首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Acetylcholinesterase (AChE) plays a pivotal role in synaptic transmission by hydrolyzing the neurotransmitter acetylcholine. In addition to the classical function of AChE in synaptic transmission, various non-classical functions have been elucidated. Unlike vertebrates possessing a single AChE gene (ace), invertebrates (nematodes, arachnids, and insects) have multiple ace loci, encoding diverse AChEs with a range of different functions. In the field of toxicology, AChE with synaptic function has long been exploited as the target of organophosphorus and cabarmate pesticides to control invertebrate pests for the past several decades. However, many aspects of the evolution and non-classical roles of invertebrate AChEs are still unclear. Although currently available information on invertebrate AChEs is fragmented, we reviewed the recent findings on their evolutionary status, molecular/biochemical properties, and deduced non-classical (non-neuronal) functions.  相似文献   

2.
Kang JS  Lee DW  Koh YH  Lee SH 《PloS one》2011,6(4):e19063
The pinewood nematode genome encodes at least three distinct acetylcholinesterases (AChEs). To understand physiological roles of the three pinewood nematode AChEs (BxACE-1, BxACE-2, and BxACE-3), BxACE-3 in particular, their tissue distribution and inhibition profiles were investigated. Immunohistochemistry revealed that BxACE-1 and BxACE-2 were distributed in neuronal tissues. In contrast, BxACE-3 was detected from some specific tissues and extracted without the aid of detergent, suggesting its soluble nature unlike BxACE-1 and BxACE-2. When present together, BxAChE3 significantly reduced the inhibition of BxACE-1 and BxACE-2 by cholinesterase inhibitors. Knockdown of BxACE-3 by RNA interference significantly increased the toxicity of three nematicidal compounds, supporting the protective role of BxACE-3 against chemicals. In summary, BxACE-3 appears to have a non-neuronal function of chemical defense whereas both BxACE-1 and BxACE-2 have classical neuronal function of synaptic transmission.  相似文献   

3.
At cholinergic synapses, acetylcholinesterase (AChE) is critical for ensuring normal synaptic transmission. However, little is known about how this enzyme is maintained and regulated in vivo. In this work, we demonstrate that the dissociation of fluorescently-tagged fasciculin 2 (a specific and selective peptide inhibitor of AChE) from AChE is extremely slow. This fluorescent probe was used to study the removal and insertion of AChE at individual synapses of living adult mice. After a one-time blockade of AChEs with fluorescent fasciculin 2, AChEs are removed from synapses initially at a faster rate (t(1/2) of approximately 3 days) and later at a slower rate (t(1/2) of approximately 12 days). Most of the removed AChEs are replaced by newly inserted AChEs over time. However, when AChEs are continuously blocked with fasciculin 2, the removal rate increases substantially (t(1/2) of approximately 12 h), and most of the lost AChEs are not replaced by newly inserted AChE. Furthermore, complete one-time inactivation of AChE activity significantly increases the removal of postsynaptic nicotinic acetylcholine receptors (AChRs). Finally, time lapse imaging reveals that synaptic AChEs and AChRs that are removed from synapses are co-localized in the same pool after being internalized. These results demonstrate a remarkable AChE dynamism and argue for a potential link between AChE function and postsynaptic receptor lifetime.  相似文献   

4.
Yamamoto K  Oguri S  Momonoki YS 《Planta》2008,227(4):809-822
We recently identified plant acetylcholinesterases (E.C.3.1.1.7; AChEs) homologous to the AChE purified from a monocotyledon, maize, that are distinct from the animal AChE family. In this study, we purified, cloned and characterized an AChE from a dicotyledon, siratro. The full-length cDNA of siratro AChE is 1,441 nucleotides, encoding a 382-residue protein that includes a signal peptide. This AChE is a disulfide-linked 125-kDa homotrimer consisting of 41–42 kDa subunits, in contrast to the maize AChE, which exists as a mixture of disulfide and non-covalently linked 88-kDa homodimers. The plant AChEs apparently consist of various quaternary structures, depending on the plant species, similar to the animal AChEs. We compared the enzymatic properties of the dimeric maize and trimeric siratro AChEs. Similar to electric eel AChE, both plant AChEs hydrolyzed acetylthiocholine (or acetylcholine) and propionylthiocholine (or propionylcholine), but not butyrylthiocholine (or butyrylcholine), and their specificity constant was highest against acetylcholine. There was no significant difference between the enzymatic properties of trimeric and dimeric AChEs, although two plant AChEs had low substrate turnover numbers compared with electric eel AChE. The two plant AChE activities were not inhibited by excess substrate concentrations. Thus, similar to some plant AChEs, siratro and maize AChEs showed enzymatic properties of both animal AChE and animal BChE. On the other hand, both siratro and maize AChEs exhibited low sensitivity to the AChE-specific inhibitor neostigmine bromide, dissimilar to other plant AChEs. These differences in enzymatic properties of plant AChEs may reflect the phylogenetic evolution of AChEs. Kosuke Yamamoto and Yoshie S. Momonoki contributed equally to this work.  相似文献   

