首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA (mtDNA) is the most popular marker of molecular diversity in animals, primarily because of its elevated mutation rate. After >20 years of intensive usage, the extent of mitochondrial evolutionary rate variations across species, their practical consequences on sequence analysis methods, and the ultimate reasons for mtDNA hypermutability are still largely unresolved issues. Using an extensive cytochrome b data set, fossil data, and taking advantage of the decoupled dynamics of synonymous and nonsynonymous substitutions, we measure the lineage-specific mitochondrial mutation rate across 1,696 mammalian species and compare it with the nuclear rate. We report an unexpected 2 orders of magnitude mitochondrial mutation rate variation between lineages: cytochrome b third codon positions are renewed every 1-2 Myr, in average, in the fastest evolving mammals, whereas it takes >100 Myr in slow-evolving lineages. This result has obvious implications in the fields of molecular phylogeny, molecular dating, and population genetics. Variations of mitochondrial substitution rate across species are partly explained by body mass, longevity, and age of female sexual maturity. The classical metabolic rate and generation time hypothesis, however, do not fully explain the observed patterns, especially a stronger effect of longevity in long-lived than in short-lived species. We propose that natural selection tends to decrease the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial theory of aging.  相似文献   

2.
The existence of a lineage-specific nucleotide substitution rate in mammalian mtDNA has been investigated by analyzing the mtDNA of all available species, that is, 35 complete mitochondrial genomes from 14 mammalian orders. A detailed study of their evolutionary dynamics has been carried out on both ribosomal RNA and first and second codon positions (P12) of H-strand protein-coding genes by using two different types of relative-rate tests. Results are quite congruent between ribosomal and P12 sites. Significant rate variations have been observed among orders and among species of the same order. However, rate variation does not exceed 1.8-fold between the fastest (Proboscidea and Primates) and the slowest (Perissodactyla) evolving orders. Thus, the observed mitochondrial rate variations among taxa do not invalidate the suitability of mtDNA for drawing mammalian phylogeny. Dependence of evolutionary rate differences on variations in mutation and/or fixation rates was examined. Body size, generation time, and metabolic rate were tested, and no significant correlation was observed between them and the taxon-specific evolutionary rates, most likely because the latter might be influenced by multiple overlapping variable constraints.  相似文献   

3.
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila.  相似文献   

4.
Evidence is compiled suggesting a slowdown in mean microevolutionary rate for turtle mitochondrial DNA (mtDNA). Within each of six species or species complexes of Testudines, representing six genera and three taxonomic families, sequence divergence estimates derived from restriction assays are consistently lower than expectations based on either (a) the dates of particular geographic barriers with which significant mtDNA genetic clades appear associated or (b) the magnitudes of sequence divergence between mtDNA clades in nonturtle species that otherwise exhibit striking phylogeographic concordance with the genetic partitions in turtles. Magnitudes of the inferred rate slowdowns average eightfold relative to the "conventional" mtDNA clock calibration of 2%/Myr sequence divergence between higher animal lineages. Reasons for the postulated deceleration remain unknown, but two intriguing correlates are (a) the exceptionally long generation length most turtles and (b) turtles' low metabolic rate. Both factors have been suspected of influencing evolutionary rates in the DNA sequences of some other vertebrate groups. Uncertainities about the dates of cladogenetic events in these Testudines leave room for alternatives to the slowdown interpretation, but consistency in the direction of the inferred pattern, across several turtle species and evolutionary settings, suggests the need for caution in acceptance of a universal mtDNA-clock calibration for higher animals.  相似文献   

5.
A growing body of research supports the view that within‐species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole‐organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life‐history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.  相似文献   

6.
We analyzed the control region of the mitochondrial DNA (mtDNA)from maternally related individuals originating from the AzoresIslands (Portugal) in order to estimate the mutation rate ofmtDNA and to gain insights into the process by which a new mutationarises and segregates into heteroplasmy. Length and/or pointheteroplasmies were found at least in one individual of 72%of the studied families. Eleven new point substitutions werefound, all of them in heteroplasmy, from which five appear tobe somatic mutations and six can be considered germinal, evidencingthe high frequency of somatic mutations in mtDNA in healthyyoung individuals. Different values of the mutation rate accordingto different assumptions were estimated. When considering allthe germinal mutations, the value of the mutation rate obtainedis one of the highest reported so far in family studies. However,when corrected for gender (assuming that the mutations presentin men have the same evolutionary weight of somatic mutationsbecause they will inevitably be lost) and for the probabilityof intraindividual fixation, the value for the mutation rateobtained for HVRI and HVRII (0.2415 mutations/site/Myr) wasin the upper end of the values provided by phylogenetic estimations.These results indicate that the discrepancy, that has been reportedpreviously, between the human mtDNA mutation rates observedalong evolutionary timescales and the estimations obtained usingfamily pedigrees can be minimized when corrections for genderproportions in newborn individuals and for the probability ofintraindividual fixation are introduced. The analyses performedsupport the hypothesis that (1) in a constant, tight bottleneckgenetic drift alone can explain different patterns of heteroplasmysegregation and (2) in neutral conditions, the destiny of anew mutation is strictly related to the initial proportion ofthe new variant. Another important point arising from the dataobtained is that, even in the absence of a paternal contributionof mtDNA, recombination may occur between mtDNA molecules presentin an individual, which is only observable if it occurs betweenmtDNA types that differ at two or more positions.  相似文献   

