首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Blanding’s turtle (Emys blandingii) has declined substantially in North America due to anthropogenic activities, leaving populations smaller and increasingly fragmented spatially. We sampled 212 turtles to evaluate variation at eight microsatellite loci within and among 18 populations of E. blandingii across its primary range in the midwestern United States (Illinois, Iowa, Minnesota, and Nebraska). All loci and populations were highly polymorphic. Our analyses also detected considerable genetic structure within and among the sampled localities, and revealed ancestral gene flow of E. blandingii in this region north and east from an ancient refugium in the central Great Plains, concordant with post-glacial recolonization timescales. The data further implied unexpected ‘links’ between geographically disparate populations in Nebraska and Illinois. Our study encourages conservation decisions to be mindful of the genetic uniqueness of populations of E. blandingii across its primary range.  相似文献   

2.
Moretti  Marco  Caretti  Paolo  Bricalli  Anya  Andrello  Marco 《Plant Ecology》2020,221(5):361-374

Range marginal populations are often perceived to have lower conservation value compared to those in the core area. The allocation of resources to maintain peripheral populations is therefore often questioned. The sage-leaved rockrose (Cistus salviifolius L.) is a self-incompatible and obligate seeder widely distributed in the Mediterranean area but rare and patchily distributed in Switzerland at its range margin on the southern slopes of the Alps. Here, we combined analysis of genetic diversity with pollinator surveys and field studies of reproductive ecology to compare peripheral Cistus populations in the Alps with range central populations in the Mediterranean. Our results showed no differences in genetic diversity between peripheral and central populations and between fragmented and connected ones at its range margin in the Alps. Although the fragmented populations were visited by more abundant and species richer pollinators (bees and wasps), they showed lower number of seeds and higher self-compatibility compared to the connected ones, which excludes the pollination limitation hypothesis. Overall, our study highlights that peripheral populations of C. salviifolius in the Alps are likely to contribute to maintain genetic diversity, while showing variation in reproductive ecology, and are therefore important for the conservation of this species.

  相似文献   

3.
The last decades have shown a surge in studies focusing on the interplay between fragmented habitats, genetic variation, and conservation. In the present study, we consider the case of a temperate pond‐breeding anuran (the common toad Bufo bufo) inhabiting a naturally strongly fragmented habitat at the Northern fringe of the species’ range: islands offshore the Norwegian coast. A total of 475 individuals from 19 populations (three mainland populations and 16 populations on seven adjacent islands) were genetically characterized using nine microsatellite markers. As expected for a highly fragmented habitat, genetic distances between populations were high (pairwise F st values ranging between 0.06 and 0.33), with however little differences between populations separated by ocean and populations separated by terrestrial habitat (mainland and on islands). Despite a distinct cline in genetic variation from mainland populations to peripheral islands, the study populations were characterized by overall high genetic variation, in line with effective population sizes derived from single‐sample estimators which were on average about 20 individuals. Taken together, our results reinforce the notion that spatial and temporal scales of fragmentation need to be considered when studying the interplay between landscape fragmentation and genetic erosion.  相似文献   

4.
The aim of this study was to assess the genetic variation and population structure of the geophyte Leucojum aestivum L. across the Po river valley (N-Italy), to inform conservation management actions with the selection of most suitable source populations for translocation purposes. L. aestivum is self-incompatible and occurs in S-Europe in fragmented wetlands and lowland forests along rivers. The species is particularly interesting for habitat restoration practices for its simplicity of ex situ conservation and cultivation. AFLP analyses were carried out on 16 fragmented populations, using four primer combinations. Correlations between genetic variation and demographic and ecological traits were tested. AFLP produced a total of 202 bands, 95.5% of which were polymorphic. Our results suggest that L. aestivum holds low to moderate levels of genetic diversity (mean Nei’s genetic diversity: H?=?0.125), mostly within-population. We found a gradient of two main biogeographic groups along western and eastern populations, while the STRUCTURE analysis found that the most likely number of clusters was K?=?3, shaping a partially consistent pattern. We explain the unusual negative correlation between genetic variation and population size with the high rate of vegetative reproduction. The levels of population differentiation suggest that fragmentation in L. aestivum populations has occurred, but that an active gene flow between fragmented populations still exists, maintained by flooding events or pollinators. Conservation management actions should improve habitat connectivity, especially for pollinators that vehicle upstream gene flow. Moreover, the west–east structure due to the lithological composition of the gravel and sand forming the alluvial plain of the Po river, should be considered when selecting source populations for translocation purposes.  相似文献   