5.
Acetylcholinesterase (AChE) is an enzyme that terminates acetylcholine neurotransmitter function at the synaptic cleft of cholinergic synapses. However, the mechanism by which AChE number and density are maintained at the synaptic cleft is poorly understood. In this work, we used fluorescence recovery after photobleaching, photo-unbinding, and quantitative fluorescence imaging to investigate the surface mobility and stability of AChE at the adult innervated neuromuscular junction of living mice. In wild-type synapses, we found that nonsynaptic (perisynaptic and extrasynaptic) AChEs are mobile and gradually recruited into synaptic sites and that most of the trapped AChEs come from the perijunctional pool. Selective labeling of a subset of synaptic AChEs within the synapse by using sequential unbinding and relabeling with different colors of streptavidin followed by time-lapse imaging showed that synaptic AChEs are nearly immobile. At neuromuscular junctions of mice deficient in alpha-dystrobrevin, a component of the dystrophin glycoprotein complex, we found that the density and distribution of synaptic AChEs are profoundly altered and that the loss rate of AChE significantly increased. These results demonstrate that nonsynaptic AChEs are mobile, whereas synaptic AChEs are more stable, and that alpha-dystrobrevin is important for controlling the density and stability of AChEs at neuromuscular synapses.  相似文献   

6.
Pardosa pseudoannulata is an important predatory enemy against insect pests, such as rice planthoppers and leafhoppers. In order to understand the insecticide selectivity between P. pseudoannulata and insect pests, two acetylcholinesterase genes, Pp-ace1 and Pp-ace2, were cloned from this natural enemy. The putative proteins encoded by Pp-ace1 and Pp-ace2 showed high similarities to insect AChE1 (63% to Liposcelis entomophila AChE1) and AChE2 (36% to Culex quinquefasciatus AChE2) with specific functional motifs, which indicated that two genes might encode AChE1 and AChE2 proteins respectively. The recombinant proteins by expressing Pp-ace1 and Pp-ace2 genes in insect sf9 cells showed high AChE activities. The kinetic parameters, Vmax and Km, of two recombinant AChE proteins were significantly different. The sensitivities to six insecticides were determined in two recombinant AChEs. Pp-AChE1 was more sensitive to all tested insecticides than Pp-AChE2, such as fenobucarb (54 times in Ki ratios), isoprocarb (31 times), carbaryl (13 times) and omethoate (6 times). These results indicated that Pp-AChE1 might be the major synaptic enzyme in the spider. By sequence comparison of P. pseudoannulata and insect AChEs, the key amino acid differences at or close to the functional sites were found. The locations of some key amino acid differences were consistent with the point mutation sites in insect AChEs that were associated with insecticide resistance, such as Phe331 in Pp-AChE2 corresponding to Ser331Phe mutation in Myzus persicae and Aphis gossypii AChE2, which might play important roles in insecticide selectivity between P. pseudoannulata and insect pests. Of course, the direct evidences are needed through further studies.  相似文献   

7.
We investigated the molecular and kinetic properties of two acetylcholinesterases (AmAChE1 and AmAChE2) from the Western honey bee, Apis mellifera. Western blot analysis revealed that AmAChE2 has most of catalytic activity rather than AmAChE1, further suggesting that AmAChE2 is responsible for synaptic transmission in A. mellifera, in contrast to most other insects. AmAChE2 was predominately expressed in the ganglia and head containing the central nervous system (CNS), while AmAChE1 was abundantly observed not only in the CNS but also in the peripheral nervous system/non-neuronal tissues. Both AmAChEs exist as homodimers; the monomers are covalently connected via a disulfide bond under native conditions. However, AmAChE2 was associated with the cell membrane via the glycophosphatidylinositol anchor, while AmAChE1 was present as a soluble form. The two AmAChEs were functionally expressed with a baculovirus system. Kinetic analysis revealed that AmAChE2 has approximately 2,500-fold greater catalytic efficiency toward acetylthiocholine and butyrylthiocholine than AmAChE1, supporting the synaptic function of AmAChE2. In addition, AmAChE2 likely serves as the main target of the organophosphate (OP) and carbamate (CB) insecticides as judged by the lower IC50 values against AmAChE2 than against AmAChE1. When OP and CB insecticides were pre-incubated with a mixture of AmAChE1 and AmAChE2, a significant reduction in the inhibition of AmAChE2 was observed, suggesting a protective role of AmAChE1 against xenobiotics. Taken together, based on their tissue distribution pattern, molecular and kinetic properties, AmAChE2 plays a major role in synaptic transmission, while AmAChE1 has non-neuronal functions, including chemical defense.  相似文献   

