首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AimTo study of 2 Dimensional ion chamber array for angular response and its utility for quality assurance of dynamic multileaf collimator and pretreatment intensity modulated radiotherapy plans.Materials and MethodsThe MLC QA test patterns and IMRT plans were executed on 2D ion chamber array having 1020 vented pixel ionization chambers. The dynamic MLC QA test patterns were chair test, x–wedge, pyramid, open swipe field, garden fence and picket fence. Performance of Dynamic wedges was compared with physical wedges. For IMRT verification, five patients with localized prostate carcinoma were planned using dynamic IMRT technique. Angular response of MatriXX was measured by exposing the system from different gantry angles.ResultsDynamic MLC QA tests such as chair, x-wedge, pyramid, and open swipe field were successfully verified. MatriXX was not able to recognize the bar pattern of picket test and garden fence test. The response of MatriXX gradually decreases from 0° to 180° angles and it was 7.7% less at 180° angle. The dynamic wedge profiles were matching with corresponding physical wedge profiles. For pretreatment IMRT QA, the average dose difference between planned and measured dose was 1.26% with standard deviation of 1.06.ConclusionI'mRT MatriXX can be used for routine dynamic MLC and IMRT pretreatment QA but care should be taken while taking measurements in penumbra region because of its limited spatial resolution.  相似文献   

3.
PurposeThis work presents an original algorithm that converts the signal of an electronic portal imaging device (EPID) into absorbed dose in water at the depth of maximum.MethodsThe model includes a first image pre-processing step that accounts for the non-uniformity of the detector response but also for the perturbation of the signal due to backscatter radiation. Secondly, the image is converted into absorbed dose to water through a linear conversion function associated with a dose redistribution kernel. These two computation parameters were modelled by correlating the on-axis EPID signal with absorbed dose measurements obtained on square fields by using an ionization chamber placed in water at the depth of maximum dose. The accuracy of the algorithm was assessed by comparing the dose determined from the EPID signal with the dose derived by the treatment planning system (TPS) using the ϒ-index. These comparisons were performed on 8 conformal radiotherapy treatment fields (3DCRT) and 18 modulated fields (IMRT).ResultsFor a dose difference and a distance-to-agreement set to 3% of the maximum dose and 2 mm respectively, the mean percentage of points with a ϒ-value less than or equal to 1 was 99.8% ± 0.1% for 3DCRT fields and 96.8% ± 2.7% for IMRT fields. Moreover, the mean gamma values were always less than 0.5 whatever the treatment technique.ConclusionThese results confirm that our algorithm is an accurate and suitable tool for clinical use in a context of IMRT quality assurance programmes.  相似文献   

4.
We propose a novel method for the selection of optimal beam angles in Intensity Modulated Radiation Therapy (IMRT). The proposed approach uses an objective function based metric called “target-to-critical organ objective function ratio” to find out the optimal gantry angles. The beams are ranked based on this metric and are accordingly chosen for IMRT optimization. We have used the Pinnacle TPS (Philips Medical System V 16.2) for performing the IMRT optimization. In order to validate our approach, we have applied it in four clinical cases: Head and Neck, Lung, Abdomen and Prostate. Basically, for all clinical cases, two set of plans were created with same clinical objectives, namely Equal angle plan (EA Plan) and Suitable angle Plan (SA Plan). In the EA plans, the beam angles were placed in an equiangular manner starting from the gantry angle of 0°. In the corresponding SA plans, the beam angles were decided using the guidance provided by the algorithm. The reduction in OAR mean dose and max dose obtained in SA plans is about 3 to 16% and 3 to 15% respectively depending upon the treatment site while obtaining equal target coverage as compared to their EA counterparts. It takes approximately 15–25 min to find the optimal beam angles. The results obtained from the clinical cases indicate that the plan quality is considerably improved when the beam angles are optimized using the proposed method.  相似文献   

