首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.

Background

An IFN-γ response to M. tuberculosis-specific antigens is an effective biomarker for M. tuberculosis infection but it cannot discriminate between latent TB infection and active TB disease. Combining a number of cytokine/chemokine responses to M. tuberculosis antigens may enable differentiation of latent TB from active disease.

Methods

Asymptomatic recently-exposed individuals (spouses of TB patients) were recruited and tuberculin skin tested, bled and followed-up for two years. Culture supernatants, from a six-day culture of diluted whole blood samples stimulated with M. tuberculosis-derived PPD or ESAT-6, were measured for IFN-γ, IL-10, IL-13, IL-17, TNF-α and CXCL10 using cytokine ELISAs. In addition, 15 patients with sputum smear-positive pulmonary TB were recruited and tested.

Results

Spouses with positive IFN-γ responses to M. tuberculosis ESAT-6 (>62.5 pg/mL) and TB patients showed high production of IL-17, CXCL10 and TNF-α. Higher production of IL-10 and IL-17 in response to ESAT-6 was observed in the spouses compared with TB patients while the ratios of IFN-γ/IL-10 and IFN-γ/IL-17 in response to M. tuberculosis-derived PPD were significantly higher in TB patients compared with the spouses. Tuberculin skin test results did not correlate with cytokine responses.

Conclusions

CXCL10 and TNF-α may be used as adjunct markers alongside an IFN-γ release assay to diagnose M. tuberculosis infection, and IL-17 and IL-10 production may differentiate individuals with LTBI from active TB.  相似文献   

2.

Rationale

Due to the invasive nature of the procedures involved, most studies of Mycobacterium tuberculosis (Mtb)-specific immunity in humans have focused on the periphery rather than the site of active infection, the lung. Recently, antigens associated with Mtb-latency and -dormancy have been described using peripheral blood (PB) cells; however their response in the lung is unknown. The objective of this report was to evaluate, in patients prospectively enrolled with suspected active tuberculosis (TB), whether the latency antigen Rv2628 induces local-specific immune response in bronchoalveolar lavage (BAL) cells compared to PB cells.

Material/Methods

Among the 41 subjects enrolled, 20 resulted with active TB. Among the 21 without active disease, 9 were defined as subjects with latent TB-infection (LTBI) [Quantiferon TB Gold In-tube positive]. Cytokine responses to Rv2628 were evaluated by enzyme linked immunospot (ELISPOT) assay and flow cytometric (FACS) analysis. RD1-secreted antigen stimulation was used as control.

Results

There was a significantly higher frequency of Rv2628- and RD1-specific CD4+ T-cells in the BAL of active TB patients than in PB. However the trend of the response to Rv2628 in subjects with LTBI was higher than in active TB in both PB and BAL, although this difference was not significant. In active TB, Rv2628 and RD1 induced a cytokine-response profile mainly consisting of interferon (IFN)-γ-single-positive over double-IFN-γ/interleukin (IL)-2 T-cells in both PB and BAL. Finally, BAL-specific CD4+ T-cells were mostly effector memory (EM), while peripheral T-cell phenotypes were distributed among naïve, central memory and terminally differentiated effector memory T-cells.

Conclusions

In this observational study, we show that there is a high frequency of specific T-cells for Mtb-latency and RD1-secreted antigens (mostly IFN-γ-single-positive specific T-cells with an EM phenotype) in the BAL of active TB patients. These data may be important for better understanding the pathogenesis of TB in the lung.  相似文献   

3.

Background

New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB.

Methods

Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals.

Results

A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses.

Conclusion

These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high sensitivity and specificity levels for the immunodiagnosis of active TB.  相似文献   

4.
5.

Background

Mycobacterium tuberculosis Region-of-Difference-1 gene products present opportunities for specific diagnosis of M. tuberculosis infection, yet immune responses to only two gene-products, Early Secretory Antigenic Target-6 (ESAT-6) and Culture Filtrate Protein-10 (CFP-10), have been comprehensively investigated.

Methods

T-cell responses to Rv3873, Rv3878 and Rv3879c were quantified by IFN-γ-enzyme-linked-immunospot (ELISpot) in 846 children with recent household tuberculosis exposure and correlated with kinetics of tuberculin skin test (TST) and ESAT-6/CFP-10-ELISpot conversion over six months and clinical outcome over two years.