8.
Most insects possess two different acetylcholinesterases (AChEs) (i.e., AChE1 and AChE2; encoded by ace1 and ace2 genes, respectively). Between the two AChEs, AChE1 has been proposed as a major catalytic enzyme based on its higher expression level and frequently observed point mutations associated with insecticide resistance. To investigate the evolutionary distribution of AChE1 and AChE2, we determined which AChE had a central catalytic function in several insect species across 18 orders. The main catalytic activity in heads was determined by native polyacrylamide gel electrophoresis in conjunction with Western blotting using AChE1- and AChE2-specific antibodies. Of the 100 insect species examined, 67 species showed higher AChE1 activity; thus, AChE1 was considered as the main catalytic enzyme. In the remaining 33 species, ranging from Palaeoptera to Hymenoptera, however, AChE2 was predominantly expressed as the main catalytic enzyme. These findings challenge the common notion that AChE1 is the only main catalytic enzyme in insects with the exception of Cyclorrhapha, and further demonstrate that the specialization of AChE2 as the main enzyme or the replacement of AChE1 function with AChE2 were rather common events, having multiple independent origins during insect evolution. It was hypothesized that the generation of multiple AChE2 isoforms by alternative splicing allowed the loss of ace1 during the process of functional replacement of AChE1 with AChE2 in Cyclorrhapha. However, the presence of AChE2 as the main catalytic enzyme in higher social Hymenoptera provides a case for the functional replacement of AChE1 with AChE2 without the loss of ace1. The current study will provide valuable insights into the evolution of AChE: which AChE has been specialized as the main catalytic enzyme and to become the main target for insecticides in different insect species.  相似文献   

9.
Acetylcholinesterase (AChE) is an important enzyme in cholinergic synapses. Most arthropods have two genes (ace1 and ace2), but only one encodes the predominant synaptic AChE, the main target for organophosphates. Resistance towards organophosphates is widespread in the marine arthropod Lepeophtheirus salmonis. To understand this trait, it is essential to characterize the gene(s) coding for AChE(s). The full length cDNA sequences encoding two AChEs in L. salmonis were molecularly characterized in this study. The two ace genes were highly similar (83.5% similarity at protein level). Alignment to the L. salmonis genome revealed that both genes were located close to each other (separated by just 26.4 kbp on the L. salmonis genome), resulting from a recent gene duplication. Both proteins had all the typical features of functional AChE and clustered together with AChE-type 1 proteins in other species, an observation that has not been described in other arthropods. We therefore concluded the presence of two versions of ace1 gene in L. salmonis, named ace1a and ace1b. Ace1a was predominantly expressed in different developmental stages compared to ace1b and was possibly active in the cephalothorax, indicating that ace1a is more likely to play the major role in cholinergic synaptic transmission. The study is essential to understand the role of AChEs in resistance against organophosphates in L. salmonis.  相似文献   

10.

Objective

Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2).

Research Design and Methods

To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO).

Results

We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3β.

Conclusions

These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling.  相似文献   

11.
The efficiency of synaptic transmission between nerve and muscle depends on the number and density of acetylcholinesterase molecules (AChE) at the neuromuscular junction. However, little is known about the way this density is maintained and regulated in vivo. By using time lapse and quantitative fluorescence imaging assays in living mice, we demonstrated that insertion of new AChEs occurs within hours of saturating pre-existing AChEs with fasciculin2, a snake toxin that selectively labels AChE. In the absence of muscle postsynaptic activity or evoked nerve presynaptic neurotransmitter release, AChE insertion was decreased significantly, whereas direct stimulation of the muscle completely restored AChE insertion to control levels. This activity-dependent AChE insertion is mediated by intracellular calcium. In muscle stimulated in the presence of a Ca2+ channel blocker or calcium-permeable Ca2+ chelator, AChE insertion into synapses was significantly decreased, whereas ryanodine or ionophore A12387 treatment of blocked and unstimulated synapses significantly increased AChE insertion. These results demonstrated that synaptic activity is critical for AChE insertion and indicated that a rise in intracellular calcium either through voltage-gated calcium channels or from intracellular stores is critical for proper AChE insertion into the adult synapse.  相似文献   