7.
The mutation rate of the human mtDNA deletion mtDNA4977.   总被引:3,自引:1,他引:2       下载免费PDF全文
The human mitochondrial mutation mtDNA4977 is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation fate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA4977 in cultured human cells is 5.95 x 10(-8) per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations.  相似文献   

8.
The extent to which mitochondrial DNA (mtDNA) variation is involved in adaptive evolutionary change is currently being reevaluated. In particular, emerging evidence suggests that mtDNA genes coevolve with the nuclear genes with which they interact to form the energy producing enzyme complexes in the mitochondria. This suggests that intergenomic epistasis between mitochondrial and nuclear genes may affect whole‐organism metabolic phenotypes. Here, we use crossed combinations of mitochondrial and nuclear lineages of the seed beetle Callosobruchus maculatus and assay metabolic rate under two different temperature regimes. Metabolic rate was affected by an interaction between the mitochondrial and nuclear lineages and the temperature regime. Sequence data suggests that mitochondrial genetic variation has a role in determining the outcome of this interaction. Our genetic dissection of metabolic rate reveals a high level of complexity, encompassing genetic interactions over two genomes, and genotype × genotype × environment interactions. The evolutionary implications of these results are twofold. First, because metabolic rate is at the root of life histories, our results provide insights into the complexity of life‐history evolution in general, and thermal adaptation in particular. Second, our results suggest a mechanism that could contribute to the maintenance of nonneutral mtDNA polymorphism.  相似文献   

9.
High mutation rates in the mitochondrial genomes of Daphnia pulex   总被引:2,自引:0,他引:2  
Despite the great utility of mitochondrial DNA (mtDNA) sequence data in population genetics and phylogenetics, key parameters describing the process of mitochondrial mutation (e.g., the rate and spectrum of mutational change) are based on few direct estimates. Furthermore, the variation in the mtDNA mutation process within species or between lineages with contrasting reproductive strategies remains poorly understood. In this study, we directly estimate the mtDNA mutation rate and spectrum using Daphnia pulex mutation-accumulation (MA) lines derived from sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) lineages. The nearly complete mitochondrial genome sequences of 82 sexual and 47 asexual MA lines reveal high mtDNA mutation rate of 1.37 × 10(-7) and 1.73 × 10(-7) per nucleotide per generation, respectively. The Daphnia mtDNA mutation rate is among the highest in eukaryotes, and its spectrum is dominated by insertions and deletions (70%), largely due to the presence of mutational hotspots at homopolymeric nucleotide stretches. Maximum likelihood estimates of the Daphnia mitochondrial effective population size reveal that between five and ten copies of mitochondrial genomes are transmitted per female per generation. Comparison between sexual and asexual lineages reveals no statistically different mutation rates and highly similar mutation spectra.  相似文献   

10.
Previous research has established a discrepancy of nearly anorder of magnitude between pedigree-based and phylogeny-based(human vs. chimpanzee) estimates of the mitochondrial DNA (mtDNA)control region mutation rate. We characterize the time dependencyof the human mitochondrial hypervariable region one mutationrate by generating 14 new phylogeny-based mutation rate estimatesusing within-human comparisons and archaeological dates. Rateestimates based on population events between 15,000 and 50,000years ago are at least 2-fold lower than pedigree-based estimates.These within-human estimates are also higher than estimatesgenerated from phylogeny-based human–chimpanzee comparisons.Our new estimates establish a rapid decay in evolutionary mutationrate between approximately 2,500 and 50,000 years ago and aslow decay from 50,000 to 6 Ma. We then extend this analysisto the mtDNA-coding region. Our within-human coding region mutationrate estimates display a similar, though less rapid, time-dependentdecay. We explore the possibility that multiple hits explainthe discrepancy between pedigree-based and phylogeny-based mutationrates. We conclude that whereas nucleotide substitution modelsincorporating multiple hits do provide a possible explanationfor the discrepancy between pedigree-based and human–chimpanzeemutation rate estimates, they do not explain the rapid declineof within-human rate estimates. We propose that demographicprocesses such as serial bottlenecks prior to the Holocene couldexplain the difference between rates estimated before and after15,000 years ago. Our findings suggest that human mtDNA estimatesof dates of population and phylogenetic events should be adjustedin light of this time dependency of the mutation rate estimates.  相似文献   