Results

Responses to Rv3873, Rv3878, and Rv3879c were present in 20–25% of contacts at enrolment. Rv3873 and Rv3879c responses were associated with and preceded TST conversion (P = 0.02 and P = 0.04 respectively), identifying these antigens as early targets of cell-mediated immunity following M. tuberculosis exposure. Responses to Rv3873 were additionally associated with subsequent ESAT-6/CFP-10-ELISpot conversion (P = 0.04). Responses to Rv3873 and Rv3878 predicted progression to active disease (adjusted incidence rate ratio [95% CI] 3.06 [1.05,8.95; P = 0.04], and 3.32 [1.14,9.71; P = 0.03], respectively). Presence of a BCG-vaccination scar was associated with a 67% (P = 0.03) relative risk reduction for progression to active tuberculosis.

Conclusions

These RD1-derived antigens are early targets of cellular immunity following tuberculosis exposure and T-cells specific for these antigens predict progression to active tuberculosis suggesting diagnostic and prognostic utility.  相似文献   

6.

Background

Activation of innate immunity via pathogen recognition receptors (PRR) modulates adaptive immune responses. PRR ligands are being exploited as vaccine adjuvants and as therapeutics, but their utility in diagnostics has not been explored. Interferon-gamma (IFN-γ) release assays (IGRAs) are functional T cell assays used to diagnose latent tuberculosis infection (LTBI); however, novel approaches are needed to improve their sensitivity.

Methods

In vitro immunomodulation of a whole blood IGRA (QuantiFERON®-TB GOLD In-Tube) with Toll-like receptor agonists poly(I:C), LPS, and imiquimod was performed on blood from subjects with LTBI and negative controls.

Results

In vitro immunomodulation significantly enhanced the response of T cells stimulated with M. tuberculosis antigens from subjects with LTBI but not from uninfected controls. Immunomodulation of IGRA revealed T cell responses in subjects with LTBI whose T cells otherwise do not respond to in vitro stimulation with antigens alone. Similar to their in vivo functions, addition of poly(I:C) and LPS to whole blood induced secretion of inflammatory cytokines and IFN-α and enhanced the surface expression of antigen presenting and costimulatory molecules on antigen presenting cells.

Conclusions

In vitro immunomodulation of whole blood IGRA may be an effective strategy for enhancing the sensitivity of T cells for diagnosis of LTBI.  相似文献   

7.

Background

IFN-γ and IL-2 cytokine-profiles define three functional T-cell subsets which may correlate with pathogen load in chronic intracellular infections. We therefore investigated the feasibility of the immunospot platform to rapidly enumerate T-cell subsets by single-cell IFN-γ/IL-2 cytokine-profiling and establish whether immunospot-based T-cell signatures distinguish different clinical stages of human tuberculosis infection.

Methods

We used fluorophore-labelled anti-IFN-γ and anti-IL-2 antibodies with digital overlay of spatially-mapped colour-filtered images to enumerate dual and single cytokine-secreting M. tuberculosis antigen-specific T-cells in tuberculosis patients and in latent tuberculosis infection (LTBI). We validated results against established measures of cytokine-secreting T-cells.

Results

Fluorescence-immunospot correlated closely with single-cytokine enzyme-linked-immunospot for IFN-γ-secreting T-cells and IL-2-secreting T-cells and flow-cytometry-based detection of dual IFN-γ/IL-2-secreting T-cells. The untreated tuberculosis signature was dominated by IFN-γ-only-secreting T-cells which shifted consistently in longitudinally-followed patients during treatment to a signature dominated by dual IFN-γ/IL-2-secreting T-cells in treated patients. The LTBI signature differed from active tuberculosis, with higher proportions of IL-2-only and IFN-γ/IL-2-secreting T-cells and lower proportions of IFN-γ-only-secreting T-cells.

Conclusions

Fluorescence-immunospot is a quantitative, accurate measure of functional T-cell subsets; identification of cytokine-signatures of pathogen burden, distinct clinical stages of M. tuberculosis infection and long-term immune containment suggests application for treatment monitoring and vaccine evaluation.  相似文献   

8.

Background

The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis.

Methods and Principal Findings

In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study.

Conclusion and Significance

Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis.  相似文献   

9.

Background

Although currently available IGRA have been reported to be promising markers for TB infection, they cannot distinguish active tuberculosis (TB) from latent infection (LTBI).