5.
PurposeTo conduct patient-specific geometric and dosimetric quality assurance (QA) for the Dynamic WaveArc (DWA) using logfiles and ArcCHECK (Sun Nuclear Inc., Melbourne, FL, USA).MethodsTwenty DWA plans, 10 for pituitary adenoma and 10 for prostate cancer, were created using RayStation version 4.7 (RaySearch Laboratories, Stockholm, Sweden). Root mean square errors (RMSEs) between the actual and planned values in the logfiles were evaluated. Next, the dose distributions were reconstructed based on the logfiles. The differences between dose-volumetric parameters in the reconstructed plans and those in the original plans were calculated. Finally, dose distributions were assessed using ArcCHECK. In addition, the reconstructed dose distributions were compared with planned ones.ResultsThe means of RMSEs for the gantry, O-ring, MLC position, and MU for all plans were 0.2°, 0.1°, 0.1 mm, and 0.4 MU, respectively. Absolute means of the change in PTV D99% were 0.4 ± 0.4% and 0.1 ± 0.1% points between the original and reconstructed plans for pituitary adenoma and prostate cancer, respectively. The mean of the gamma passing rate (3%/3 mm) between the measured and planned dose distributions was 97.7%. In addition, that between the reconstructed and planned dose distributions was 99.6%.ConclusionsWe have demonstrated that the geometric accuracy and gamma passing rates were within AAPM 119 and 142 criteria during DWA. Dose differences in the dose-volumetric parameters using the logfile-based dose reconstruction method were also clinically acceptable in DWA.  相似文献   

6.
ObjectiveTo investigate the dosimetric behaviour, influence on photon beam fluence and error detection capability of Delta4 Discover transmission detector.MethodsThe transmission detector (TRD) was characterized on a TrueBeam linear accelerator with 6 MV beams. Linearity, reproducibility and dose rate dependence were investigated. The effect on photon beam fluence was evaluated in terms of beam profiles, percentage depth dose, transmission factor and surface dose for different open field sizes. The transmission factor of the 10x10 cm2 field was entered in the TPS’s configuration and its correct use in the dose calculation was verified recalculating 17 clinical IMRT/VMAT plans. Surface dose was measured for 20 IMRT fields. The capability to detect different delivery errors was investigated evaluating dose gamma index, MLC gamma index and leaf position of 15 manually modified VMAT plans.ResultsTRD showed a linear dependence on MU. No dose rate dependence was observed. Short-term and long-term reproducibility were within 0.1% and 0.5%. The presence of the TRD did not significantly affect PDDs and profiles. The transmission factor of the 10x10 cm2 field size was 0.985 and 0.983, for FF and FFF beams respectively. The 17 recalculated plans met our clinical gamma-index passing rate, confirming the correct use of the transmission factor by the TPS. The surface dose differences for the open fields increase for shorter SSDs and greater field size. Differences in surface dose for the IMRT beams were less than 2%. Output variation ≥2%, collimator angle variations within 0.3°, gantry angle errors of 1°, jaw tracking and leaf position errors were detected.ConclusionsDelta4 Discover shows good linearity and reproducibility, is not dependent on dose rate and does not affect beam quality and dose profiles. It is also capable to detect dosimetric and geometric errors and therefore it is suitable for monitoring VMAT delivery.  相似文献   

7.
We have adapted the methodology of Berry et al. (2012) for Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) treatments at a fixed source to imager distance (SID) based on the manufacturer’s through-air portal dose image prediction algorithm. In order to fix the SID a correction factor was introduced to account for the change in air gap between patient and imager. Commissioning data, collected with multiple field sizes, solid water thicknesses and air gaps, were acquired at 150 cm SID on the Varian aS1200 EPID. The method was verified using six IMRT and seven VMAT plans on up to three different phantoms. The method’s sensitivity and accuracy were investigated by introducing errors. A global 3%/3 mm gamma was used to assess the differences between the predicted and measured portal dose images. The effect of a varying air gap on EPID signal was found to be significant – varying by up to 30% with field size, phantom thickness, and air gap. All IMRT plans passed the 3%/3 mm gamma criteria by more than 95% on the three phantoms. 23 of 24 arcs from the VMAT plans passed the 3%/3 mm gamma criteria by more than 95%. This method was found to be sensitive to a range of potential errors. The presented approach provides fast and accurate in-vivo EPID dosimetry for IMRT and VMAT treatments and can potentially replace many pre-treatment verifications.  相似文献   

