首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histerosalpingography (HSG) remains the dominant diagnostic tool for investigation of infertility in women. Conversion factors used to estimate effective (E) and organ doses (HT) from air Kerma area product (KAP) are needed to estimate patient doses in HSG, performed with state-of-the-art fluoroscopic X-ray systems with digital detectors.In this study, estimates of E and HT for six critical organs/tissues, were derived on an individual basis in 120 HSG procedures and in 1410 irradiation events, performed on two X-ray systems from information available through the radiation dose structured report using Monte Carlo methods.Mean values of E and Hovaries were1.0 ± 0.9 mSv and 5.6 ± 5.4 mGy. E/KAP conversion factors of 0.13; 0.18; 0.28 and 0.35 mSv Gy−1cm−2 were established for irradiation events with a Cu filtration of 0.0; 0.1; 0.4 and 0.9 mm. A high agreement was obtained between E estimated through Monte Carlo methods and E/KAP conversion factors accounting separately for the different modes of fluoroscopy and the radiography component of HSG, with a systematic error of 0 mSv and lower/upper limits of agreement of −0.6 and 0.5 mSv. On the contrary, the use of a single coefficient of conversion did not provide accurate estimates of E, showing a bias of −0.4 mSv and lower and upper limits of agreement of −1.9 and 1.2 mSv.An algorithm for the estimation of effective and organ doses from KAP has been established in HSG procedures depending on the Cu filtration in the X-ray irradiation events.  相似文献   

2.
The Euratom directive 97/43 recommends the use of patient dose surveys in diagnostic radiology and the establishment of diagnostic reference dose levels (DRLs). The aims of this study are to perform measurements of the entrance surface dose (ESD) during diagnostic digital subtraction angiography (DSA) of the renal and carotid arteries using thermoluminescence dosemeters (TLDs), extraction of local DRLs, and calculation of the effective dose. Dose measurement for the staff was also performed. Dose measurements were performed on 48 participating patients. The mean effective dose was calculated to be 15.9 mSv and 8.9 mSv, for the renal and carotid DSA, respectively. The effective dose of the radiologist was calculated to be 0.022 mSv and 0.023 mSv per procedure for renal and carotid DSA respectively, when wearing a protective apron and using a movable ceiling mounted shield. Radiation dose variation depends on the physical characteristics of the patient, on the procedure preferences by radiologists and on the difficulties in conducting the procedures. The lack of DRLs for the specific examinations lead the research team to choose the DRL for DSA of the renal arteries to be 169 mGy for ESD at the pelvic region and for DSA of the carotid arteries to be 313 mGy for ESD at the region of the aortic arc.  相似文献   

3.
PurposeTo compare the organ-dose and effective-dose (E) delivered to the patient during percutaneous vertebroplasty (PVP) of one thoracic or lumbar vertebra performed under CT guidance or using a fixed C-arm.MethodsConsecutive adult patients undergoing PVP of one vertebra under CT-guidance, with optimized protocol and training of physicians, or using a fixed C-arm were retrospectively included from January 2016 to June 2017. Organ-doses were computed on 16 organs using CT Expo 2.4 software for the CT procedures and PCXMC 2.0 for the fixed C-arm procedures. E was also computed with both software. Dosimetric values per anatomic locations for all procedures were compared using the paired Mann-Whitney-Wilcoxon test.ResultsIn total, 73 patients were analysed (27 men and 46 women, mean age 78 ± 10 years) among whom 35 (48%) underwent PVP under CT guidance and 38 (52%) PVP using a fixed C-arm. The median E was 11.31 [6.54; 15.82] mSv for all PVPs performed under CT guidance and 5.58 [3.33; 8.71] mSv for fixed C-arm and the differences was significant (p<0.001). For lumbar PVP, the organ doses of stomach, liver and colon were significantly higher with CT-scan than with the fixed C-arm: 97% (p=0.02); 21% (p=0.099) and 375% (p=0.002), respectively. For thoracic PVP, the lung organ dose was significantly higher with CT-scan than with the fixed C-arm (127%; p<0.001) and the oesophagus organ doses were not significantly different (p = 0.626).ConclusionThis study showed that the E and the organ dose on directly exposed organs were both higher for PVP performed under CT-guidance than with the fixed C-arm.  相似文献   