12.
Areas containing AChE-positive capillaries were mapped in the brain of the cat and the guinea pig. Regions with AChE-positive capillaries mostly also contain neuronal elements with AChE activity. Electron-microscopical cytochemistry revealed localization of AChE in basement membranes of endothelial cells and pericytes very often in continuity with activity of the extracellular space. Intraendothelial AChE activity was seen only in pinocytic vesicles. The vascular AChE is thought to be of neuronal origin since no cytochemical evidence has been obtained for a synthesis of this enzyme in endothelial or other non-neuronal cells in the CNS.  相似文献   

13.
Ca2+ release from intracellular stores regulates muscle contraction and a vast array of cell functions, but its role in the central nervous system (CNS) has not been completely elucidated. A new method of blocking IP3 signaling by artificially expressing IP3 5-phosphatase has been used to clarify the functions of intracellular Ca2+ mobilization in CNS. Here I review two of such functions: the activity-dependent synaptic maintenance mechanism and the regulation of neuronal growth by spontaneous Ca2+ oscillations in astrocytes. These findings add new bases for better understanding CNS functions and suggest the presence of as yet unidentified neuronal and glial functions that are regulated by Ca2+ store-dependent Ca2+ signaling.  相似文献   

14.
采用联合亲和层析法从人小脑及红细胞膜中纯化了AChE,纯化的人脑及红细胞AChE在SDS-PAGE上呈一主带,分子量约为66000。人脑AChE制备酯酶与酰胺酶比活性分别为1299与143U/mg,人红细胞AChE制备分别为4584与747U/mg。人脑及红细胞AChE制备的酯酶与酰胺酶活性最适pH较接近,在pH7.5-8.0之间,酯酶活性底物ATCh对其芳基酰胺酶活性有抑制作用。IC_(50)分别为10.2×10~(-3)及3×10~(-3)mol/L。梭曼对其酯酶及酰胺酶活性均有明显抑制作用,说明二者均需活性中心丝氨酸参与。  相似文献   

15.
16.
Endocannabinoids (eCBs) function as retrograde messengers at both excitatory and inhibitory synapses, and control various forms of synaptic plasticity in the adult brain. The molecular machinery required for specific eCB functions during synaptic plasticity is well established. However, eCB signaling plays surprisingly fundamental roles in controlling the acquisition of neuronal identity during CNS development. Recent work suggests that selective recruitment of regulatory signaling networks to CB1 cannabinoid receptors dictates neuronal state-change decisions. In addition, the spatial localization and temporal precision of eCB actions emerges as a novel organizer in developing neuronal networks. Current challenges include fitting novel molecular candidates into regulatory eCB signaling pathways, and defining the temporal dynamics of context-dependent signaling mechanisms underpinning particular neuronal specification events.  相似文献   

17.
Nitric oxide (NO), which is produced from nitric oxide synthase, is an important cell signaling molecule that is crucial for many physiological functions such as neuronal death, neuronal survival, synaptic plasticity, and vascular homeostasis. This diffusible gaseous compound functions as an effector or second messenger in many intercellular communications and/or cell signaling pathways. Protein S-nitrosylation is a posttranslational modification that involves the covalent attachment of an NO group to the thiol side chain of select cysteine residues on target proteins. This process is thought to be very important for the regulation of cell death, cell survival, and gene expression in the central nervous system (CNS). However, there have been few reports on the role of protein S-nitrosylation in CNS disorders. Here, we briefly review specific examples of S-nitrosylation, with particular emphasis on its functions in neuronal cell death and survival. An understanding of the role and mechanisms underlying the effects of protein S-nitrosylation on neurodegenerative/neuroprotective events may reveal a novel therapeutic strategy for rescuing neurons in neurodegenerative diseases.  相似文献   

18.

Background

Due to the use of organophosphates (OP) as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE) in the peripheral and central nervous systems (CNS). This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime). However, these oximes can not cross the blood-brain barrier (BBB) sufficiently. Therefore, new strategies are needed to transport oximes over the BBB.