8.
PurposeTo compare detectors for dosimetric verification before VMAT treatments and evaluate their sensitivity to errors.Methods and materialsMeasurements using three detectors (ArcCheck, 2d array 729 and EPID) were used to validate the dosimetric accuracy of the VMAT delivery. Firstly, performance of the three devices was studied. Secondly, to assess the reliability of the detectors, 59 VMAT treatment plans from a variety of clinical sites were considered. Thirdly, systematic variations in collimator, couch and gantry angle plus MLC positioning were applied to four clinical treatments (two prostate, two head and neck cases) in order to establish the detection sensitivity of the three devices. Measurements were compared with TPS computed doses via gamma analysis (3%/3 mm and 2%/2 mm) with an agreement of at least 95% and 90% respectively in all pixels. Effect of the errors on the dose distributions was analyzed.ResultsRepeatability and reproducibility were excellent for the three devices. The average pass rate for the 59 cases was superior to 98% for all devices with 3%/3 mm criteria. It was found that for the plans delivered with errors, the sensitivity was quite similar for all devices. Devices were able to detect a 2 mm opened or closed MLC error with 3%/3 mm tolerance level. An error of 3° in collimator, gantry or couch rotation was detected by the three devices using 2%/2 mm criteria.ConclusionsAll three devices have the potential to detect errors with more or less the same threshold. Nevertheless, there is no guarantee that pretreatment QA will catch delivery errors.  相似文献   

9.
BackgroundThere is limited data on error detectability for step-and-shoot intensity modulated radiotherapy (sIMRT) plans, despite significant work on dynamic methods. However, sIMRT treatments have an ongoing role in clinical practice. This study aimed to evaluate variations in the sensitivity of three patient-specific quality assurance (QA) devices to systematic delivery errors in sIMRT plans.Materials and methodsFour clinical sIMRT plans (prostate and head and neck) were edited to introduce errors in: Multi-Leaf Collimator (MLC) position (increasing field size, leaf pairs offset (1–3 mm) in opposite directions; and field shift, all leaves offset (1–3 mm) in one direction); collimator rotation (1–3 degrees) and gantry rotation (0.5–2 degrees). The total dose for each plan was measured using an ArcCHECK diode array. Each field, excluding those with gantry offsets, was also measured using an Electronic Portal Imager and a MatriXX Evolution 2D ionisation chamber array. 132 plans (858 fields) were delivered, producing 572 measured dose distributions. Measured doses were compared to calculated doses for the no-error plan using Gamma analysis with 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria (1716 analyses).ResultsGenerally, pass rates decreased with increasing errors and/or stricter gamma criteria. Pass rate variations with detector and plan type were also observed. For a 3%/3 mm gamma criteria, none of the devices could reliably detect 1 mm MLC position errors or 1 degree collimator rotation errors.ConclusionsThis work has highlighted the need to adapt QA based on treatment plan type and the need for detector specific assessment criteria to detect clinically significant errors.  相似文献   

10.
PurposeThis study proposed a synchronous measurement method for patient-specific dosimetry using two three-dimensional dose verification systems with delivery errors.MethodsTwenty hypofractionated radiotherapy treatment plans for patients with lung cancer were retrospectively reviewed. Monitor unit (MU) changes, leaf in-position errors, and angles of deviation of the collimator were intentionally introduced to investigate the detection sensitivity of the EDose + EPID (EE) and Dolphin + Compass (DC) systems.ResultsBoth systems accurately detected the MU modifications and had a similar ability to detect leaf in-position errors. The detection of multi-leaf collimator (MLC) errors was difficult for the whole body using different gamma criteria. When the introduced MLC error was 1.0 mm, the numbers of errors detected in the clinical target volume (CTV) by the EE system were 20, 20, and 20 and the numbers of errors detected by the DC system were 18, 19, and 20, at 3%/2 mm, 2%/2 mm, and 1%/1 mm, respectively. The average dose deviation of all DVH parameters exceeded 3%. The gamma and DVH evaluation results remained unchanged for the DC system when different collimator angle errors were introduced. The number of errors detected by the EE system was <11 for each anatomical structure for all gamma criteria. The mean dose deviation of the CTV was not distinguished.ConclusionsThis synchronous measurement approach can effectively eliminate the influence of random errors during treatment. The EE and DC systems reconstruct the three-dimensional dose distribution accurately and are convenient and reliable for dose verification.  相似文献   