Objective

Children with LTBI, active TB disease or uninfected were prospectively evaluated by an in-house ELISPOT assay in order to investigate possible immunological markers for a differential diagnosis between LTBI and active TB.

Methods

Children at risk for TB infection prospectively enrolled in our infectious disease unit were evaluated by in-house IFN-γ and IL-2 based ELISPOT assays using a panel of Mycobacterium tuberculosis antigens.

Results

Twenty-nine children were classified as uninfected, 21 as LTBI and 25 as active TB cases (including 5 definite and 20 probable cases). Significantly higher IFN-γ ELISPOT responses were observed in infected vs. uninfected children for ESAT-6 (p<0.0001), CFP-10 (p<0.0001), TB 10.3 (p = 0.003), and AlaDH (p = 0.001), while differences were not significant considering Ag85B (p = 0.063), PstS1 (p = 0.512), and HspX (16 kDa) (p = 0.139). IL-2 ELISPOT assay responses were different for ESAT-6 (p<0.0001), CFP-10 (p<0.0001), TB 10.3 (p<0.0001), HspX (16 kDa) (p<0.0001), PstS1 (p<0.0001) and AlaDH (p = 0.001); but not for Ag85B (p = 0.063). Comparing results between children with LTBI and those with TB disease differences were significant for IFN-γ ELISPOT only for AlaDH antigen (p = 0.021) and for IL-2 ELISPOT assay for AlaDH (p<0.0001) and TB 10.3 antigen (p = 0.043). ROC analyses demonstrated sensitivity of 100% and specificity of 81% of AlaDH-IL-2 ELISPOT assay in discriminating between latent and active TB using a cut off of 12.5 SCF per million PBMCs.

Conclusion

Our data suggest that IL-2 based ELISPOT with AlaDH antigen may be of help in discriminating children with active from those with latent TB.  相似文献   

10.

Background

Helicobacter pylori, a lifelong and typically asymptomatic infection of the stomach, profoundly alters gastric immune responses, and may benefit the host in protection against other pathogens. We explored the hypothesis that H. pylori contributes to the control of infection with Mycobacterium tuberculosis.

Methodology/Principal Findings

We first examined M. tuberculosis-specific IFN-γ and H. pylori antibody responses in 339 healthy Northern Californians undergoing routine tuberculin skin testing. Of 97 subjects (29%) meeting criteria for latent tuberculosis (TB) infection (LTBI), 45 (46%) were H. pylori seropositive. Subjects with LTBI who were H. pylori-seropositive had 1.5-fold higher TB antigen-induced IFN-γ responses (p = 0.04, ANOVA), and a more Th-1 like cytokine profile in peripheral blood mononuclear cells, compared to those who were H. pylori seronegative. To explore an association between H. pylori infection and clinical outcome of TB exposure, we evaluated H. pylori seroprevalence in baseline samples from two high risk TB case-contact cohorts, and from cynomolgus macaques experimentally challenged with M. tuberculosis. Compared to 513 household contacts who did not progress to active disease during a median 24 months follow-up, 120 prevalent TB cases were significantly less likely to be H. pylori infected (AOR: 0.55, 95% CI 0.0.36–0.83, p = 0.005), though seroprevalence was not significantly different from non-progressors in 37 incident TB cases (AOR: 1.35 [95% CI 0.63–2.9] p = 0.44). Cynomolgus macaques with natural H. pylori infection were significantly less likely to progress to TB 6 to 8 months after M. tuberculosis challenge (RR: 0.31 [95% CI 0.12–0.80], p = 0.04).

Conclusions/Significance

H. pylori infection may induce bystander effects that modify the risk of active TB in humans and non-human primates. That immunity to TB may be enhanced by exposure to other microbial agents may have important implications for vaccine development and disease control.  相似文献   

11.

Background

The blood based interferon-gamma release assays (IGRA) for the diagnosis of tuberculosis do not discriminate between active TB disease and latent TB infection (LTBI). The search for distinguishing biomarkers therefore continues, as the accurate diagnosis of tuberculosis is particularly challenging in children. IFN-γ-inducible protein 10 (IP-10/CXCL10) has recently been evaluated as a marker for active TB in adults with promising results.

Aim

To investigate this new biomarker for active TB and LTBI in paediatrics.

Method

We measured IP-10 levels using ELISA in supernatants of whole blood samples stimulated with TB-specific-antigens and negative control antigen.

