首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, Monte Carlo (MC) models of electron beams (energies 4, 12 and 18 MeV) from an Elekta SL25 medical linear accelerator were simulated using EGSnrc/BEAMnrc user code. The calculated dose distributions were benchmarked by comparison with measurements made in a water phantom for a wide range of open field sizes and insert combinations, at a single source-to-surface distance (SSD) of 100 cm. These BEAMnrc models were used to evaluate the accuracy of a commercial MC dose calculation engine for electron beam treatment planning (Oncentra MasterPlan Treament Planning System (OMTPS) version 1.4, Nucletron) for two energies, 4 and 12 MeV. Output factors were furthermore measured in the water phantom and compared to BEAMnrc and OMTPS. The overall agreement between predicted and measured output factors was comparable for both BEAMnrc and OMTPS, except for a few asymmetric and/or small insert cutouts, where larger deviations between measurements and the values predicted from BEAMnrc as well as OMTPS computations were recorded. However, in the heterogeneous phantom, differences between BEAMnrc and measurements ranged from 0.5 to 2.0% between two ribs and 0.6–1.0% below the ribs, whereas the range difference between OMTPS and measurements was the same (0.5–4.0%) in both areas. With respect to output factors, the overall agreement between BEAMnrc and measurements was usually within 1.0% whereas differences up to nearly 3.0% were observed for OMTPS. This paper focuses on a comparison for clinical cases, including the effects of electron beam attenuations in a heterogeneous phantom. It, therefore, complements previously reported data (only based on measurements) in one other paper on commissioning of the VMC++ dose calculation engine.These results demonstrate that the VMC++ algorithm is more robust in predicting dose distribution than Pencil beam based algorithms for the electron beams investigated.  相似文献   

2.
New version 13.6.23 of the electron Monte Carlo (eMC) algorithm in Varian Eclipse™ treatment planning system has a model for 4 MeV electron beam and some general improvements for dose calculation. This study provides the first overall accuracy assessment of this algorithm against full Monte Carlo (MC) simulations for electron beams from 4 MeV to 16 MeV with most emphasis on the lower energy range. Beams in a homogeneous water phantom and clinical treatment plans were investigated including measurements in the water phantom. Two different material sets were used with full MC: (1) the one applied in the eMC algorithm and (2) the one included in the Eclipse™ for other algorithms. The results of clinical treatment plans were also compared to those of the older eMC version 11.0.31. In the water phantom the dose differences against the full MC were mostly less than 3% with distance-to-agreement (DTA) values within 2 mm. Larger discrepancies were obtained in build-up regions, at depths near the maximum electron ranges and with small apertures. For the clinical treatment plans the overall dose differences were mostly within 3% or 2 mm with the first material set. Larger differences were observed for a large 4 MeV beam entering curved patient surface with extended SSD and also in regions of large dose gradients. Still the DTA values were within 3 mm. The discrepancies between the eMC and the full MC were generally larger for the second material set. The version 11.0.31 performed always inferiorly, when compared to the 13.6.23.  相似文献   

3.
PurposeTo investigate the degree of 18 and 22 MeV electron beam dose perturbations caused by unilateral hip titanium (Ti) prosthesis.MethodsMeasurements were acquired using Gafchromic EBT2 film in a novel pelvic phantom made out of Nylon-12 slices in which a Ti-prosthesis is embedded. Dose perturbations were measured and compared using depth doses for 8 × 8, 10 × 10 and 11 × 11 cm2 applicator-defined field sizes at 95 cm source-surface-distance (SSD). Comparisons were also made between film data at 100 cm SSD for a 10 × 10 cm2 field and dose calculations made on CMS XiO treatment planning system utilizing the pencil beam algorithm. The extent of dose deviations caused by the Ti prosthesis based on film data was quantified through the dose enhancement factor (DEF), defined as the ratio of the dose influenced by the prosthesis and the unchanged beam.ResultsAt the interface between Nylon-12 and the Ti implant on the prosthesis entrance side, the dose increased to values of 21 ± 1% and 23 ± 1% for 18 and 22 MeV electron beams, respectively. DEFs increased with increasing electron energy and field size, and were found to fall off quickly with distance from the nylon-prosthesis interface. A comparison of film and XiO depth dose data for 18 and 22 MeV gave relative errors of 20% and 25%, respectively.ConclusionThis study outlines the lack of accuracy of the XiO TPS for electron planning in highly heterogeneous media. So a dosimetric error of 20–25% could influence clinical outcome.  相似文献   