11.
PurposeTo evaluate the Integral Quality Monitor (IQM) as a clinical dosimetry device for detecting photon beam delivery errors in clinically relevant conditions.Materials and methodsThe IQM’s ability to detect delivery errors introduced into clinical VMAT plans for two different treatment sites was assessed. This included measuring 103 nasopharynx VMAT plans and 78 lung SBRT VMAT plans with introduced errors in gantry angle (1–5°) and in MLC-defined field size and field shift (1–5 mm). The IQM sensitivity was compared to ArcCheck detector performance. Signal dependence on field position for on-axis and asymmetrically offset square field sizes from 1 × 1 cm2 to 30 × 30 cm2 was also investigated.ResultsThe IQM detected almost all introduced clinically-significant MLC field size errors, but not some small gantry angle errors or most MLC field shift errors. The IQM sensitivity was comparable to the ArcCheck for lung SBRT, but worse for the nasopharynx plans. Differences between IQM calculated/predicted and measured signals were within ± 2% for all on-axis square fields, but up to 60% for the smallest asymmetrically offset fields at large offsets.Conclusion The IQM performance was consistent and reproducible. It showed highest sensitivity to the field size errors for these plans, but did not detect some clinically-significant introduced gantry angle errors or most MLC field shift errors. The IQM calculation model is still being developed, which should improve small offset-field performance. Care is required in IQM use for plan verification or online monitoring, especially for small fields that are off-axis in the detector gradient direction.  相似文献   

12.
AimThe aim of this study is to commission and validate Dolphin-Compass dosimetry as a patient-specific Quality Assurance (QA) device.BackgroundThe advancement of radiation therapy in terms of highly conformal delivery techniques demands a novel method of patient-specific QA. Dolphin-Compass system is a dosimetry solution capable of doing different QA in radiation therapy.Materials and methodsDolphin, air-vented ionization detector array mounted on Versa-HD Linear Accelerator (LINAC) was used for measurements. The Compass is a dose computation algorithm which requires modelling of LINAC head similar to other Treatment Planning Systems (TPS). The dosimetry system was commissioned after measuring the required beam data. The validation was performed by comparison of treatment plans generated in Monaco TPS against the measurement data. Different types of simple, complex, static and dynamic radiation fields and highly conformal treatment plans of patients were used in this study.ResultsFor all field sizes, point doses obtained from Dolphin-Compass dosimetry were in good agreement with the corresponding TPS calculated values in most of the regions, except the penumbra, outside field and at build-up depth. The results of gamma passing rates of measurements by using different Multi-leaf Collimator patterns and Intensity Modulated Radiation Therapy fluence were also found to be in good correlation with the corresponding TPS values.ConclusionsThe commissioning and validation of dosimetry was performed with the help of various fields, MLC patterns and complex treatment plans. The present study also evaluated the efficiency of the 3D dosimetry system for the QA of complex treatment plans.  相似文献   

13.

Aim

The aim of this study was to investigate the sensitivity of the trajectory log file based quality assurance to detect potential errors such as MLC positioning and gantry positioning by comparing it with EPID measurement using the most commonly used criteria of 3%/3?mm.

Materials and methods

An in-house program was used to modified plans using information from log files, which can then be used to recalculate a new dose distribution. The recalculated dose volume histograms (DVH) were compared with the originals to assess differences in target and critical organ dose. The dose according to the differences in DVH was also compared with dosimetry from an electronic portal imaging device.

Results

In all organs at risk (OARs) and planning target volumes (PTVs), there was a strong positive linear relationship between MLC positioning and dose error, in both IMRT and VMAT plans. However, gantry positioning errors exhibited little impact in VMAT delivery. For the ten clinical cases, no significant correlations were found between gamma passing rates under the criteria of 3%/3?mm for the composite dose and the mean dose error in DVH (r?<?0.3, P?>?0.05); however, a significant positive correlation was found between the gamma passing rate of 3%/3?mm (%) averaged over all fields and the mean dose error in the DVH of the VMAT plans (r?=?0.59, P?<?0.001).