Results

IP-10 is produced in high levels following mycobacterial antigen stimulation in active TB (n = 17) and LTBI (n = 16) compared to controls (n = 16) and to IFN-γ. The baseline levels of IP-10 are increased in active TB and in LTBI, but there is no significant difference of stimulated levels of IP-10 between active TB and LTBI.

Conclusions

IP-10 is a biomarker for tuberculosis in children. However like IFNγ, IP-10 also does not distinguish between active TB and LTBI.  相似文献   

12.

Background

In spite of a consistent protection against tuberculosis (TB) in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG) fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB.

Methods/Principal Findings

In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin- a key latency antigen of M. tuberculosis to boost the BCG induced immunity. ‘BCG prime – DNA boost’ regimen (B/D) confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log10 and 1.96 log10 fewer bacilli in lungs and spleen, respectively; p<0.01). In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3+) simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)2.

Conclusions/Significance

These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.  相似文献   

13.

Background

Detection and treatment of latent TB infection (LTBI) in HIV infected individuals is strongly recommended to decrease morbidity and mortality in countries with high levels of HIV.

Objective

To assess the validity of a newly developed in-house ELISPOT interferon-γ release assay (IGRA) for the detection of LTBI amongst HIV infected individuals, in comparison with the Tuberculin Skin Test (TST).

Methodology/Principal Findings

ESAT6/CFP10 (EC) ELISPOT assays were performed, together with a TST, in 285 HIV infected individuals recruited in HIV clinics in Dakar, Senegal, who had no signs of active TB at time of enrolment. Thirty eight of the subjects (13.3%) failed to respond to PHA stimulation and were excluded from the analysis. In the 247 remaining patients, response to PHA did not vary according to CD4 cell count categories (p = 0.51). EC ELISPOT was positive in 125 (50.6%) subjects, while 53 (21.5%) had a positive TST. Concordance between EC ELISPOT and TST was observed in 151 patients (61.1%) (kappa = 0.23). The proportion of subjects with a positive response to the EC ELISPOT assay decreased with declining CD4 counts (p trend = 0.001), but were consistently higher than the proportion of TST responders. In multivariate analysis, the risk of being EC-ELISPOT positive in HIV infected individuals was associated with age, CD4 count and HIV-1 strain.

Conclusion

Our study indicates that IGRAs using M. tuberculosis specific antigens are likely to retain their validity for the diagnosis of LTBI among HIV positive individuals, but may be impaired by T-cell anergy in severely immuno-suppressed individuals.  相似文献   

14.

Background

The Mycobacterium tuberculosis (Mtb)-specific T-cell interferon gamma release assays (IGRAs) are useful in detecting Mtb infection but perform poorly at distinguishing active tuberculosis disease (ATB) and latent tuberculosis infection (LTBI). This study is aimed at evaluating additional cytokines as biomarkers besides interferon-gamma (IFN-γ) to improve the identification of ATB and LTBI.

Methodology/Principal Findings

Sixty-six patients with ATB, 73 household contacts (HHC) of ATB patients and 76 healthy controls (HC) were recruited to undergo QuantiFERON TB GOLD in-tube assay (QFT) and the enzyme-linked immunosorbent assay (ELISA) where the release of IFN-γ, IFN-γ inducible protein 10 (IP-10), Interleukin 2 (IL-2) and Tumor Necrosis Factor-α (TNF-α) was determined in the whole blood with or without antigen-stimulation. The positive rates of the QFT, IP-10 and IL-2 tests were 86.4%, 89.4% and 86.4% for the ATB group with no difference between them (p>0.05). However, QFT in combination with IP-10 and IL-2 significantly increased the detection rate to 95.5% in the ATB group (p = 0.03) and the indeterminate rate of all samples decreased from 2.3% (5/215) to 0.4% (1/215). The un-stimulated level of IP-10 was significantly higher in the HHC than the ATB and HC groups. The IP-10 responses were strongly associated with extended Mtb exposure time and the degree of smear-positivity of the index cases. The IL-2/IFN-γ ratio in the antigen-stimulated plasma could discriminate LTBI from ATB with a sensitivity of 77.2% and a specificity of 87.2%.

