3 domains, BmCAP-A protein isoforms were identified that show specific expression in different compartments of the ovarian follicles. Immunofluorescence staining of the cells of the follicular epithelium establishes a dynamic pattern of BmCAP-A protein localization during choriogenesis. During early choriogenesis, BmCAP-A has a diffuse localization in the cytoplasm but could also be found concentrated at the apical and basal sides at the cell–cell junctions. During late choriogenesis, the diffuse cytoplasmic staining of BmCAP-A disappears while the staining pattern at the apical side resembles a blueprint for the eggshell surface structure. We suggest that BmCAP-A isoforms have important functions during ovarian development, which involve not only the traditional roles in actin organization or cell–cell adhesion but also the regulation of secretion of chorion proteins and the sculpting of the chorion surface.  相似文献   

4.
ArgBP2 (Arg-Binding Protein 2/SORBS2) is an adaptor protein involved in cytoskeleton associated signal transduction, thereby regulating cell migration and adhesion. These features are associated with its antitumoral role in pancreatic cancer cells. Tyrosine phosphorylation of ArgBP2, mediated by c-Abl kinase and counterbalanced by PTP-PEST phosphatase, regulates many of its interactions. However, the exact mechanisms of action and of regulation of ArgBP2 remain largely unknown. We found that ArgBP2 has the capacity to form oligomers which are destabilized by tyrosine phosphorylation. We could show that ArgBP2 oligomerization involves the binding of one of its SH3 domains to a specific proline rich cluster. ArgBP2 self-association increases its binding to some of its molecular partners and decreased its affinity for others. Hence, the phosphorylation/oligomerization state of ArgBP2 directly regulates its functions by modulating its adaptive capabilities. Importantly, using a human pancreatic cancer cell model (MiaPaCa-2 cells), we could validate that this property of ArgBP2 is critical for its cytoskeleton associated functions. In conclusions, we describe a new mechanism of regulation of ArgBP2 where tyrosine phosphorylation of the protein interfere with a SH3 mediated self-interaction, thereby controlling its panel of interacting partners and related functions.  相似文献   

5.

Background

Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells.

Methods

Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition.

Results

Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt.

Conclusion

TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.  相似文献   

6.
Cell migration requires dynamic remodeling of the actomyosin network. We report here that an adapter protein, ArgBP2, is a component of α-actinin containing stress fibers and inhibits migration. ArgBP2 is undetectable in many commonly studied cancer-derived cell lines. COS-7 and HeLa cells express ArgBP2 (by Western analysis), but expression was detectable only in approximately half the cells by immunofluorescence. Short term clonal analysis demonstrated 0.2–0.3% of cells switch ArgBP2 expression (on or off) per cell division. ArgBP2 can have a fundamental impact on the actomyosin network: ArgBP2 positive COS-7 cells, for example, are clearly distinguishable by their denser actomyosin (stress fiber) network. ArgBP2γ binding to α-actinin appears to underlie its ability to localize to stress fibers and decrease cell migration. We map a small α-actinin binding region in ArgBP2 (residues 192–228) that is essential for these effects. Protein kinase A phosphorylation of ArgBP2γ at neighboring Ser-259 and consequent 14-3-3 binding blocks its interaction with α-actinin. ArgBP2 is known to be down-regulated in some aggressively metastatic cancers. Our work provides a biochemical explanation for the anti-migratory effect of ArgBP2.  相似文献   

7.
Adaptor proteins, composed of two or more protein-protein interacting modules without enzymatic activity, regulate various cellular functions. Vinexin, CAP/ponsin, and ArgBP2 constitute a novel adaptor protein family. They have a novel conserved region homologous to the active peptide sorbin, as well as three SH3 (src homology 3) domains. A number of proteins binding to this adaptor family have been identified. There is accumulating evidence that this protein family regulates cell adhesion, cytoskeletal organization, and growth factor signaling. This review will summarize the structure and the function of proteins in this family.  相似文献   

8.
Signals from the IGF-IR and other members of the IR family contribute to the growth, survival, adhesion, and motility of tumor cells. These signals are initiated through recruitment of adapter proteins including the IRS family and Shc proteins, and are mediated through the PI3-kinase, mitogen activated protein (MAP) kinase and stress-activated protein kinase (SAPK) pathways. Regulation of signaling responses from the IGF-IR involves the actions of regulatory adapter proteins including RACK1 and Grb10 that recruit or sequester cytoplasmic proteins, and the actions of phosphatases including tyrosine PTP-1B, PTEN, and PP2A. This review focuses on the signaling pathways that are activated by the IGF-IR in tumor cells, the mechanisms of regulation of these pathways by adapter proteins and phosphatases, and how modulation of IGF-IR signaling could contribute to cancer progression.  相似文献   

9.