4.
PurposeTo compare patient radiation doses in cone beam computed tomography (CBCT) of two mobile systems used for navigation-assisted mini-invasive orthopedic surgery: O-arm®O2 and Surgivisio®.MethodsThe study focused on imaging of the spine. Thermoluminescent dosimeters were used to measure organs and effective doses (ED) during CBCT. An ionization-chamber and a solid-state sensor were used to measure the incident air-kerma (Ki) at the center of the CBCT field-of-view and Ki during 2D-imaging, respectively. The PCXMC software was used to calculate patient ED in 2D and CBCT configurations. The image quality in CBCT was evaluated with the CATPHAN phantom.ResultsThe experimental ED estimate for the low-dose 3D-modes was 2.41 and 0.35 mSv with O-arm®O2 (Low Dose 3D-small-abdomen) and Surgivisio® (3DSU-91 images), respectively. PCXMC results were consistent: 1.54 and 0.30 mSv. Organ doses were 5 to 12 times lower with Surgivisio®. Ki at patient skin were comparable on lateral 2D-imaging (0.5 mGy), but lower with O-arm®O2 on anteroposterior (0.3 versus 0.9 mGy). Both systems show poor low contrast resolution and similar high contrast spatial resolution (7 line-pairs/cm).ConclusionsThis study is the first to evaluate patient ED and organ doses with Surgivisio®. A significant difference in organs doses was observed between the CBCT systems. The study demonstrates that Surgivisio® used on spine delivers approximately five to six times less patient ED, compared to O-arm®O2, in low dose 3D-modes. Doses in 2D-mode preceding CBCT were higher with Surgivisio®, but negligible compared to CBCT doses under the experimental conditions tested.  相似文献   

5.
BackgroundThe Euratom directive 97/43 recommends the use of patient dose surveys in diagnostic radiology and the establishment of reference dose levels (DRLs).PurposeTo perform measurements of the dose delivered during diagnostic angiography of the lower limbs using thermoluminescence dosimeters (TLDs), extraction of DRLs and estimation of the effective dose and radiation risk for this particular examination.MethodsDose measurement was performed on 30 patients by using TLD sachets attached in 5 different positions not only on the patient, but also to the radiologist. All the appropriate factors were recorded. Measurement of the ESD was performed after each examination.ResultsThe mean entrance skin dose (ESD) was calculated to be 70.8, 67.7, 24.3, 18.4, 9.7 mGy at the level of aorta bifurcation, pelvis, femur, knees, and at feet, respectively. The average effective dose is 9.8 mSv with the radiation risks for fatal cancer to be 5.4 × 10?4. The effective dose of the radiologist was calculated to be 0.023 mSv per procedure.ConclusionRadiation dose variation depends on the physical characteristics of the patient, on the procedure preferences by radiologists and the difficulties in conducting procedures. The main reason for the increased patient dose, compared to other studies, is the number of frames rather than the duration of fluoroscopy. For DSA of the lower limbs, the DRL was chosen to be an entrance skin dose of 96.4 mGy in the pelvic region. The dose to the radiologist is negligible.  相似文献   