11.
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co‐evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.  相似文献   

12.
We tested the metabolic rate hypothesis (whereby rates of mtDNA evolution are postulated to be mediated primarily by mutagenic by-products of respiration) by examining whether mass-specific metabolic rate was correlated with root-to-tip distance on a set of mtDNA trees for the springtail Cryptopygus antarcticus travei from sub-Antarctic Marion Island.Using Bayesian analyses and a novel application of the comparative phylogenetic method, we did not find significant evidence that contemporary metabolic rates directly correlate with mutation rate (i.e., root-to-tip distance) once the underlying phylogeny is taken into account. However, we did find significant evidence that metabolic rate is dependent on the underlying mtDNA tree, or in other words, lineages with related mtDNA also have similar metabolic rates.We anticipate that future analyses which apply this methodology to datasets with longer sequences, more taxa, or greater variability will have more power to detect a significant direct correlation between metabolic rate and mutation rate. We conclude with suggestions for future analyses that would extend the preliminary approach applied here, in particular highlighting ways to tease apart oxidative stress effects from the effects of population size and/or selection coefficients operating on the molecular evolutionary rate.  相似文献   

13.
We examined patterns of mitochondrial polymorphism and divergence in the angiosperm genus Silene and found substantial variation in evolutionary rates among species and among lineages within species. Moreover, we found corresponding differences in the amount of polymorphism within species. We argue that, along with our earlier findings of rate variation among genes, these patterns of rate heterogeneity at multiple phylogenetic scales are most likely explained by differences in underlying mutation rates. In contrast, no rate variation was detected in nuclear or chloroplast loci. We conclude that mutation rate heterogeneity is a characteristic of plant mitochondrial sequence evolution at multiple biological scales and may be a crucial determinant of how much polymorphism is maintained within species. These dramatic patterns of variation raise intriguing questions about the mechanisms driving and maintaining mutation rate heterogeneity in plant mitochondrial genomes. Additionally, they should alter our interpretation of many common phylogenetic and population genetic analyses.  相似文献   

14.
From nucleotide sequences of mitochondrial and chloroplast genes the probable frequency of the CpG----TpG + CpA substitutions was determined. These substitutions may indicate the level of prior DNA methylation. It was found that the level of this methylation is significantly lower in mitochondrial DNA (mtDNA) and chloroplast DNA (chDNA) than in nuclear DNA (nDNA) of the same species. The species (taxon) specificity of mtDNA and chDNA methylation was revealed. A correlation was found between the level of CpG methylation in nDNA, and mtDNA and chDNA in different organisms. It is shown that cytosine residues in CpG were not subjected to significant methylation in the fungi and invertebrate mtDNA and also in the algae chDNA. In contrast, the vertebrate mtDNA bears the impress of CpG-supression, which is confirmed by direct data on methylation of these DNA. Here the first data on the possible enzymatic methylation of the plant mtDNA and chDNA were obtained. It was shown that the degree of CpG-suppression in the 5S rRNA nuclear genes of lower and higher plants is significantly higher in the chloroplast genes of 4,5S and 5S rRNA. From data on pea chDNA hydrolysis with MspI and HpaII it was established that in CCGG sequences this DNA is not methylated. The role of DNA methylation in increasing the mutation rate and in accelerating the evolutionary rates of vertebrate mtDNA is discussed.  相似文献   

15.
The hallmarks of animal mitochondrial DNA (mtDNA) are a rapid rate of sequence evolution, a small genome carrying the same set of homologous genes, maternal inheritance and lack of recombination. Over the past few years, a variety of different observations has challenged these accepted notions of mitochondrial biology. Notable examples include evidence for variable rates of mtDNA sequence evolution among taxa, evidence for large and variable mitochondrial genome sizes in certain groups, and a growing number of cases in metazoans of 'paternal leakage' in the inheritance of mtDNA. Several recent studies have uncovered different lines of evidence suggesting that an organism's thermal habit, or metabolic rate, can influence the evolution of mtDNA.  相似文献   

