首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Moths and butterflies flying in search of mates risk detection by numerous aerial predators; under the cover of night, the greatest threat will often be from insectivorous bats. During such encounters, the toxic dogbane tiger moth, Cycnia tenera uses the received intensity, duration and emission pattern of the bat''s echolocation calls to determine when, and how many, defensive ultrasonic clicks to produce in return. These clicks, which constitute an acoustic startle response, act as warning signals against bats in flight. Using an integrated test of stimulus generalization and dishabituation, here we show that C. tenera is able to discriminate between the echolocation calls characteristic of a bat that has only just detected it versus those of a bat actively in pursuit of it. We also show that C. tenera habituates more profoundly to the former stimulus train (‘early attack’) than to the latter (‘late attack’), even though it was initially equally responsive to both stimuli. Matched sensory and behavioural data indicate that reduced responsiveness reflects habituation and is not merely attributable to sensory adaptation or motor fatigue. In search of mates in the face of bats, C. tenera''s ability to discriminate between attacking bats representing different levels of risk, and to habituate less so to those most dangerous, should function as an adaptive cost–benefit trade-off mechanism in nature.  相似文献   

2.
ABSTRACT. The dogbane tiger moth ( Cycnia tenera Hübner; Arctiidae) responds to ultrasonic, artificial bat echolocation signals by emitting stereotyped trains of high-frequency, rapidly repeated clicks. By comparing this response in intact and headless moths, the role of protocerebral auditory inter-neurones suggested by other studies was examined. Individual moths were tested intact and decapitated, and their response differences analysed. Response latency and threshold (dB) did not alter with the removal of the head but response duration and responsiveness to stimulus trains were significantly reduced in headless moths. These data are interpreted as suggesting the existence of a reflex arc connecting the moth's tympanic organ (ear) with its sound-producing structure (tymbal), and as providing preliminary evidence that the role of higher-order interneurones is primarily that of response reinforcement.  相似文献   

3.
Bats and their insect prey rely on acoustic sensing in predator prey encounters—echolocation in bats, tympanic hearing in moths. Some insects also emit sounds for bat defense. Here, we describe a previously unknown sound-producing organ in Geometrid moths—a prothoracic tymbal in the orange beggar moth (Eubaphe unicolor) that generates bursts of ultrasonic clicks in response to tactile stimulation and playback of a bat echolocation attack sequence. Using scanning electron microscopy and high-speed videography, we demonstrate that E. unicolor and phylogenetically distant tiger moths have evolved serially homologous thoracic tymbal organs with fundamentally similar functional morphology, a striking example of convergent evolution. We compared E. unicolor clicks to that of five sympatric tiger moths and found that 9 of 13 E. unicolor clicking parameters were within the range of sympatric tiger moths. Remaining differences may result from the small size of the E. unicolor tymbal. Four of the five sympatric clicking tiger moth species were unpalatable to bats (0–20 % eaten), whereas E. unicolor was palatable to bats (86 % eaten). Based on these results, we hypothesize that E. unicolor evolved tymbal organs that mimic the sounds produced by toxic tiger moths when attacked by echolocating bats.  相似文献   

4.
The night sky is the venue of an ancient acoustic battle between echolocating bats and their insect prey. Many tiger moths (Lepidoptera: Arctiidae) answer the attack calls of bats with a barrage of high frequency clicks. Some moth species use these clicks for acoustic aposematism and mimicry, and others for sonar jamming, however, most of the work on these defensive functions has been done on individual moth species. We here analyze the diversity of structure in tiger moth sounds from 26 spe-cies collected at three locations in North and South America. A principal components analysis of the anti-bat tiger moth sounds reveals that they vary markedly along three axes: (1) frequency, (2) duty cycle (sound production per unit time) and frequency modulation, and (3) modulation cycle (clicks produced during flexion and relaxation of the sound producing tymbal) structure. Tiger moth species appear to cluster into two distinct groups: one with low duty cycle and few clicks per modulation cycle that supports an acoustic aposematism function, and a second with high duty cycle and many clicks per modulation cycle that is con-sistent with a sonar jamming function. This is the first evidence from a community-level analysis to support multiple functions for tiger moth sounds. We also provide evidence supporting an evolutionary history for the development of these strategies. Further-more, cross-correlation and spectrogram correlation measurements failed to support a "phantom echo" mechanism underlying sonar jamming, and instead point towards echo interference.  相似文献   