6.
Recently discovered historical documents indicate that large releases of noble gases (mainly 41Ar and radioactive isotopes of Kr and Xe) from the Mayak Production Association (MPA) over the period from 1948 to 1956 may have caused considerable external exposures of both, inhabitants of Ozyorsk and former inhabitants of villages at the upper Techa River. To quantify this exposure, seven brick samples from three buildings in Ozyorsk, located 8–10 km north-northwest from the radioactive gas release points, were taken. The absorbed dose in brick was measured in a depth interval of 3–13 mm below the exposed surface of the bricks by means of the thermoluminescence (TL) and the optically stimulated luminescence (OSL) method. Generally, luminescence properties using TL were more favorable for precise dose determination than using OSL, but within their uncertainties the results from both methods agree well with each other. The absorbed dose due to natural radiation was assessed and subtracted under the assumption of the bricks to be completely dry. The weighted average of the anthropogenic dose for all samples measured by TL and OSL is 10 ± 9 and 1 ± 9 mGy, respectively. An upper limit for a possible anthropogenic dose in brick that would not be detected due to the measurement uncertainties is estimated at 24 mGy. This corresponds to an effective dose of about 21 mSv. A similar range of values is obtained in recently published dispersion calculations that were based on reconstructed MPA releases. It is concluded that the release of radioactive noble gases from the radiochemical and reactor plants at Mayak PA did not lead to a significant external exposure of the population of Ozyorsk. In addition, the study demonstrates the detection limit for anthropogenic doses in ca. 60-year-old bricks to be about 24 mGy, if luminescence methods are used.  相似文献   

7.
ObjectiveThis study aims to assess low-contrast image quality using a low-contrast object specific contrast-to-noise ratio (CNRLO) analysis for iterative reconstruction (IR) computed tomography (CT) images.MethodsA phantom composed of low-contrast rods placed in a uniform material was used in this study. Images were reconstructed using filtered back projection (FBP) and IR (Adaptive Iterative Dose Reduction 3D). Scans were performed at six dose levels: 1.0, 1.8, 3.1, 4.6, 7.1 and 13.3 mGy. Objective image quality was assessed by comparing CNRLO with CNR using a human observer test.ResultsCompared with FBP, IR yielded increased CNR at the same dose levels. The results of CNRLO and observer tests showed similarities or only marginal differences between FBP and IR at the same dose levels. The coefficient of determination for CNRLO was significantly better (R2 = 0.86) than that of CNR (R2 = 0.47).ConclusionFor IR, CNRLO could potentially serve as an objective index reflective of a human observer assessment. The results of CNRLO test indicated that the IR algorithm was not superior to FBP in terms of low-contrast detectability at the same radiation doses.  相似文献   

8.
Radiotherapy, used for heterotopic ossification (HO) management, may increase radiation risk to patients. This study aimed to determine the peripheral dose to radiosensitive organs and the associated cancer risks due to radiotherapy of HO in common non-hip joints. A Monte Carlo model of a medical linear accelerator combined with a mathematical phantom representing an average adult patient were employed to simulate radiotherapy for HO with standard AP and PA fields in the regions of shoulder, elbow and knee. Radiation dose to all out-of-field radiosensitive organs defined by the International Commission on Radiological Protection was calculated. Cancer induction risk was estimated using organ-specific risk coefficients. Organ dose change with increased field dimensions was also evaluated. Radiation therapy for HO with a 7 Gy target dose in the sites of shoulder, elbow and knee, resulted in the following equivalent organ dose ranges of 0.85–62 mSv, 0.28–1.6 mSv and 0.04–1.6 mSv, respectively. Respective ranges for cancer risk were 0–5.1, 0–0.6 and 0–1.3 cases per 104 persons. Increasing the field size caused an average increase of peripheral doses by 15–20%. Individual organ dose increase depends upon the primary treatment site and the distance between organ of interest and treatment volume. Relatively increased risks of more than 1 case per 10,000 patients were found for skin, breast and thyroid malignancies after treatment in the region of shoulder and for skin cancer following elbow irradiation. The estimated risk for inducing any other malignant disease ranges from negligible to low.  相似文献   