4.
The aim of the present work was the validation of the VMC++ Monte Carlo (MC) engine implemented in the Oncentra Masterplan (OMTPS) and used to calculate the dose distribution produced by the electron beams (energy 5-12 MeV) generated by the linear accelerator (linac) Primus (Siemens), shaped by a digital variable applicator (DEVA). The BEAMnrc/DOSXYZnrc (EGSnrc package) MC model of the linac head was used as a benchmark.Commissioning results for both MC codes were evaluated by means of 1D Gamma Analysis (2%, 2 mm), calculated with a home-made Matlab (The MathWorks) program, comparing the calculations with the measured profiles. The results of the commissioning of OMTPS were good [average gamma index (γ) > 97%]; some mismatches were found with large beams (size ≥ 15 cm). The optimization of the BEAMnrc model required to increase the beam exit window to match the calculated and measured profiles (final average γ > 98%).Then OMTPS dose distribution maps were compared with DOSXYZnrc with a 2D Gamma Analysis (3%, 3 mm), in 3 virtual water phantoms: (a) with an air step, (b) with an air insert, and (c) with a bone insert.The OMTPD and EGSnrc dose distributions with the air-water step phantom were in very high agreement (γ ∼ 99%), while for heterogeneous phantoms there were differences of about 9% in the air insert and of about 10–15% in the bone region. This is due to the Masterplan implementation of VMC++ which reports the dose as “dose to water”, instead of “dose to medium”.  相似文献   

5.
6.
PurposeIn radiotherapy, accurate calculation of patient radiation dose is very important for good clinical outcome. In the presence of metallic implants, the dose calculation accuracy could be compromised by metal artefacts generated in computed tomography (CT) images of patients. This study investigates the influence of metal-induced CT artefacts on MC dose calculations in a pelvic prosthesis phantom.MethodsA pelvic phantom containing unilateral Ti prosthesis was CT-scanned and accurate Hounsfield unit (HU) values were assigned to known materials of the phantom as opposed to HU values produced through the artefact CT images of the phantom. Using the DOSXYZnrc MC code, dose calculations were computed in the phantom model constructed from the original CT images containing the artefacts and artefact-free images made from the exact geometry of the phantom with known materials. The dose calculations were benchmarked against Gafchromic EBT3 film measurements using 15 MeV electron and 10 MV photon beams.ResultsThe average deviations between film and MC dose data decreased from 3 ± 2% to 1 ± 1% and from about 6 ± 2% to 3 ± 1% for the artefact and artefact-free phantom models against film data for the electron and photon fields, respectively.ConclusionsFor the Ti prosthesis phantom, the presence of metal-induced CT artefacts could cause dose inaccuracies of about 3%. Construction of an artefact-free phantom model made from the exact geometry of the phantom with known materials to overcome the effect of artefacts is advantageous compared to using CT data directly of which the exact tissue composition is not well-known.  相似文献   

7.
PurposeAs an electron beam is incident on a uniform water phantom in the presence of a lateral magnetic field, the depth-dose distribution of the electron beam changes significantly and forms the well-known ‘Bragg peak’, with a depth-dose distribution similar to that of heavy ions. This phenomenon has pioneered a new field in the clinical application of electron beams. For such clinical applications, evaluating the penetration depth of electron beams quickly and accurately is the critical problem.MethodsThis paper describes a model for calculating the penetration depth of an electron beam rapidly and correctly in a water phantom under the influence of a magnetic field. The model was used to calculate the penetration depths under different conditions: the energies of electron beams of 6, 8, 12 and 15 MeV and the magnetic induction intensities of 0.75, 1.0, 1.5, 2.0 and 3.0 T. In addition, the calculation results were compared with the results of a Monte Carlo simulation.ResultsThe comparison results indicate that the difference between the two calculation methods was less than 0.5 cm. Moreover, the computing time of the calculation model was less than a second.ConclusionsThe semi-analytical model proposed in the present study enables the penetration depth of the electron beam in the presence of a magnetic field to be obtained with a computational efficiency higher than that of the Monte Carlo approach; thus, the proposed model has high potential for application.  相似文献   