Conclusions

This study has successfully shown the sensitivity of the trajectory log file to detect the impact of systematic MLC errors and random errors in dose delivery and analyzed the correlation of gamma passing rates with DVH.  相似文献   

14.
Although highly conformal dose distributions can be achieved by IMRT planning, this often requires a large number of segments or beams, resulting in increased treatment times. While flattening-filter-free beams offer a higher dose rate, even more segments may be required to create homogeneous target coverage. Therefore, it is worthwhile to systematically investigate the dependence of plan quality on gantry angles and number of segments for flat vs. FFF beams in IMRT planning. For the practical example of hypopharynx cancer, we present a planning study of flat vs. FFF beams using three different configurations of gantry angles and different segment numbers. The two beams are very similar in physical properties, and are hence well-suited for comparative planning. Starting with a set of plans of equal quality for flat and FFF beams, we assess how far the number of segments can be reduced before the plan quality is markedly compromised, and compare monitor units and treatment times for the resulting plans. As long as a sufficiently large number of segments is permitted, all planning scenarios give good results, independently of gantry angles and flat or FFF beams. For smaller numbers of segments, plan quality decreases both for flat and FFF energies; this effect is stronger for fewer gantry angles and for FFF beams. For low segment numbers, FFF plans are generally worse than the corresponding flat beam plans, but they are less sensitive to a decrease in segment number if many gantry angles are used (18 beams); in this case the quality of flat and FFF plans remains comparable even for few segments.  相似文献   

15.
Background/AimIn this study, we investigated the effect of rectal gas on the dose distribution of prostate cancer using a volumetric modulated arc therapy (VMAT) treatment planning.Materials and MethodsThe first is the original structure set, clinical target volume (CTV), the rectum, and the bladder used clinically. The second is a structure set (simulated gas structure set) in which the overlapping part of the rectum and PTV is overwritten with Hounsfield Unit −950 as gas. Full arc and limited gantry rotation angle with VMAT were the two arcs. The VMAT of the full arc was 181°–179° in the clockwise (CW) direction and 179°–181° in the counterclockwise (CCW) direction. Three partial arcs with a limited gantry rotation angle were created: 200°–160 °CW and 160°–200 °CCW; 220°–140 °CW and 140°–220 °CCW; and finally, 240°–120 °CW and 120°–240 °CCW. The evaluation items were dose difference, distance to agreement, and gamma analysis.ResultIn the CTV, the full arc was the treatment planning technique with the least effect of rectal gas. In the rectum, when the gantry rotation angle range was short, the pass rate tended to reduce for all evaluation indices. The bladder showed no characteristic change between the treatment planning techniques in any of the evaluation indices.ConclusionsThe VMAT treatment planning with the least effect on dose distribution caused by rectal gas was shown to be a full arc.  相似文献   

16.
PurposeTo provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT.MethodsA 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment ‘fluence’ EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions.ResultsFluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition.Conclusions3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry.  相似文献   

17.
PurposeDynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect.Methods16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5 mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated.ResultsThe change in PTV and organs at risk DVH parameters were 0.4–4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3 mm (per beam and composite plan) and 3%G/2 mm (composite plan) for the diode array phantom and 2%G/2 mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6.ConclusionsA DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3 mm per beam gamma setting.  相似文献   