Conclusion

The increased Mtb-specific antigen-stimulated expression of IP-10 and IL-2 may be useful for detecting both ATB and LTBI. Combining the QFT with IP-10 and IL-2 could increase the detection accuracy of active TB over the QFT alone.  相似文献   

15.
L Fan  HP Xiao  ZY Hu  JD Ernst 《PloS one》2012,7(8):e42716

Objective

To determine the variation of IFN-γ and IL-17 responses to M. tuberculosis antigens in healthy TST+ humans.

Methods

We isolated peripheral blood mononuclear cells from 21 TST+ healthy adults, stimulated them with phytohemagglutinin (PHA), PPD, Ag85B, ESAT-6, and live M. bovis BCG, and assayed IFN-γ and IL-17 secretion by ELISA in supernatants after 24 or 72 hours of incubation respectively.

Results

As in other studies, we found a wide range of IFN-γ responses to M. tuberculosis antigens; the variation significantly exceeded that observed in the same donors to the polyclonal T cell stimulus, phytohemagglutinin (PHA). In addition, we assayed IL-17 secretion in response to the same stimuli, and found less subject-to-subject variation. Analysis of the ratio of IFN-γ to IL-17 secretion on a subject-to-subject basis also revealed a wide range, with the majority of results distributed in a narrow range, and a minority with extreme results all of which were greater than that in the majority of subjects. The data suggest that study of exceptional responses to M. tuberculosis antigens may reveal immunologic correlates with specific outcomes of M. tuberculosis infection.

Conclusion

Variation of IFNγ and IFN-γ/IL-17 responses to mycobacterial antigens exceeds that of responses to the polyclonal stimulus, PHA, in TST positive healthy humans. This indicates a quantitative spectrum of human immune responses to infection with M. tuberculosis. Since the outcome of human infection with M. tuberculosis varies greatly, systematic study of multiple immune responses to multiple antigens is likely to reveal correlations between selected immune responses and the outcomes of infection.  相似文献   

16.

Background

QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced.

Objective

To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity.

Methods

Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls.

Results

There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response.

Conclusion

Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.  相似文献   

17.

Background

The functional equilibrium between natural regulatory T cells (Treg) and effector T cells can affect the issue of numerous infections. In unvaccinated mice, the influence of Treg in the control of primary infection with mycobacteria remains controversial.

Methodology

Here, we evaluated the role of Treg during prophylactic vaccination with Mycobacterium bovis BCG (Bacillus Calmette-Guérin) on the induction of T cell responses and on the protective effect against subsequent M. tuberculosis challenge in mice.

Principal Findings

We demonstrated that, subsequent to BCG injection, Treg were recruited to the draining lymph nodes and negatively control anti-mycobacterial CD4+ — but not CD8+ — T-cell responses. Treatment of BCG-immunized mice with an anti-CD25 mAb (PC61) induced an increase IFN-γ response against both subdominant and immunodominant regions of the protective immunogen TB10.4. In Treg-attenuated, BCG-immunized mice, which were then infected with M. tuberculosis, the lung mycobacterial load was significantly, albeit moderately, reduced compared to the control mice.

Conclusions

Our results provide the first demonstration that attenuation of Treg subset concomitant to BCG vaccination has a positive, yet limited, impact on the protective capacity of this vaccine against infection with M. tuberculosis. Thus, for rational design of improved BCG, it should be considered that, although the action of Treg does not represent the major cause of the limited efficiency of BCG, the impact of this cell population on the subsequent control of M. tuberculosis growth is significant and measurable.  相似文献   

18.

Background

There is a need for reliable markers to diagnose active and latent tuberculosis (TB). The interferon gamma release assays (IGRAs) are compared to the tuberculin skin test (TST) more specific, but cannot discriminate between recent or remote TB infection. Here the Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA), which quantifies expanded T-lymphoblasts by flow-cytometric analysis after long-term antigen stimulation of whole blood, is combined with cytokine/chemokine analysis in the supernatant by multiplex technology for diagnosis of Mycobacterium tuberculosis (Mtb) infection.