5.
Heliconia uxpanapensis (Heliconiaceae) is an outcrossing endemic herb that grows within continuous and fragmented areas of the tropical rain forest of southeast Veracrúz (México). The genetic diversity, population differentiation, and genetic structure of seven populations of the studied species were assessed using inter‐simple sequence repeat) markers. Population differentiation was moderately high (FST range: 0.18–0.22) and indirect estimates of gene flow were rather low (Nm=0.65–0.83). Analysis of molecular variance indicated that the populations explained 22.2 percent of the variation, while individuals within the populations accounted for 77.8 percent. The similar and high level of genetic diversity found within populations of the continuous and fragmented forest suggests that H. uxpanapensis has not suffered yet the expected negative effect of fragmentation. Genetic structure analyses indicated the presence of fewer genetic clusters (K=4) than populations (N=7). Three of the four fragmented forest populations were assigned each to one of the clusters found within the continuous forest, suggesting the absence of a negative fragmentation effect on the amount and distribution of genetic variation. Given the significant genetic structure combined with high genetic diversity and low levels of gene flow, theoretical simulations indicated that H. uxpanapensis might be highly susceptible to changes in the mating system, which promotes inbreeding within fragmented populations. Thus, future conservation efforts in this species should be directed to ensure that levels of gene flow among populations are sufficient to prevent an increment in the magnitude of inbreeding within fragments.  相似文献   

6.
Theory predicts that genetic variation should be reduced at range margins, but empirical support is equivocal. Here, we used genotyping‐by‐sequencing technology to investigate genetic variation in central and marginal populations of two species in the marine gastropod genus Crepidula. These two species have different development and dispersal types and might therefore show different spatial patterns of genetic variation. Both allelic richness and the proportion of private alleles were highest in the most central populations of both species, and lower at the margin. The species with low dispersal, Crepidula convexa, showed high degrees of structure throughout the range that conform to the pattern found in previous studies using other molecular markers. The northernmost populations of the high‐dispersing species, Crepidula fornicata, are distinct from more central populations, although this species has been previously observed to have little genetic structure over much of its range. Although genetic diversity was significantly lower at the range margin, the absolute reduction in diversity observed with these genomewide markers was slight, and it is not yet known whether there are functional consequences for the marginal populations.  相似文献   

7.
Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.  相似文献   

8.
Genetic factors such as decreased genetic diversity and increased homozygosity can have detrimental effects on rare species, and may ultimately limit potential adaptation and exacerbate population declines. The Gulf and Atlantic Coastal Plain physiographic region has the second highest level of endemism in the continental USA, but habitat fragmentation and land use changes have resulted in catastrophic population declines for many species. Astragalus michauxii (Fabaceae) is an herbaceous plant endemic to the region that is considered vulnerable to extinction, with populations generally consisting of fewer than 20 individuals. We developed eight polymorphic microsatellites and genotyped 355 individuals from 24 populations. We characterized the population genetic diversity and structure, tested for evidence of past bottlenecks, and identified evidence of contemporary gene flow between populations. The mean ratios of the number of alleles to the allelic range (M ratio) across loci for A. michauxii populations were well below the threshold of 0.68 identified as indicative of a past genetic bottleneck. Genetic diversity estimates were similar across regions and populations, and comparable to other long-lived perennial species. Within-population genetic variation accounted for 92 % of the total genetic variation found in the species. Finally, there is evidence for contemporary gene flow among the populations in North Carolina. Although genetic factors can threaten rare species, maintaining habitats through prescribed burning, in concert with other interventions such as population augmentation or (re)introduction, are likely most critical to the long term survival of A. michauxii.  相似文献   