16.
Mitochondrial pseudogenes: evolution's misplaced witnesses   总被引:1,自引:0,他引:1  
Nuclear copies of mitochondrial DNA (mtDNA) have contaminated PCR-based mitochondrial studies of over 64 different animal species. Since the last review of these nuclear mitochondrial pseudogenes (Numts) in animals, Numts have been found in 53 of the species studied. The recent evidence suggests that Numts are not equally abundant in all species, for example they are more common in plants than in animals, and also more numerous in humans than in Drosophila. Methods for avoiding Numts have now been tested, and several recent studies demonstrate the potential utility of Numt DNA sequences in evolutionary studies. As relics of ancient mtDNA, these pseudogenes can be used to infer ancestral states or root mitochondrial phylogenies. Where they are numerous and selectively unconstrained, Numts are ideal for the study of spontaneous mutation in nuclear genomes.  相似文献   

17.
Differential rates of nucleotide substitution among different gene segments and between distinct evolutionary lineages is well documented among mitochondrial genes and is likely a consequence of locus-specific selective constraints that delimit mutational divergence over evolutionary time. We compared sequence variation of 18 homologous loci (15 coding genes and 3 parts of the control region) among 10 mammalian mitochondrial DNA genomes which allowed us to describe different mitochondrial evolutionary patterns and to produce an estimation of the relative order of gene divergence. The relative rates of divergence of mitochondrial DNA genes in the family Felidae were estimated by comparing their divergence from homologous counterpart genes included in nuclear mitochondrial DNA (Numt, pronounced "new might"), a genomic fossil that represents an ancient transfer of 7.9 kb of mitochondrial DNA to the nuclear genome of an ancestral species of the domestic cat (Felis catus). Phylogenetic analyses of mitochondrial (mtDNA) sequences with multiple outgroup species were conducted to date the ancestral node common to the Numt and the cytoplasmic (Cymt) mtDNA genes and to calibrate the rate of sequence divergence of mitochondrial genes relative to nuclear homologous counterparts. By setting the fastest substitution rate as strictly mutational, an empirical "selective retardation index" is computed to quantify the sum of all constraints, selective and otherwise, that limit sequence divergence of mitochondrial gene sequences over time.   相似文献   

18.
The patterns of mitochondrial genomesize variation were investigated in endothermic and ectothermic species to examine the role that thermal habit might play in the evolution of animal mitochondrial DNA (mtDNA). Data on mtDNA size (the modal, largest, and smallest mtDNA reported within a species), the percent variation in mtDNA size (the difference in size between the largest and smallest mtDNAs divided by the model genome size for a given species), and the frequency of heteroplasmic individuals (those carrying more than one mtDNA length variant) were tabulated from the literature. Endotherms showed significantly less variation in mtDNA size and tended to have smaller mtDNAs than ectotherms. Further comparisons between endothermic and ectothermic vertebrates revealed that the largest genome and the percent variation in genome size were significantly smaller in the former than the latter. There was no difference between endothermic and ectotherms in the frequency of heteroplasmy. These data are discussed in light of two hypotheses: (1) more intense directional and purifying selection for small genome size in the cytoplasms of species with higher metabolic rates and (2) reduced mutation pressures generating mtDNA size variants in endotherms relative to those in ectotherms. The general trends are consistent with the selection hypothesis but in certain species mtDNA size variation appears to be governed by mutational pressures. To test these competing hypotheses further, comparative studies are proposed where mitochondrial genome size is quantified in sister taxa and tissue types with very different metabolic rates.  相似文献   

19.
Approximately 600-bp sequences of mitochondrial DNA (mtDNA) have been designated as "DNA barcodes" and have become one of the most contentious and animated issues in the application of genetic information to global biodiversity assessment and species identification. Advocates of DNA barcodes have received extensive attention and promotion in many popular and refereed scientific publications. However, we suggest that the utility of barcodes is suspect and vulnerable to technical challenges that are particularly pertinent to mtDNA. We review the natural history of mtDNA and discuss problems for barcoding which are particularly associated with mtDNA and inheritance, including reduced effective population size, maternal inheritance, recombination, inconsistent mutation rate, heteroplasmy, and compounding evolutionary processes. The aforementioned could significantly limit the application and utility of mtDNA barcoding efforts. Furthermore, global use of barcodes will require application and acceptance of a barcode-based species concept that has not been evaluated in the context of the extensive literature concerning species designation. Implementation of mtDNA barcodes in spite of technical and practical shortcomings we discuss may degrade the longstanding synthesis of genetic and organism-based research and will not advance studies ranging from genomic evolution to biodiversity assessment.  相似文献   

20.
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial‐targeted proteins (N‐mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N‐mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear‐ and mitochondrial‐encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N‐mt gene evolution in species with fast‐evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N‐mt substitutions at positions that directly contact mutated residues in mitochondrial‐encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N‐mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号