Background  

The c-Cbl-associated protein (CAP), also known as ponsin, localizes to focal adhesions and stress fibers and is involved in signaling events. Phosphorylation has been described for the other two members of the sorbin homology family, vinexin and ArgBP2, but no data exist about the putative phosphorylation of CAP. According to previous findings, CAP binds to tyrosine kinase c-Abl. However, it is not known if CAP is a substrate of c-Abl or other tyrosine kinases or if phosphorylation regulates its localization.  相似文献   

10.
Cell adhesion and motility is of fundamental importance during development, normal physiology and pathologic conditions such as tumor metastasis. Focal adhesion proteins and their dynamic interactions play a critical role in the regulation of directed cell migration upon exposure to extracellular guidance cues. Using a combination of pharmacological inhibitors, knockout and knockdown cells and mutant protein expression, we recently reported that following adhesion and growth factor stimulation the dynamic interaction between paxillin and PKL(GIT2) is regulated by Src/FAK-dependent phosphorylation of PKL and that this interaction is necessary for the coordination of Rho family GTPase signaling controlling front-rear cell polarity and thus directional migration. Herein, we discuss the implications of these observations.Key words: FAK, Src, PTP-PEST, PIX, PAK, Arf6, Rac1, cell polarity, cell migration, tyrosine phosphorylation  相似文献   

11.

Background

The chemokine CXCL12/SDF-1α interacts with its G-protein coupled receptor CXCR4 to induce migration of lymphoid and endothelial cells. T cell specific adapter protein (TSAd) has been found to promote migration of Jurkat T cells through interaction with the G protein β subunit. However, the molecular mechanisms for how TSAd influences cellular migration have not been characterized in detail.

Principal Findings

We show that TSAd is required for tyrosine phosphorylation of the Lck substrate IL2-inducible T cell kinase (Itk). Presence of Itk Y511 was necessary to boost TSAd''s effect on CXCL12 induced migration of Jurkat T cells. In addition, TSAd''s ability to promote CXCL12-induced actin polymerization and migration of Jurkat T lymphocytes was dependent on the Itk-interaction site in the proline-rich region of TSAd. Furthermore, TSAd-deficient murine thymocytes failed to respond to CXCL12 with increased Itk phosphorylation, and displayed reduced actin polymerization and cell migration responses.

Conclusion

We propose that TSAd, through its interaction with both Itk and Lck, primes Itk for Lck mediated phosphorylation and thereby regulates CXCL12 induced T cell migration and actin cytoskeleton rearrangements.  相似文献   

12.
Akt/protein kinase B is a major cell survival pathway through phosphorylation of proapoptotic proteins Bad and Bax and of additional apoptotic pathways linked to Forkhead proteins glycogen synthase kinase-3beta and ASK1. To further explore the mechanism by which Akt regulates cell survival, we identified an Akt interaction protein by yeast two-hybrid screening. It is highly homologous to ARG-binding protein 2 (ArgBP2) with splicing exon 8 of the coding region of the ArgBP2. As two splicing isoforms (ArgBP2alpha and -beta) of ArgBP2 have been identified (Wang, B., Golemis, E. A., and Kruh, G. D. (1997) J. Biol. Chem. 272, 17542-17550), it was named ArgBP2gamma. ArgBP2gamma contains four Akt phosphorylation consensus sites, a SoHo motif, and three Src homology (SH) 3 domains and binds to C-terminal proline-rich motifs of Akt through its first and second SH3 domains. It also interacts with p21-activated protein kinase (PAK1) via its first and third SH3 domains, indicating the SH3 domains of ArgBP2gamma as docking sites for Akt and PAK1. Akt phosphorylates ArgBP2gamma in vitro and in vivo. Expression of ArgBP2gamma induces PAK1 activity and overrides apoptosis induced by ectopic expression of Bad or DNA damage. Nonphosphorylatable ArgBP2gamma-4A and SH3 domain-truncated mutant ArgBP2gamma inhibit Akt-induced PAK1 activation and reduce Akt and PAK1 phosphorylation of Bad and antiapoptotic function. These data indicate that ArgBP2gamma is a physiological substrate of Akt, functions as an adaptor for Akt and PAK1, and plays a role in Akt/PAK1 cell survival pathway.  相似文献   