5.
It has been proposed that intraspecific ultrasonic communication observed in some moths evolved, through sexual selection, subsequent to the development of ears sensitive to echolocation calls of insectivorous bats. Given this scenario, the receiver bias model of signal evolution argues that acoustic communication in moths should have evolved through the exploitation of receivers'' sensory bias towards bat ultrasound. We tested this model using a noctuid moth Spodoptera litura, males of which were recently found to produce courtship ultrasound. We first investigated the mechanism of sound production in the male moth, and subsequently the role of the sound with reference to the female''s ability to discriminate male courtship songs from bat calls. We found that males have sex-specific tymbals for ultrasound emission, and that the broadcast of either male songs or simulated bat calls equally increased the acceptance of muted males by the female. It was concluded that females of this moth do not distinguish between male songs and bat calls, supporting the idea that acoustic communication in this moth evolved through a sensory exploitation process.  相似文献   

6.
The islands of Hawai'i offer a unique opportunity for studying the auditory ecology of moths and bats since this habitat has a single species of bat, the Hawaiian hoary bat (Lasiurus cinereus semotus), which exerts the entire predatory selection pressure on the ears of sympatric moths. I compared the moth wings discarded by foraging bats with the number of surviving moths on the island of Kaua'i and concluded that the endemic noctuid Haliophyle euclidias is more heavily preyed upon than similar-sized endemic (e.g. Agrotis diplosticta) and adventive (Agrotis ipsilon and Pseudaletia unipuncta) species. Electrophysiological examinations indicated that, compared with species less preyed upon, H. euclidias has lower auditory sensitivities to the bat's social and echolocation calls, which will result in shorter detection distances of the bat. The poor ears of H. euclidias suggest that this moth coevolved with the bat using non-auditory defences that resulted in auditory degeneration. This moth now suffers higher predation because it is drawn away from its normal habitat by the man-made lights that are exploited by the bat.  相似文献   

7.
Many night-flying insects evolved ultrasound sensitive ears in response to acoustic predation by echolocating bats . Noctuid moths are most sensitive to frequencies at 20-40 kHz , the lower range of bat ultrasound . This may disadvantage the moth because noctuid-hunting bats in particular echolocate at higher frequencies shortly before prey capture and thus improve their echolocation and reduce their acoustic conspicuousness . Yet, moth hearing is not simple; the ear's nonlinear dynamic response shifts its mechanical sensitivity up to high frequencies. Dependent on incident sound intensity, the moth's ear mechanically tunes up and anticipates the high frequencies used by hunting bats. Surprisingly, this tuning is hysteretic, keeping the ear tuned up for the bat's possible return. A mathematical model is constructed for predicting a linear relationship between the ear's mechanical stiffness and sound intensity. This nonlinear mechanical response is a parametric amplitude dependence that may constitute a feature common to other sensory systems. Adding another twist to the coevolutionary arms race between moths and bats, these results reveal unexpected sophistication in one of the simplest ears known and a novel perspective for interpreting bat echolocation calls.  相似文献   

8.
We measured the auditory responses of the noctuid moth Noctua pronuba to bat echolocation calls which were manipulated independently in time and frequency. Such manipulations are important in understanding how insect hearing influences the evolution of echolocation call characteristics. We manipulated the calls of three bat species (Rhinolophus hipposideros, Myotis nattereri and Pipistrellus pipistrellus) that use different echolocation call features by doubling their duration or reducing their frequency, and measured the auditory thresholds from the A1 cells of the moths. Knowing the auditory responses of the moth we tested three predictions. (i) The ranking of the audibility of unmanipulated calls to the moths should be predictable from their temporal and/or frequency structure. This was supported. (ii) Doubling the duration of the calls should increase their audibility by ca. 3 dB for all species. Their audibility did indeed increase by 2.1-3.5 dB. (iii) Reducing the frequency of the calls would increase their audibility for all species. Reducing the frequency had small effects for the two bat species which used short duration (2.7-3.6 ms) calls. However, the relatively long-duration (50 ms), largely constant-frequency calls of R. hipposideros increased in audibility by 21.6 dB when their frequency was halved. Time and frequency changes influence the audibility of calls to tympanate moths in different ways according to call design. Large changes in frequency and time had relatively small changes on the audibility of calls for short, largely broadband calls. Channelling energy into the second harmonic of the call substantially decreased the audibility of calls for bats which use long-duration, constant-frequency components in echolocation calls. We discuss our findings in the contexts of the evolution of both bat echolocation call design and the potential responses of insects which hear ultrasound.  相似文献   