Methodology/Principal Findings

In this study, we combined different oximes (obidoxime dichloride and two different HI 6 salts, HI 6 dichloride monohydrate and HI 6 dimethanesulfonate) with human serum albumin nanoparticles and could show an oxime transport over an in vitro BBB model. In general, the nanoparticulate transported oximes achieved a better reactivation of OP-inhibited AChE than free oximes.

Conclusions/Significance

With these nanoparticles, for the first time, a tool exists that could enable a transport of oximes over the BBB. This is very important for survival after severe OP intoxication. Therefore, these nanoparticulate formulations are promising formulations for the treatment of the peripheral and the CNS after OP poisoning.  相似文献   

19.
We examined the expression of acetylcholinesterase (AChE) in the nervous system and epidermal body structures during embryonic and larval development of two grasshopper species: Locusta migratoria and Schistocerca americana. Histochemical labelling was blocked by the enzyme inhibitors eserine and BW284c51, but not by iso-OMPA, showing that the staining reflected true AChE activity. The majority of staining was localized on the cell surface but granular intracellular staining was also visible in many cell bodies. In both species, the cellular expression of AChE followed a similar but complex spatiotemporal staining pattern. Initially, mainly epidermal tissue structures were stained in the various body appendages (stages 25%–30%). Labelling subsequently appeared in outgrowing neurons of the central nervous system (CNS) and in the nerves innervating the limbs and dorsal body wall (stages 30%–40%). The latter staining originated in motoneurons of the ventral nerve cord. In a third phase (after 45%), the somata of certain identified mechanosensory neurons started to express AChE activity, presumably reflecting cholinergic differentiation. Staining was also found in repo-positive glial cells of the CNS, longitudinal glia of connectives, glia of the stomatogastric nervous system and glial cells ensheathing peripheral nerves. Glial cells remained AChE-positive during larval to adult development, whereas motoneurons lost their AChE expression. The expression pattern in non-neuronal cells and glutamatergic motoneurons and the developmental appearance of AChE prior to synaptogenesis in the CNS suggest non-cholinergic functions of AChE during grasshopper embryogenesis. Financial support was provided by the Deutsche Forschungsgemeinschaft (Bi 262/7-1 and 262/11-1)  相似文献   