Methods and Findings

Consecutive patients with suspected TB (n = 85), with microbiologically verified active pulmonary TB (n = 33), extra pulmonary TB (n = 21), clinical TB (n = 11), presumed latent TB infection (LTBI) (n = 23), patients negative for TB (n = 8) and 21 healthy controls were studied. Blood samples were analyzed with FASCIA and multiplex technology to determine and correlate proliferative responses and the value of 14 cytokines for diagnosis of Mtb infection: IFN- γ, IL-2, TNF-α, IP-10, IL-12, IL-6, IL-4, IL-5, IL-13, IL-17, MIP-1β, GM-CSF, IFN-α2 and IL-10. Cytokine levels for IFN-γ, IP-10, MIP-1β, IL-2, TNF-α, IL-6, IL-10, IL-13 and GM-CSF were significantly higher after stimulation with the Mtb specific antigens ESAT-6 and CFP-10 in patients with active TB compared to healthy controls (p<0.05) and correlated with proliferative responses. IP-10 was positive in all patients with verified TB, if using a combination of ESAT-6 and CFP-10 and was the only marker significantly more sensitive in detecting active TB then IFN-γ (p = 0.012). Cytokine responses in patients with active TB were more frequent and detected at higher levels than in patients with LTBI.

Conclusions

IP-10 seems to be an important marker for diagnosis of active and latent TB. Patients with active TB and LTBI responded with similar cytokine profiles against TB antigens but proliferative and cytokine responses were generally higher in patients with active TB.  相似文献   

19.

Background

The true burden of reactivation of remote latent tuberculosis infection (reactivation TB) among foreign-born persons with tuberculosis (TB) within the United States is not known. Our study objectives were to estimate the proportion of foreign-born persons with TB due reactivation TB and to describe characteristics of foreign-born persons with reactivation TB.

Methods

We conducted a cross-sectional study of patients with an M. tuberculosis isolate genotyped by the U.S. National TB Genotyping Service, 2005–2009. TB cases were attributed to reactivation TB if they were not a member of a localized cluster of cases. Localized clusters were determined by a spatial scan statistic of cases with isolates with matching TB genotype results. Crude odds ratios and 95% confidence intervals were used to assess relations between reactivation TB and select factors among foreign-born persons.

Main Results

Among the 36,860 cases with genotyping and surveillance data reported, 22,151 (60%) were foreign-born. Among foreign-born persons with TB, 18,540 (83.7%) were attributed to reactivation TB. Reactivation TB among foreign-born persons was associated with increasing age at arrival, incidence of TB in the country of origin, and decreased time in the U.S. at the time of TB diagnosis.

Conclusions

Four out of five TB cases among foreign-born persons can be attributed to reactivation TB and present the largest challenge to TB elimination in the U.S. TB control strategies among foreign-born persons should focus on finding and treating latent tuberculosis infection prior to or shortly after arrival to the United States and on reducing the burden of LTBI through improvements in global TB control.  相似文献   

20.

Background

Most individuals infected with Mycobacterium tuberculosis develop latent tuberculosis infection (LTBI). Some may progress to active disease and would benefit from preventive treatment yet no means currently exists to predict who will reactivate. Here, we provide an approach to stratify LTBI based on IFN-γ responses to two antigens, the recombinant Early-Secreted Antigen Target-6 (rESAT-6) and the latency antigen Heparin-Binding Haemagglutinin (HBHA).

Methods

We retrospectively analyzed results from in-house IFN-γ-release assays with HBHA (HBHA-IGRA) and rESAT-6 (rESAT-6-IGRA) performed during a 12-year period on serial blood samples (3 to 9) collected from 23 LTBI subjects in a low-TB incidence country. Both the kinetics of the absolute IFN-γ concentrations secreted in response to each antigen and the dynamics of HBHA/rESAT-6-induced IFN-γ concentrations ratios were examined.

Results

This analysis allowed the identification among the LTBI subjects of three major groups. Group A featured stable HBHA and rESAT-6-IGRA profiles with an HBHA/rESAT-6 ratio persistently higher than 1, and with high HBHA- and usually negative rESAT-6-IGRA responses throughout the study. Group B had changing HBHA/rESAT-6 ratios fluctuating from 0.0001 to 10,000, with both HBHA and rESAT-6 responses varying over time at least once during the follow-up. Group C was characterized by a progressive disappearance of all responses.

Conclusions

By combining the measures of IFN-γ concentrations secreted in response to an early and a latency antigens, LTBI subjects can be stratified into different risk groups. We propose that disappearing responses indicate cure, that persistent responses to HBHA with HBHA/rESAT-6 ratios ≥1 represent stable LTBI subjects, whereas subjects with ratios varying from >1 to <1 should be closely monitored as they may represent the highest-risk group, as illustrated by a case report, and should therefore be prioritized for preventive treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号