9.
Bats and moths have been engaged in aerial warfare for nearly 65 Myr. This arms race has produced a suite of counter-adaptations in moths, including bat-detecting ears. One set of defensive strategies involves the active production of sound; tiger moths'' ultrasonic replies to bat attack have been shown to startle bats, warn the predators of bad taste and jam their biosonar. Here, we report that hawkmoths in the Choerocampina produce entirely ultrasonic sounds in response to tactile stimulation and the playback of biosonar attack sequences. Males do so by grating modified scraper scales on the outer surface of the genital valves against the inner margin of the last abdominal tergum. Preliminary data indicate that females also produce ultrasound to touch and playback of echolocation attack, but they do so with an entirely different mechanism. The anti-bat function of these sounds is unknown but might include startling, cross-family acoustic mimicry, warning of unprofitability or physical defence and/or jamming of echolocation. Hawkmoths present a novel and tractable system to study both the function and evolution of anti-bat defences.  相似文献   

10.
Auditory feedback from the animal''s own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.  相似文献   

11.
Bat-and-moth is a good model system for understanding predator–prey interactions resulting from interspecific coevolution. Night-flying insects have been under predation pressure from echolocating bats for 65 Myr, pressuring vulnerable moths to evolve ultrasound detection and evasive maneuvers as counter tactics. Past studies of defensive behaviors against attacking bats have been biased toward noctuoid moth responses to short duration pulses of low-duty-cycle (LDC) bat calls. Depending on the region, however, moths have been exposed to predation pressure from high-duty-cycle (HDC) bats as well. Here, we reveal that long duration pulse of the sympatric HDC bat (e.g., greater horseshoe bat) is easily detected by the auditory nerve of Japanese crambid moths (yellow peach moth and Asian corn borer) and suppress both mate-finding flights of virgin males and host-finding flights of mated females. The hearing sensitivities for the duration of pulse stimuli significantly dropped non-linearly in both the two moth species as the pulse duration shortened. These hearing properties support the energy integrator model; however, the threshold reduction per doubling the duration has slightly larger than those of other moth species hitherto reported. And also, Asian corn borer showed a lower auditory sensitivity and a lower flight suppression to short duration pulse than yellow peach moth did. Therefore, flight disruption of moth might be more frequently achieved by the pulse structure of HDC calls. The combination of long pulses and inter-pulse intervals, which moths can readily continue detecting, will be useful for repelling moth pests.  相似文献   

12.
Schoeman MC  Jacobs DS 《Oecologia》2003,134(1):154-162
The allotonic frequency hypothesis proposes that certain insectivorous bat species can prey upon moths that can hear bat echolocation calls by using echolocation frequencies outside the sensitivity range of moth ears. The hypothesis predicts that the peak frequencies of bat echolocation calls are correlated with the incidence of moths in the diets of these bats. The aim of this study was to test this prediction on a bat community dominated by bats using low duty cycle echolocation calls, i.e. aerial foraging, insectivorous species using frequency modulated calls. The community consisted of nine species, two molossids, Sauromys petrophillus and Tadarida aegyptiaca, five vespertilionids, Eptesicus capensis, Eptesicus hottentotus, Miniopteris schreibersii, Myotis tricolor, and Myotis lesueuri, one rhinolophid, Rhinolophus clivosus, and one nycterid, Nycteris thebaica. The insect fauna in the habitat used by the bat community was suited to the testing of the allotonic frequency hypothesis because more than 90% of the moths comprising the insect fauna were tympanate. These included Pyralidae (3.8%), Geometridae (44.9%), Notodontidae (3.8%), Arctiidae (4.6%), Lymantriidae (0.8%) and Noctuidae (32.4%). As predicted, peak echolocation frequency was correlated with the incidence of moths in the diets of these nine species (r=0.98, df=7, P<0.01). Furthermore, multivariate analysis revealed that echolocation frequency (t=9.91, n=129, P<0.001) was a better predictor of diet than forearm length (t=5.51, n=129, P<0.001) or wing area (t=-3.41, n=129, P<0.001). This suggests that the selection pressure exerted by moth hearing might have acted directly on call frequency and secondarily on body size and wing morphology, as part of the same adaptive complex. It is unlikely that dietary differences were due to temporal and spatial differences in the availability of prey because the pattern of differences in skull morphology of the nine species supported our dietary analyses. The skull morphology of a bat represents a historical record of the kind of diet it has become adapted to over its evolutionary history. These results suggest that prey defences may mediate other factors structuring bat communities, e.g. competition. Competition may be reduced for those species of bats that can circumvent prey defences.  相似文献   