9.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

10.
In Flanders (northern Belgium),Primula vulgaris, a self-incompatible long-lived perennial herb, is rare and consists of a network of fragmented populations in the intensively used agricultural landscape. We investigated genetic variation and structure using 27 allozyme loci in 41 populations, and reproductive success to assess the effect of fragmentation on gene flow and the influence of the nearest neighbouring (large and/or highly genetically diverse) population on within-population genetic variation and reproductive success. Isolation by distance was found among and within populations. Smaller and more isolated populations showed a slight loss of allelic variation, but maintained high levels of observed heterozygosity. They were not more differentiated from each other than large populations. No significant difference in the regression slopes of the spatial autocorrelation analysis was found between two continuous populations and two groups of fragmented populations with similar distance classes. Multiple regression showed that population allelic richness and reproductive success were higher when the nearest neighbouring population was genetically more diverse. These results suggest moderate current gene flow within and among populations rather than historical gene flow. We conclude that small and isolated populations ofP. vulgaris should be considered not only as remnants of previously larger populations, but also as potential stepping stones insuring gene flow processes. For conservation, all highly variable and flowering populations should be considered, irrespective of their size or their isolation from large and continuous populations.  相似文献   

11.
Endemic Hawaiian species in the genus Plantago show considerable morphological and ecological diversity. Despite their variation, a recent phylogenetic analysis based on DNA sequence data showed that the group is monophyletic and that sequence variation among species and morphotypes is low. This lack of sequence polymorphisms resulted in an inability to resolve species and population affinities within the most recently derived clade of this lineage. To assess species boundaries, population genetic structure and interpopulation connectivity among the morphologically and ecologically distinct populations within this clade, genetic variation was examined using eight microsatellite loci. Within‐population genetic diversity was found to be lowest in the Maunaiu, Hawai'i population of the endangered P. hawaiensis, and highest in the large P. pachyphylla population from 'Eke, West Maui. Isolation by distance across the range of populations was detected and indicated restricted dispersal. This result is likely to be attributable to few interisland dispersal events in the evolutionary history of this lineage. Genetic differentiation within islands tended to be higher among populations occurring in contrasting bog and woodland habitats, suggesting ecological barriers to gene flow and the potential role of ecological divergence in population diversification. Overall, these results are consistent with findings from phylogenetic analysis of the entire lineage. Our data bring new insights regarding patterns of dispersal and population genetic structure to this endemic and endangered group of island taxa. As island environments become increasingly fragmented, information of this type has important implications for the successful management of these fragile populations and habitats.  相似文献   

12.

Background

Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity.

Results

Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability.

Conclusions

In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.  相似文献   

13.
Daphnia lumholtzi is a planktonic crustacean native to subtropical regions in Africa, Asia and Australia. Since its invasion to the southern USA in ~1990 it has spread across North America as far north as the Laurentian Great Lakes. We assessed invasion history using microsatellite makers and to explore the influence of mean annual temperature on the genetic structure along a latitudinal gradient in North America. Genotypic data were obtained from 9 microsatellite markers for 178 individuals from 13 populations (eight populations introduced to North America and five populations in the native range). Pairwise Fst values as well as Bayesian clustering showed a strong subdivision between native and introduced populations. Bayesian clustering identified multiple genetic clusters in recently invaded locations, suggestive of multiple invasions from various sources, including Asia and Africa. Using variation partitioning, we determined the amount of variation for genetic clusters of populations in the invaded range due to mean annual air temperature and the year of first detection. The results point to a primary introduction into the southern range of North America, with a subsequent northward expansion, and multiple introductions possibly from both the native range and by secondary spread from previously-invaded locations. Separate analysis of genetic clusters within the invaded range suggests additional effects of temperature conditions on geographic genetic structure, possibly as a consequence of D. lumholtzi’s tropical origin.  相似文献   