20.
The ACh-mediated system consisting of acetylcholine (ACh), acetylcholine receptor (AChR) and acetylcholinesterase (AChE) is fundamental for nervous system function in animals and insects. Although plants lack a nervous system, both ACh and ACh-hydrolyzing activity have been widely recognized in the plant kingdom. The function of the plant ACh-mediated system is still unclear, despite more than 30 years of research. To understand ACh-mediated systems in plants, we previously purified maize AChE and cloned the corresponding gene from maize seedlings (Plant Physiology). In a recent paper in Planta, we also purified and cloned AChE from the legume plant siratro (Macroptilium atropurpureum). In comparison with electric eel AChE, both plant AChEs showed enzymatic properties of both animal AChE and animal butyrylcholinesterase. On the other hand, based on Pfam protein family analysis, both plant AChEs contain a consensus sequence of the lipase GDSL family, while the animal AChEs possess a distinct alpha/beta-hydrolase fold superfamily sequence, but no lipase GDSL sequence. Thus, neither plant AChE belongs to the well-known AChE family, which is distributed throughout the animal kingdom. To address the possible physiological roles of plant AChEs, we herein report our data from the immunological analysis of the overexpressed maize AChE gene in plants.Key words: acetylcholinesterase activity, maize AChE gene, overexpression, rice, subcellular localizationIn the animal ACh-mediated system, ACh serves to propagate an electrical stimulus across the synaptic junction. At the presynaptic neuron end, an electrical impulse triggers the release of ACh, which accumulates in vesicles into the synaptic cleft via exocytosis. ACh then binds to an ACh receptor (AChR) on the postsynaptic neuron surface, and the ACh-AChR binding induces subsequent impulses to the postsynaptic neuron. Finally, ACh, which is released again by the receptor into the synaptic cleft, is rapidly degraded by acetylcholinesterase (AChE; E.C.3.1.1.7).1,2 ACh and AChE,3,4,5 and choline acetyltransferase activity that takes part during synthesis of ACh6,7 have been recognized in plants. AChR has not been identified in plant cells so far. However, so-called “ACh-binding sites” were detected in membrane fractions from some bean seedlings8,9 and evidence was also detected in plant organelles, such as chloroplasts10 and tonoplasts11 using pharmacological methods.Concerning the function of the ACh-mediated system in plants, Momonoki12,13 has proposed that it results in an asymmetric distribution of hormones and substances due to gravity stimuli, as well as changes in ACh content, AChE activity and Ca2+ level in response to heat stress. However, all these phenomena have been investigated using indirect techniques. Thus, to understand the plant ACh-mediated system, we purified AChEs and cloned the AChE genes from maize14 and siratro15 seedlings. The maize AChE was found to exist as two types of 88-kDa homodimers, which in turn consisted of disulfide-linked and noncovalently-linked 42- to 44-kDa subunits.14 The siratro AChE might exist as a disulfide-linked 125-kDa homotrimer consisting of 41- or 42-kDa subunits.15 The plant AChEs apparently from various quaternary structures, depending on the plant species, similar to animal AChEs. Furthermore, maize and siratro AChEs showed enzymatic properties of both animal AChE and animal butyrylcholinesterase, compared with electric eel AChE.15In this addendum, we report our recent immunohistochemical study using an antibody against maize AChE. In order to overexpress the maize AChE gene in rice plants, we constructed a plasmid for the sense expression of the AChE gene by cloning it into the pT7 Blue vector. The maize AChE gene14 was introduced behind the maize ubiquitin 1 promoter (Ubi) in the p2K-1+ plant expression vector. The Ubi::maize AChE and control (p2K-1+ only) plasmid were introduced into Agrobacterium tumefaciens EHA 101, which was transformed into rice (Nihonbare) via Agrobacterium-mediated transformation methods.16 The maize AChE transgenic plants exhibited approximately 650-fold higher AChE activity than was observed in the control plants but no phenotypic changes between transgenic and control plants. The subcellular localization of AChE was observed by immunofluorescence in paraffin-embedded leaf and stem tissues of transgenic rice plants. The maize AChE protein was detected in extracellular spaces in the leaf and stem of the plants (Fig. 1). Therefore, plant AChEs may function in the extracellular space, similar to some isoforms of animal AChE.2,17Open in a separate windowFigure 1Subcellular localization of maize AChE in leaf and stem of transgenic rice. (A) Leaf cross-section of transgenic rice; (B) leaf cross-section of control; (C) stem cross-section of transgenic rice; (D) stem cross-section of control. Each section was probed with maize AChE antibody and then visualized with Alexa Fluor 488-conjugated secondary antibody. Control indicates rice plants transfected with p2K-1+ vector only. Arrowheads indicate localization of maize AChE.Most of the AChE activity in the root was associated with cell wall materials.18 The computer-assisted cellular sorting prediction program TargetP presumed that our purified maize AChE14 is targeted to the secretory pathway via the endoplasmic reticulum. Furthermore, the SOSUI program (http://sosui.proteome.bio.tuat.ac.jp / sosuiframe0.html), which discriminates between membrane and soluble proteins, showed that the maize AChE does not contain any likely transmembrane helical regions, which are features of proteins that associate with the lipid bilayers of the cell membrane. These findings suggested that the maize AChE might be localized at the cell wall. However, in an earlier work,13 we speculated that AChE is localized at the plasmodesmatal cell-to-cell interface and that it plays a role in regulation of the plasmodesmatal channel as a constituent of the ACh-mediated system. We improved our hypothesis of the role of the ACh-mediated system in a paper in Plant Physiol.14The results based on fluorescence-immunohistochemistry in transgenic rice plants reported in this paper confirmed that the maize AChE is localized at the cell wall. Here we propose again our hypothesis of an ACh-mediated system including this new finding; the system might be localized to the extracellular region around the plasmodesmatal channel and might conduct cell-to-cell trafficking by channel gating regulation. Adjoining cells in plant tissues are interconnected via plasmodesmata, which allow the trafficking of low-molecular-mass materials across the cell wall between two cells. According to a recent model,19 transport of these substances could be regulated by the opening and/or closing of conductive channels to prevent infection by pathogens and to selectively control trafficking through the plasmodesmata. Furthermore, it has been speculated that morphoregulatory proteins around the plasmodesmata could be involved in channel regulation.20 Therefore, the ACh-mediated system might regulate the opening and/or closing of channels by interactions with morphoregulatory proteins at the cell wall matrix surrounding the plasmodesmata. Further research will be required to clarify the precise physiological roles of plant AChEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号