9.
IntroductionIntegrated Positron Emission Tomography (PET) with Computerized tomography (CT) (PET/CT) are widely used to diagnose, stage and track human diseases during whole body scanning. Multi-modality imaging is an interesting area of research that aims at acquiring united morphological-functional image information for accurate diagnosing and staging of the disease. However, PET/CT procedure accompanied with high radiation dose from CT and administered radioactivity. The aim of the present study was to estimate the patients’ dose from 18F-fluorodeoxyglucose imaging (18F-FDG) hybrid PET/CT whole body scan.Materials and methodsRADAR (Radiation Dose Assessment Resource) software was used to estimate the effective dose for 156 patients (110 (70.5%)) males and 46 (39.5%) female) examined using Discovery PET/CT 710, GE Medical Systems installed at Kuwait Cancer Control Center (KCCC).ResultsThe effective dose results presented in this PET/CT study ranged from (1.56–9.94 mSv). The effective dose was calculated to be 3.88 mSv in females and 3.71 mSv in males. The overall breast (female), lung, liver, kidney and thyroid were 7.4, 7.2, 5.2, 4, 3 and 2.9, respectively.For females, the body mass index (BMI) was 28.49 kg/m2 and for males it was 26.50 kg/m2 which showed overweight values for both genders. Conclusions: The findings indicate that the effective dose of 18F-FDG in both male and female patients was not substantially different. The study suggested that the risk–benefit proportions of any 18F-FDG whole body PET/CT scan should be clarified and carefully weighed. Patient’s doses are lower compared with previous studies.  相似文献   

10.

Aim

To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models.

Materials and Methods

27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose), SD12.5, SD15, SD17.5, SD20 (Groups from B to E) to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP), and Groups from B to E were reconstructed using iterative reconstruction (IR). Objective and subjective image quality (IQ) among groups were compared to determine an optimal radiation reduction level.

Results

The noise and signal-to-noise ratio (SNR) in Group D had no significant statistical difference from that in Group A (P = 1.0). The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05). There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups) of Group D. The effective dose (ED) of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001).

Conclusions

In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%.  相似文献   

11.
The present study aimed to investigate whether the in-plane resolution property of iterative reconstruction (IR) of computed tomography (CT) data is object shape-dependent by testing columnar shapes with diameters of 3, 7, and 10 cm (circular edge method) and a cubic shape with 5-cm side lengths (linear edge method). For each shape, objects were constructed of acrylic (contrast in Hounsfield units [ΔHU] = 120) as well as a soft tissue equivalent material (ΔHU = 50). For each shape, we measured the modulation transfer functions (MTFs) of IR and filtered back projection (FBP) using two multi-slice CT scanners at scan doses of 5 and 10 mGy. In addition, we evaluated a thin metal wire using the conventional method at 10 mGy. For FBP images, the MTF results of the tested objects and the wire method showed substantial agreement, thus demonstrating the validity of our analysis technique. For IR images, the MTF results of different shapes were nearly identical for each object contrast and dose combination, and we did not observe shape-dependent effects of the resolution properties of either tested IR. We conclude that both the circular edge method and linear edge method are equally useful for evaluating the resolution properties of IRs.  相似文献   

12.

This study considers the exposure of the population of the most contaminated Gomel and Mogilev Oblasts in Belarus to prolonged sources of irradiation resulting from the Chernobyl accident. Dose reconstruction methods were developed and applied in this study to estimate the red bone-marrow doses (RBMs) from (i) external irradiation from gamma-emitting radionuclides deposited on the ground and (ii) 134Cs, 137Cs and 90Sr ingestion with locally produced foodstuffs. The mean population-weighted RBM doses accumulated during 35 years after the Chernobyl accident were 12 and 5.7 mGy for adult residents in Gomel and Mogilev Oblasts, respectively, while doses for youngest age groups were 20–40% lower. The highest mean area-specific RBM doses for adults accumulated in 1986–2021 were 63, 56 and 46 mGy in Narovlya, Vetka and Korma raions in Gomel Oblast, respectively. For most areas, external irradiation was the predominant pathway of exposure (60–70% from the total dose), except for areas with an extremely high aggregated 137Cs soil to cow’s milk transfer coefficient (≥?5.0 Bq L?1 per kBq m?2), where the contribution of 134Cs and 137Cs ingestion to the total RBM dose was more than 70%. The contribution of 90Sr intake to the total RBM dose did not exceed 4% for adults and 10% for newborns in most raion in Gomel and Mogilev Oblasts. The validity of the doses estimated in this study was assessed by comparison with doses obtained from measurements by thermoluminescence dosimeters and whole-body counters done in 1987–2015. The methodology developed in this study can be used to calculate doses to target organs other than RBM such as thyroid and breast doses. The age-dependent and population-weighted doses estimated in this study are useful for ecological epidemiological studies, for projection of radiation risk, and for justification of analytical epidemiological studies in populations exposed to Chernobyl fallout.