14.
A cline of allozyme variation inAbies mariesii   总被引:1,自引:0,他引:1  
Genetic variation at 22 allozyme loci was examined for 1,003 trees from 11 isolated natural populations ofAbies mariesii covering all except the southernmost region of its geographic range. Genetic diversity within species (H es=0.063) was low compared to many other long-lived woody species. Most of the genetic variation is found within populations (G ST=0.144) despite their isolated distribution. Genetic distance between populations was positively correlated with geographic distance. Genetic diversity within populations was generally low (meanH ep=0.054), but varied across populations in a clinal fashion such that genetic variation decreased with increasing latitude. These genetic characteristics may reflect the distribution history of this species.  相似文献   

15.
Litsea szemaois (Lauraceae) is an endemic and endangered species from the tropical rain forests of Xishuangbanna, southern Yunnan, SW China, but habitat fragmentation, especially exacerbated by rubber planting, has caused a decline in population size of the species. AFLP and ISSR were used to investigate the genetic diversity and population structure of eight populations from across its known distribution. Three AFLP and ten ISSR primer combinations produced a total of 203 and 77 unambiguous and repeatable bands respectively, of which 164 (80.8%) and 67 (87.0%) were polymorphic for the two markers. These two markers showed that Litsea szemaois exhibits comparatively high genetic diversity at species level (heterozygosity (hs) = 0.2109) relative to some other Lauraceae. Most of the genetic variation was partitioned within populations, but genetic differentiation between populations was significant and relatively high (Φ st = 0.2420, θ= 0.1986) compared with other tropical plants. The genetic characteristics of L. szemaois may be related to its outbreeding system, insect pollination and fragmented distribution. Because L. szemaois is dioecious and slow to mature, ex situ conservation across its genetic diversity is unlikely to succeed, although seedlings grow well under cultivation. Thus, in situ conservation is very important for this endangered species, especially as only 133 adult individuals are known in the wild. In particular, the Nabanhe and Mandian populations should be given a high conservation priority due to their higher genetic diversity, larger population size and better field condition, but wider sampling is required across all populations to determine additional areas with significant genetic conservation value.  相似文献   

16.
Ecological conditions shape natural distribution of plants. Populations are denser in optimal habitats but become more fragmented in the areas of suboptimal environmental conditions. Usually, fragmentation increases towards the limits of species distribution. Fragmented populations are often characterised by decreased genetic variation, and this effect is frequent in peripheral populations, mostly due to the reduced effective population size. Interestingly, the genetic consequences of fragmentation seem to be relatively weak in forest trees. Using microsatellite markers, we assessed the impact of population fragmentation on the genetic structure of a European tree species Acer campestre. Within the study area, this medium-size wind-dispersed and insect-pollinated tree reveals a gradual decrease in population density towards the northern range limit. Over the distance of 150 km, we detected the significant decrease in allelic richness, heterozygosity as well as an increase in the rate of population divergence along with latitude. On the other hand, we failed to show that the observed patterns of genetic structure result from the variation in population densities. Moreover, inbreeding levels revealed no association with both density and geographic location, suggesting that pollen limitation does not occur, even at the range margin. As we showed that there is no difference in a dispersal scale between low- and high-density populations in the study species, we argue that the genetic structure is a result of postglacial recolonization. However, unlike many other forest trees, A. campestre showed the sharp latitudinal genetic pattern at a very restricted spatial scale. Limited dispersal and high fragmentation are likely the reasons.  相似文献   