13.
Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced bymales. The temporal and spectral characteristics of these callsshow some similarities with the echolocation calls of batsthat emit frequency-modulated (FM) signals. Female G. mellonellatherefore need to distinguish between the attractive signalsof male conspecifics, which may lead to mating opportunities,and similar sounds made by predatory bats. We therefore predictedthat (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacksof the calls of echolocating bats (we used the calls of Daubenton'sbat Myotis daubentonii as representative of a typical FM echolocatingbat); and (3) when presented with male calls and bat callsduring the same time block, females would display more whenperceived predation risk was lower. We manipulated predationrisk in two ways. First, we varied the intensity of bat callsto represent a nearby (high risk) or distant (low risk) bat.Second, we played back calls of bats searching for prey (lowrisk) and attacking prey (high risk). All predictions weresupported, suggesting that female G. mellonella are able todistinguish conspecific male mating calls from bat calls, andthat they modify display rate in relation to predation risk.The mechanism (s) by which the moths separate the calls ofbat and moth must involve temporal cues. Bat and moth signalsdiffer considerably in duration, and differences in durationcould be encoded by the moth's nervous system and used in discrimination.  相似文献   

14.
Most moths use ears solely to detect the echolocation calls of hunting, insectivorous bats and evoke evasive flight manoeuvres. This singularity of purpose predicts that this sensoribehavioural network will regress if the selective force that originally maintained it is removed. We tested this with noctuid moths from the islands of Tahiti and Moorea, sites where bats have never existed and where an earlier study demonstrated that the ears of endemic species resemble those of adventives although partially reduced in sensitivity. To determine if these moths still express the anti-bat defensive behaviour of acoustic startle response (ASR) we compared the nocturnal flight times of six endemic to six adventive species in the presence and absence of artificial bat echolocation sounds. Whereas all of the adventive species reduced their flight times when exposed to ultrasound, only one of the six endemic species did so. These differences were significant when tested using a phylogenetically based pairwise comparison and when comparing effect sizes. We conclude that the absence of bats in this habitat has caused the neural circuitry that normally controls the ASR behaviour in bat-exposed moths to become decoupled from the functionally vestigial ears of endemic Tahitian moths.  相似文献   

15.
Bats and moths: what is there left to learn?   总被引:3,自引:0,他引:3  
Abstract.  Over 14 families of moths have ears that are adapted to detect the ultrasonic echolocation calls of bats. On hearing a bat, these moths respond with an escape response that reduces their chances of being caught. As an evolutionary response, bats may then have evolved behavioural strategies or changes in call design to overcome the moth's hearing. The nature of this interaction is reviewed. In particular, the role of the echolocation calls of bats in the shaping of the structure, neurophysiology and behavioural responses of moths is discussed. Unresolved issues, such as the structural complexity of the moth's auditory system, the nature of temporal integration and the role of the non-auditory B cell, are described. Issues in which the interactions between bats and moths may be of more general interest to biologists, such as noise filtering within the central nervous system, protean behaviours and coevolution between predator and prey, are also discussed. The interaction between bats and moths has much to interest general biologists, and may provide a useful model in understanding the neurophysiological basis of behaviour, including protean escape behaviours. The validity of the term coevolution as applied to this system is discussed, as there is no doubt that the auditory system of moths is a response to the echolocation calls of bats, although the evolutionary response of bats to moths is more ambiguous.  相似文献   