  相似文献   

13.
PurposeTo investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses.Materials and methodsUsing an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70–80%, 40–80%, and 0–100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center.ResultsWith half-scan reconstruction at 60 bpm, a 70–80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70–80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm.ConclusionAEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose.  相似文献   

14.
PurposeThe primary goal was to evaluate local dose level for fluoroscopically guided invasive cardiac procedures in a high-volume activity catheterization laboratory, using automatic data registration with minimal impact on operator workload. The secondary goal was to highlight the relationship between dose indices and acquisition parameters, in order to establish an effective strategy for protocols optimization.MethodsFrom September 2016 to December 2018, a dosimetric survey was conducted in the 2 rooms of the catheterization laboratory of our institution. Data collection burden was minimized using a commercial Radiation Dose Index Monitoring System (RDIMs) that analyzes dicom files automatically sent by the x-ray equipment. Data were combined with clinical information extracted from the HIS records reported by the interventional cardiologist. Local dose levels were established for different invasive cardiac procedures.ResultsA total of 3029 procedures performed for 2615 patients were analyzed. Median KAP were 21 Gycm2 for invasive coronary angiography (ICA) procedures, 61 Gycm2 for percutaneous coronary intervention (PCI) procedures, 59 Gycm2 for combined (ICA+PCI) procedures, 87 Gycm2 for structural heart intervention (TAVI) procedures. A significant dose reduction (51% for ICA procedures and 58% for PCI procedures) was observed when noise reduction acquisition techniques were applied.ConclusionsRDIMs are effective tools in the establishment of local dose level in interventional cardiology, as they mitigate the burden to collect and register extensive dosimetric data and exposure parameters. Systematic review of data support the multi-disciplinary team in the definition of an effective strategy for protocol management and dose optimization.  相似文献   

15.
ObjectivesTo estimate the organ equivalent doses and the effective doses (E) in patient undergoing percutaneous transhepatic biliary drainage (PTBD) examinations, using the MCNP5 and PCXMC2 Monte Carlo-based codes.MethodsThe purpose of this study is to estimate the organ doses to patients undergoing PTBD examinations by clinical measurements and Monte Carlo simulation. Dose area products (DAP) values were assessed during examination of 43 patients undergoing PTBD examination separated into groups based on the gender and the dimensions and location of the beam.ResultsMonte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 and PCXMC2 codes in order to estimate equivalent organ doses. Regarding the PTBD examination the organ receiving the maximum radiation dose was the lumbar spine. The mean calculated HT for the lumbar spine using the MCNP5 and PCXMC2 methods respectively, was 117.25 mSv and 131.7 mSv, in males. The corresponding doses were 139.45 mSv and 157.1 mSv respectively in females. The HT values for organs receiving considerable amounts of radiation during PTBD examinations were varied between 0.16% and 73.2% for the male group and between 1.10% and 77.6% for the female group. E in females and males using MCNP5 and PCXMC2.0 was 5.88 mSv and 6.77 mSv, and 4.93 mSv and 5.60 mSv.ConclusionThe doses remain high compared to other invasive operations in interventional radiology. There is a reasonable good coincidence between the MCNP5 and PCXMC2.0 calculation for most of the organs.  相似文献   