17.
The probability of population extinction seems to differ within the species range. Populations occupying former glacial refugia could harbor substantial genetic resources, hence they should be less prone to extirpation. It was hypothesized that the shrub birch Betula humilis could have survived the Last Glacial Maximum (LGM) at the current southwestern margin of its range. Using ten nuclear microsatellites, we studied genetic variation within and between 18 localities of B. humilis situated in marginal and subcentral areas. Six marginal populations were located in areas covered by an ice sheet during the LGM, and the remaining samples came from unglaciated areas. Analysis of private allele frequencies as well as hierarchical AMOVAs conducted for geographical regions, marginal versus central populations, and glaciated versus unglaciated areas did not confirm the hypothesis of glacial isolate of the shrub birch in southeastern Poland. On the other hand, very high genetic variation in some localities in northeastern Poland was found. Survival in periglacial areas followed by broad-fronted colonization or the existence of an admixture zone of phylogeographic lineages was proposed to explain this phenomenon.  相似文献   

18.
Dispersal affects both social behavior and population structure and is therefore a key determinant of long-term population persistence. However, dispersal strategies and responses to spatial habitat alteration may differ between sexes. Here we analyzed spatial and temporal variation in ten polymorphic microsatellite DNA loci of male and female Cabanis’s greenbuls ( Phyllastrephus cabanisi ), a cooperative breeder of Afrotropical rainforest, to quantify rates of gene flow and fine-grained genetic structuring within and among fragmented populations. We found genetic evidence for female-biased dispersal at small spatial scales, but not at the landscape level. Local autocorrelation analysis provided evidence of positive genetic structure within 300 m distance ranges, which is consistent with behavioral observations of short-distance natal dispersal. At a landscape scale, individual-based autocorrelation values decreased over time while levels of admixture increased, possibly indicating increased gene flow over the past decade.  相似文献   

19.
Selective breeding often produces an improvement in phenotype. Much of the phenotypic change within a species is a consequence of genetic variation. However, there is growing evidence for phenotypic change even in the absence of DNA sequence polymorphisms, termed epigenetic variation. This study’s goal was to investigate the genetic and epigenetic variation in the mass selection populations of the Pacific oyster (Crassostrea gigas), determine if any correlation exists between the genetic and epigenetic variations. This can serve as a first step in investigating the potential role epigenetic variations have in selective breeding. Amplified fragment length polymorphism analysis and methylation-sensitive amplified polymorphism methodology were used to monitor genetic and epigenetic variation in two populations (the base stock and the third selected generation) from a mass selection line in the Pacific oyster. The correlation between genetic and epigenetic variation was evaluated by Co-Inertia Analysis. The genetic difference was mainly found in the gene frequency shift revealed by the F ST value (0.0151, P < 0.01) and no significant reduction in genetic diversity was detected. The percentage of methylation in C. gigas was 26.4 %. No significant difference was observed on the average state of methylation, but a few bands showed different frequencies between the two populations. Co-Inertia Analysis revealed a significant association between the genetic and epigenetic profiles (P < 0.01).  相似文献   

20.
In present study seven RAPD primers were used to access the diversity within and among twelve populations of three mushroom species Ganoderma lucidum, leucoagaricus sp. and Lentinus sp. Total of 111 bands were scored by 7 RAPD primers in 30 accessions of three mushroom species collected from different sampling sites of central India. Total 111 bands were generated using seven primers which were F-1, OPG-06, OPC-07, OPD-08, OPA-02, OPD-02, OPB-10. All 111 bands were polymorphic in nature (100%). Therefore, it revealed that the used primers had sufficient potency for population studies and 30 accessions had higher genetic differences among each other. In best of the knowledge, this is the first report, which accesses the genetic diversity between three mushroom species (Gd Ganoderma lucidum, Lg Leucoagaricus sp., Ls Lentinus). The polymorphic percentage ranged from 3.60 to 23% within twelve populations, while polymorphic percentage among group was 40.56, among population within groups was 41.12 and within population was 18.32. This indicated that the genetic diversity within the population was very low, but slightly higher in the populations of three species. Among three groups representing Gd., Lg and Ls, Among populations within groups shown highest percentage of variation (Pv?=?41.12) while within populations, the lowest percentage of variation (18.32) was observed. This result also support that the highest genetic variation was present among groups in comparison to among the population within a species and lowest genetic variation was observed within the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号