13.
14.
The neural cell adhesion molecule (NCAM), a key member of the immunoglobulin-like CAM family, was reported to regulate the migration of bone marrow-derived mesenchymal stem cells (BMSCs). However, the detailed cellular behaviors including lamellipodia formation in the initial step of directional migration remain largely unknown. In the present study, we reported that NCAM affects the lamellipodia formation of BMSCs. Using BMSCs from Ncam knockout mice we found that Ncam deficiency significantly impaired the migration and the directional lamellipodia formation of BMSCs. Further studies revealed that Ncam knockout decreased the activity of cofilin, an actin-cleaving protein, which was involved in directional protrusions. To explore the molecular mechanisms involved, we examined protein tyrosine phosphorylation levels in Ncam knockout BMSCs by phosphotyrosine peptide array analyses, and found that the tyrosine phosphorylation level of β1 integrin, a protein upstream of cofilin, was greatly upregulated in Ncam-deficient BMSCs. Notably, by blocking the function of β1 integrin with RGD peptide or ROCK inhibitor, the cofilin activity and directional lamellipodia formation of Ncam knockout BMSCs could be rescued. Finally, we found that the effect of NCAM on tyrosine phosphorylation of β1 integrin was independent of the fibroblast growth factor receptor. These results indicated that NCAM regulates directional lamellipodia formation of BMSCs through β1 integrin signal-mediated cofilin activity.  相似文献   

15.
16.
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.  相似文献   

17.

Background

Cell migration is an essential process in organ homeostasis, in inflammation, and also in metastasis, the main cause of death from cancer. The extracellular matrix (ECM) serves as the molecular scaffold for cell adhesion and migration; in the first phase of migration, adhesion of cells to the ECM is critical. Engagement of integrin receptors with ECM ligands gives rise to the formation of complex multiprotein structures which link the ECM to the cytoplasmic actin skeleton. Both ECM proteins and the adhesion receptors are glycoproteins, and it is well accepted that N-glycans modulate their conformation and activity, thereby affecting cell–ECM interactions. Likely targets for glycosylation are the integrins, whose ability to form functional dimers depends upon the presence of N-linked oligosaccharides. Cell migratory behavior may depend on the level of expression of adhesion proteins, and their N-glycosylation that affect receptor-ligand binding.

Scope of review

The mechanism underlying the effect of integrin glycosylation on migration is still unknown, but results gained from integrins with artificial or mutated N-glycosylation sites provide evidence that integrin function can be regulated by changes in glycosylation.

General significance

A better understanding of the molecular mechanism of cell migration processes could lead to novel diagnostic and therapeutic approaches and applications. For this, the proteins and oligosaccharides involved in these events need to be characterized.  相似文献   

18.
Pancreatic cancer is a devastating disease with the worst prognosis among all the major human malignancies. The propensity to rapidly metastasize contributes significantly to the highly aggressive feature of pancreatic cancer. The molecular mechanisms underlying this remain elusive, and proteins involved in the control of pancreatic cancer cell motility are not fully characterized. In this study, we find that histone deacetylase 6 (HDAC6), a member of the class II HDAC family, is highly expressed at both protein and mRNA levels in human pancreatic cancer tissues. HDAC6 does not obviously affect pancreatic cancer cell proliferation or cell cycle progression. Instead, it significantly promotes the motility of pancreatic cancer cells. Further studies reveal that HDAC6 interacts with cytoplasmic linker protein 170 (CLIP-170) and that these two proteins function together to stimulate the migration of pancreatic cancer cells. These findings provide mechanistic insight into the progression of pancreatic cancer and suggest HDAC6 as a potential target for the management of this malignancy.  相似文献   