16.
PurposeTo assess whether a deep learning image reconstruction algorithm (TrueFidelity) can preserve the image texture of conventional filtered back projection (FBP) at reduced dose levels attained by ASIR-V in chest CT.MethodsPhantom images were acquired using a clinical chest protocol (7.6 mGy) and two levels of dose reduction (60% and 80%). Images were reconstructed with FBP, ASIR-V (50% and 100% blending) and TrueFidelity (low (DL-L), medium (DL-M) and high (DL-H) strength). Noise (SD), noise power spectrum (NPS) and task-based transfer function (TTF) were calculated. Noise texture was quantitatively compared by computing root-mean-square deviations (RMSD) of NPS with respect to FBP. Four experienced readers performed a contrast-detail evaluation. The dose reducing potential of TrueFidelity compared to ASIR-V was assessed by fitting SD and contrast-detail as a function of dose.ResultsDL-M and DL-H reduced noise and NPS area compared to FBP and 50% ASIR-V, at all dose levels. At 7.6 mGy, NPS of ASIR-V 50/100% was shifted towards lower frequencies (fpeak = 0.22/0.13 mm−1, RMSD = 0.14/0.38), with respect to FBP (fpeak = 0.30 mm−1). Marginal difference was observed for TrueFidelity: fpeak = 0.33/0.30/0.30 mm−1 and RMSD = 0.03/0.04/0.07 for L/M/H strength. Values of TTF50% were independent of DL strength and higher compared to FBP and ASIR-V, at all dose and contrast levels. Contrast-detail was highest for DL-H at all doses. Compared to 50% ASIR-V, DL-H had an estimated dose reducing potential of 50% on average, without impairing noise, texture and detectability.ConclusionsTrueFidelity preserves the image texture of FBP, while outperforming ASIR-V in terms of noise, spatial resolution and detectability at lower doses.  相似文献   

17.
PurposeTo perform a comprehensive dosimetric and clinical evaluation of the new Pinnacle Personalized automated planning system for complex head-and-neck treatments.MethodsFifteen consecutive head-neck patients were enrolled. Radiotherapy was prescribed using VMAT with simultaneous integrated boost strategy. Personalized planning integrates the Feasibility engine able to supply an “a priori” DVH prediction of the achievability of planning goals. Comparison between clinically accepted manually-generated (MP) and automated (AP) plans was performed using dose-volume histograms and a blinded clinical evaluation by two radiation oncologists. Planning time between MP and AP was compared. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array.ResultsFor similar targets coverage, AP plans reported less irradiation of healthy tissue, with significant dose reduction for spinal cord, brainstem and parotids. On average, the mean dose to parotids and maximal doses to spinal cord and brainstem were reduced by 13–15% (p < 0.001), 9% (p < 0.001) and 16% (p < 0.001), respectively. The integral dose was reduced by 16% (p < 0.001). The dose conformity for the three PTVs was significantly higher with AP plans (p < 0.001). The two oncologists chose AP plans in more than 80% of cases. Overall planning times were reduced to <30 min for automated optimization. All AP plans passed the 3%/2 mm γ-analysis by more than 95%.ConclusionComplex head-neck plans created using Personalized automated engine provided an overall increase of plan quality, in terms of dose conformity and sparing of normal tissues. The Feasibility module allowed OARs dose sparing well beyond the clinical objectives.  相似文献   

18.
The production and characterization of an anti-clenbuterol single-chain Fv antibody (CBLscFv)–bacterial alkaline phosphatase (AP) fusion protein are described. The CBLscFv and the phoA gene of Escherichia coli strain K12 chromosomal DNA were cloned by PCR and sequentially inserted into the expression vector pBV220 to express the CBLscFv–AP fusion protein in E. coli strain BL21(DE3)pLysS. SDS–PAGE and western blot analyses revealed that the fusion protein showed a molecular weight of 73 kDa and bound with the antibacterial AP monoclonal antibody. Determination of enzymatic activity indicated that k cat and K m values of the fusion protein were 113.60 s−1 and 29.82 μM, respectively. Competitive direct enzyme-linked immunosorbent assay based on the obtained fusion protein indicated that the average concentration required for 50% inhibition of binding (IC50) and the limit of detection for CBL were 4.74 ± 0.003 (n = 3) and 0.54 ± 0.004 (n = 3) μg/l, respectively, and the linear response range extended from 1.13 to 69.68 μg/l. Cross-reactivity studies showed that the fusion protein did not cross-react with CBL analogs. The present findings indicate that the production of the CBLscFv–AP fusion protein in E. coli strain BL21(DE3)pLysS is feasible and suggest that it could be further used to develop a one-step ELISA for the specific detection of CBL.  相似文献   

19.