16.
Summary The tympanate, arctiid moth,Cycnia tenera responds to pulsed, 30 kHz acoustic stimuli resembling bat echolocation signals by emitting trains of clicks. This phonoresponse was used to determine that this moth is maximally sensitive to stimulus pulse repetition rates of 30–50 pulses/s, rates typically emitted by bats shortly before they close with their targets. At rates both above and below this optimum moths exhibit higher thresholds and reduced responsiveness. These data suggest thatC. tenera is capable of using the repetition rate emitted by an approaching bat as a cue in determining the relative proximity of the bat. The use of repetition rate information should allow this moth both an unambiguous indication of a bat at very close range as well as the ability to distinguish sources of nocturnal, high-frequency sounds not emitted by predators.  相似文献   

17.
Zeng J  Xiang N  Jiang L  Jones G  Zheng Y  Liu B  Zhang S 《PloS one》2011,6(11):e27190
Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40-60 kHz) than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5-6%.  相似文献   

18.
Coloured rings are often used for marking bats so that specific individuals can be recognized. We noticed that the rings of mouse-eared bats, Myotis myotis and Myotis blythii, in a combination of one plastic-split and one metallic ring on the same forearm, emitted sounds that were largely ultrasonic each time the rings met in flight. We recorded the ring sounds and the echolocation calls produced by the bats, and played them back to neural preparations of lesser yellow underwing moths, Noctua comes, while making extracellular recordings from the moths' A1 auditory receptors. The peak energy of the ring sounds occurred much closer in frequency to the moth's best auditory frequency (the frequency at which the moth has the lowest auditory threshold) than the peak energy of the calls, for both bat species, and the ring sounds were detected at a threshold 5-6 dB peSPL lower than the calls. Moths performed evasive manoeuvres to playbacks of ring sounds more frequently than they did to control (tape noise) sequences. These neural and behavioural responses imply that certain bats should not be marked with two rings on one wing, as this may make the bat more apparent to tympanate insects, and may therefore reduce its foraging success. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

19.
Tiger moths (Erebidae: Arctiinae) have experienced intense selective pressure from echolocating, insectivorous bats for over 65 million years. One outcome has been the evolution of acoustic signals that advertise the presence of toxins sequestered from the moths’ larval host plants, i.e. acoustic aposematism. Little is known about the effectiveness of tiger moth anti-bat sounds in their natural environments. We used multiple infrared cameras to reconstruct bat-moth interactions in three-dimensional (3-D) space to examine how functional sound-producing organs called tymbals affect predation of two chemically defended tiger moth species: Pygarctia roseicapitis (Arctiini) and Cisthene martini (Lithosiini). P. roseicapitis and C. martini with intact tymbals were 1.8 and 1.6 times less likely to be captured by bats relative to those rendered silent. 3-D flight path and acoustic analyses indicated that bats actively avoided capturing sound-producing moths. Clicking behavior differed between the two tiger moth species, with P. roseicapitis responding in an earlier phase of bat attack. Evasive flight behavior in response to bat attacks was markedly different between the two tiger moth species. P. roseicapitis frequently paired evasive dives with aposematic sound production. C. martini were considerably more nonchalant and employed evasion in fewer interactions. Our results show that acoustic aposematism is effective at deterring bat predation in a natural context and that this strategy is likely to be the ancestral function of tymbal organs within the Arctiinae.  相似文献   

20.
Males use courtship signals to inform a conspecific female of their presence and/or quality, or, alternatively, to ‘cheat’ females by imitating the cues of a prey or predator. These signals have the single function of advertising for mating. Here, we show the dual functions of the courtship song in the yellow peach moth, Conogethes punctiferalis, whose males generate a series of short pulses and a subsequent long pulse in a song bout. Repulsive short pulses mimic the echolocation calls of sympatric horseshoe bats and disrupt the approach of male rivals to a female. The attractive long pulse does not mimic bat calls and specifically induces mate acceptance in the female, who raises her wings to facilitate copulation. These results demonstrate that moths can evolve both attractive acoustic signals and repulsive ones from cues that were originally used to identify predators and non-predators, because the bat-like sounds disrupt rivals, and also support a hypothesis of signal evolution via receiver bias in moth acoustic communication that was driven by the initial evolution of hearing to perceive echolocating bat predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号