18.
PurposeTo test the performances of a volumetric arc technique named ViTAT (Virtual Tangential-fields Arc Therapy) mimicking tangential field irradiation for whole breast radiotherapy.MethodsViTAT plans consisted in 4 arcs whose starting/ending position were established based on gantry angle distribution of clinical plans for right and left-breast. The arcs were completely blocked excluding the first and last 20°. Different virtual bolus densities and thicknesses were preliminarily evaluated to obtain the best plan performances. For 40 patients with tumor laterality equally divided between right and left sides, ViTAT plans were optimized considering the clinical DVHs for OARs (resulting from tangential field manual planning) to constrain them: ViTAT plans were compared with the clinical tangential-fields in terms of DVH parameters for both PTV and OARs.ResultsDistal angle values were suggested in the ranges [220°,240°] for the right-breast and [115°,135°] for the left-breast cases; medial angles were [60°,40°] for the right side and [295°,315°] for the left side, limiting the risk of collision. The optimal virtual bolus had −500 HU density and 1.5 cm thickness. ViTAT plans generated dose distributions very similar to the tangential-field plans, with significantly improved PTV homogeneity. The mean doses of ipsilateral OARs were comparable between the two techniques with minor increase of the low-dose spread in the range 2–15 Gy (few % volume); contralateral OARs were slightly better spared with ViTAT.ConclusionViTAT dose distributions were similar to tangential-fields. ViTAT should allow automatic plan optimization by developing knowledge-based DVH prediction models of patients treated with tangential-fields.  相似文献   

19.
BackgroundOne of the most important test in every quality assurances process of medical linear accelerators is the Winston-Lutz test, allowing an evaluation of the treatment isocentre in the light of uncertainty of the position of the collimator, the gantry and the couch.AimThe purpose of this work was analysis of the results of the Winston-Lutz test performed with three different phantoms for two different accelerators.Materials and methodsMeasurements were performed on two Varian machines: TrueBeam equipped with aS1200 EPID and TrueBeam equipped with aS1000 EPID. During the study three different phantoms dedicated for verification of the radiation isocentre were used: PTW Isoball, AQUILAB Isocentre Phantom and Varian Isocentre Cube. Analysis of the DICOM images was performed in Artiscan software.ResultsFor TrueBeam with as1200 EPID, gantry MV isocentre was about 0.18 mm larger for Varian Isocentre Cube than for two other phantoms used in this study. The largest variability of this parameter was observed for the couch. The results differed to 1.16 mm. For TrueBeam with as1000 EPID, results for collimator isocentre with PTW Isoball phantom were about 0.10 mm larger than for two other phantoms. For the gantry, results obtained with Varian Isocentre Cube were 0.21 mm larger.ConclusionThe obtained results for all three phantoms are within the accepted tolerance range. The largest differences were observed for treatment couch, which may be related to the phantom mobility during couch movement.  相似文献   

20.

Aim

The aim of study was to evaluate the dosimetric effect of collimator-rotation on VMAT plan quality, when using limited aperture multileaf collimator of Elekta Beam Modulator? providing a maximum aperture of 21 cm × 16 cm.

Background

The increased use of VMAT technique to deliver IMRT from conventional to very specialized treatments present a challenge in plan optimization. In this study VMAT plans were optimized for prostate and head and neck cancers using Elekta Beam-ModulatorTM, whereas previous studies were reported for conventional Linac aperture.

Materials and methods

VMAT plans for nine of each prostate and head-and-neck cancer patients were produced using the 6 MV photon beam for Elekta-SynergyS® Linac using Pinnacle3 treatment planning system. Single arc, dual arc and two combined independent-single arcs were optimized for collimator angles (C) 0°, 90° and 0°–90° (0°–90°; i.e. the first-arc was assigned C0° and second-arc was assigned C90°). A treatment plan comparison was performed among C0°, C90° and C(0°–90°) for single-arc dual-arc and two independent-single-arcs VMAT techniques to evaluate the influence of extreme collimator rotations (C0° and 90°) on VMAT plan quality. Plan evaluation criteria included the target coverage, conformity index, homogeneity index and doses to organs at risk. A ‘two-sided student t-test’ (p  0.05) was used to determine if there was a significant difference in dose volume indices of plans.

Results

For both prostate and head-and-neck, plan quality at collimator angles C0° and C(0°–90°) was clinically acceptable for all VMAT-techniques, except SA for head-and-neck. Poorer target coverage, higher normal tissue doses and significant p-values were observed for collimator angle 90° when compared with C0° and C(0°–90°).

Conclusions

A collimator rotation of 0° provided significantly better target coverage and sparing of organs-at-risk than a collimator rotation of 90° for all VMAT techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号