Objective

To explore the clinical value of low-dose prospectively electrocardiogram-gated axial dual-source CT angiography (low-dose PGA scanning, CTA) in patients with pulsatile bilateral bidirectional Glenn shunt (bBDG) as an alternative noninvasive method for postoperative morphological estimation.

Methods

Twenty patients with pulsatile bBDG (mean age 4.2±1.6 years) underwent both low-dose PGA scanning and conventional cardiac angiography (CCA) for the morphological changes. The morphological evaluation included the anatomy of superior vena cava (SVC) and pulmonary artery (PA), the anastomotic location, thrombosis, aorto-pulmonary collateral circulation, pulmonary arteriovenous malformations, etc. Objective and subjective image quality was assessed. Bland–Altman analysis and linear regression analyses were used to evaluate the correlation on measurements between CTA and CCA. Effective radiation dose of both modalities was calculated.

Results

The CT attenuation value of bilateral SVC and PA was higher than 300 HU. The average subjective image quality score was 4.05±0.69. The morphology of bilateral SVC and PA was displayed completely and intuitively by CTA images. There were 24 SVC above PA and 15 SVC beside PA. Thrombosis was found in 1 patient. Collateral vessels were detected in 13 patients. No pulmonary arteriovenous malformation was found in our study. A strong correlation (R2>0.8, P<0.001) was observed between the measurements on CTA images and on CCA images. Bland–Altman analysis demonstrated a systematic overestimation of the measurements by CTA (the mean value of bias>0).The mean effective dose of CTA and CCA was 0.50±0.17 mSv and 4.85±1.34 mSv respectively.

Conclusion

CT angiography with a low-dose PGA scanning is an accurate and reliable noninvasive examination in the assessment of morphological changes in patients with pulsatile bBDG.  相似文献   

20.
《Médecine Nucléaire》2017,41(2):83-92
IntroductionRadionuclide ventriculography provides a reproducible measurement of the left ventricular fraction ejection (LVEF) but with a significant body radiation (effective dose of 5,9 mSv for the injection of 850 Mbq of 99mTc). The highly sensitive semi-conductor (CZT) cameras could allow decreasing the injected activity by a factor 3, similarly to that of myocardial perfusion imaging. Our study was aimed to determine whether the LVEF measurement provided by radionuclide ventriculography on the CZT D-SPECT camera is impacted by a 70% reduction in recorded counts.Materials and methodsAfter the in vivo labeling of red blood cells with 850 MBq of 99mTc, 49 patients completed a conventional 2D recording (Conv-2D) on Anger camera followed by a 3D recording on the D-SPECT camera (3D-100%). The CZT recordings of all projections were subsequently shortened to 30% of their initial durations (3D-30%) in order to assess the LVEF measured with a 70% reduction in recorded counts.ResultsMean LVEF values were 62.7 ± 11.1% on Conv-2D and higher on both 3D-100% (66.8 ± 14.8%, P < 0.001) and 3D-30% (66.3 ± 15.7%, P < 0.001). The correlation coefficients with the LVEF determined with the reference Conv-2D method were equivalents for 3D-100% (r2 = 0.73) and 3D-30% (r2 = 0.70) and with a similar level of overestimation for the highest LEVF values.ConclusionA 70% reduction in recorded counts does not significantly impact the LVEF measured with radionuclide ventriculography on the CZT D-SPECT camera. These values are coherent with those obtained with the reference 2D method but with a clear overestimation for the highest LVEF values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号