19.
Focal adhesions are specialized sites of cell attachment to the extracellular matrix where integrin receptors link extracellular matrix to the actin cytoskeleton, and they are constantly remodeled during cell migration. Focal adhesion kinase (FAK) is an important regulator of focal adhesion remodeling. AGAP2 is an Arf GTPase-activating protein that regulates endosomal trafficking and is overexpressed in different human cancers. Here we examined the regulation of the FAK activity and the focal adhesion remodeling by AGAP2. Our results show that FAK binds the pleckstrin homology domain of AGAP2, and the binding is independent of FAK activation following epidermal growth factor receptor stimulation. Overexpression of AGAP2 augments the activity of FAK, and concordantly, the knockdown of AGAP2 expression with RNA interference attenuates the FAK activity stimulated by epidermal growth factor or platelet-derived growth factor receptors. AGAP2 is localized to the focal adhesions, and its overexpression results in dissolution of the focal adhesions, whereas knockdown of its expression stabilizes them. The AGAP2-induced dissolution of the focal adhesions is independent of its GTPase-activating protein activity but may involve its N-terminal G protein-like domain. Our results indicate that AGAP2 regulates the FAK activity and the focal adhesion disassembly during cell migration.Focal adhesions are macromolecular structures that connect actin cytoskeleton to the extracellular matrix and play an important role in cell migration (1). Components of focal adhesions include signaling proteins such as focal adhesion kinase (FAK),3 c-Src, and paxillin, as well as structural proteins such as talin and vinculin (2, 3). Focal adhesions are constantly formed and disassembled (i.e. remodeled) at the leading edge of migrating cells, and they are disassembled at the trailing edge during the cell migration (4, 5). Available evidence demonstrates that the remodeling of focal adhesions is regulated by FAK (6) and Arf-directed GTPase-activating proteins (Arf GAPs) (7).FAK is a member of the Src family nonreceptor tyrosine kinases whose activities are regulated by intra-molecular phosphorylation (8). Autophosphorylation of FAK on tyrosine residue 397 provides docking sites for Src homology 2 domain-containing proteins, including c-Src. After binding to FAK, c-Src phosphorylates FAK on Tyr-576 and Tyr-577 to activate fully the intrinsic kinase activity of FAK (9). Cellular functions of FAK are many and include cell migration, survival, and proliferation; and activation of FAK occurs upon integrin clustering or stimulation of cell surface receptors such as the epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) receptors. FAK activation following integrin clustering results in recruitment of structural and signaling proteins that collectively contribute to the formation of the focal adhesions (10). In FAK null cells, focal adhesions are formed but cannot disassemble (11), suggesting that FAK is required for the focal adhesion disassembly.ADP-ribosylation factors (Arfs) are GTP-binding proteins that lack detectable intrinsic GTPase activities. Therefore, hydrolysis of GTP bound to Arf is mediated by Arf GAPs (12, 13). The AZAP family of Arf GAPs are multidomain proteins that contain a catalytic core of pleckstrin homology (PH), Arf GAP, and ankyrin repeat domains (14), and each subgroup possesses characteristic domain(s). For example, ASAPs have a BAR (Bin, Amphiphysin, Rvs) domain at their N termini and a Src homology 3 domain at their C termini; ARAPs have a Rho GAP domain and five PH domains; and AGAPs have a G protein-like domain (GLD) at their N termini and their PH domains are split, i.e. there is an insert of 80–100 amino acids between the β5 strand and β6 strand. The Arf GAPs regulate membrane trafficking and remodeling of the actin cytoskeleton (7, 15), but the molecular mechanisms underlying the contribution of individual Arf GAPs to membrane trafficking and actin remodeling are being defined. We have reported that AGAP2 binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab4-dependent endosomal trafficking (16). Studies from other groups have indicated that AGAP2 is overexpressed in different human cancers, including glioblastoma, and that AGAP2 enhances the invasion of glioblastoma cells (17, 18).In this study, we tested the hypothesis that AGAP2 regulates focal adhesion remodeling and cell migration. We find that AGAP2 forms a complex with FAK, increases the FAK activity, and provokes the focal adhesion disassembly that may lead to increased cell migration. Some Arf GAPs have been shown to regulate focal adhesions, and each Arf GAP seems to regulate the focal adhesions by a distinct mechanism. Our results introduce a new way to regulate the focal adhesions by the Arf GAP AGAP2, i.e. through the regulation of FAK activity. These observations support the idea that various Arf GAPs function coordinately to provide temporal and spatial regulation of the focal adhesions during cell migration.  相似文献   

20.
A better knowledge of the molecular mechanisms that govern leukocyte trafficking is of major relevance for the clinics. Both normal and pathologic extravasation of lymphocytes are a fine-tuned spatio-temporal event of migratory path-finding, likely regulated by molecular guidance cues underlying cell movements in other systems. We have recently reported that members of the Eph family of receptor tyrosine kinases, namely EphA2 and one of its ligands, ephrin-A4 (EFNA4) can mediate in the traffic of chronic lymphocytic leukemia (CLL) cells and presumably of normal B cells between the blood and the tissues. The importance of EphA2-EFNA4 interactions at the endothelium-lymphocyte interface during TEM could rely on their attractive/repulsive properties. In the present work, we expand on those results by including additional insights and new suggestions for future studies that discuss the relevance of these molecules in overall cell adhesion dynamic events.Key words: Eph, ephrin, migration pathfinding, trafficking, leukemia, endothelium, lymphocyte, CLL, extravasation, transendothelial migration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号