8.
The fundamental dosimetric characteristics of commercially available metal oxide semiconductor field effect transistor (MOSFET) detectors were studied for clinical electron beam irradiations. MOSFET showed excellent linearity against doses measured using an ion chamber in the dose range of 20–630 cGy. MOSFET reproducibility is better at high doses compared to low doses. The output factors measured with the MOSFET were within ±3% when compared with those measured with a parallel plate chamber. From 4 to 12 MeV, MOSFETs showed a large angular dependence in the tilt directions and less in the axial directions. MOSFETs do not show any dose-rate dependence between 100 and 600 MU/min. However, MOSFETs have shown under-response when the dose per pulse of the beam is decreased. No measurable effect in MOSFET response was observed in the temperature range of 23–40 °C. The energy dependence of a MOSFET dosimeter was within ±3.0% for 6–18 MeV electron beams and 5.5% for 4 MeV ones. This study shows that MOSFET detectors are suitable for dosimetry of electron beams in the energy range of 4–18 MeV.  相似文献   

9.
AimThe investigation of the irradiation time calculation accuracy of the GGPB algorithm used for IORT.BackgroundConventionally, breast conserving therapy consists of breast conserving surgery followed by postoperative whole breast irradiation and boost. The use of intraoperative radiotherapy (IORT) enables the boost to be delivered already during the surgery. In this case, the treatment dose for IORT can be calculated by use of General Gaussian Pencil Beam (GGPB) algorithm, which is implemented in TPS Eclipse.Materials and methodsPDDs and OFs for electron beams from Mobetron and all available applicators were measured in order to configure the GGPB algorithm. Afterwards, the irradiation times for the prescribed dose of 3 Gy were calculated by means of it. The results of calculations were verified in the water phantom using the Marcus ionization chamber.ResultsThe results differed between energies. For 6 MeV the irradiation times calculated by the GGPB algorithm were correct, for the energy of 9 MeV they were too small and for the energy of 4 MeV they were too large for applicators with smaller diameters, while acceptable for the remaining ones.ConclusionThe GGPB algorithm can be used in intraoperative radiotherapy for energy and applicator sets for which no significant difference between the measured and the prescribed dose was obtained. For the rest of energy-applicator sets the configuration should be verified and possibly repeated.  相似文献   

10.
This study investigates the superficial dose from FFF beams in comparison with the conventional flattened ones using a Monte Carlo (MC) method. Published phase-space files which incorporated real geometry of a TrueBeam accelerator were used for the dose calculation in phantom and clinical cases. The photon fluence on the central axis is 3 times that of a flattened beam for a 6 MV FFF beam and 5 times for a 10 MV beam. The mean energy across the field in air at the phantom surface is 0.92–0.95 MeV for the 6 MV FFF beam and 1.18–1.30 MeV for the corresponding flattened beam. At 10 MV, the values are 1.52–1.72 and 2.15–2.87 MeV for the FFF and flattened beams, respectively. The phantom dose at the depth of 1 mm in the 6 MV FFF beam is 6% ± 2.5% (of the maximum dose) higher compared to the flattened beam for a 25 × 25 cm2 field and 14.6% ± 1.9% for the 2 × 2 cm2 field. For the 10 MV beam, the corresponding differences are 3.4% ± 1.5% and 10.7% ± 0.6%. The skin dose difference at selected points on the patient's surface between the plans using FFF and flattened beams in the head-and-neck case was 6.5% ± 2.3% (1SD), and for the breast case it was 6.4% ± 2.3%. The Monte Carlo simulations showed that due to the lower mean energy in the FFF beam, the clinical superficial dose is higher without the flattening filter compared to the flattened beam.  相似文献   

11.
In electron radiotherapy, shielding material is required to attenuate beam and scatter. A newly introduced shielding material, tungsten functional paper (TFP), has been anticipated to become a very useful device that is lead-free, light, flexible, and easily processed, containing very fine tungsten powder at as much as 80% by weight. The purpose of this study was to investigate the dosimetric changes due to TFP shielding for electron beams. TFP (thickness 0–15 mm) was placed on water or a water-equivalent phantom. Percentage depth ionization and transmission were measured for 4, 6, and 9 MeV electron beams. Off-center ratio was also measured using film dosimetry at depth of dose maximum under similar conditions. Then, beam profiles and transmission with two shielding materials, TFP and lead, were evaluated. Reductions of 95% by using TFP at 0.5 cm depth occurred at 4, 9, and 15 mm with 4, 6, and 9 MeV electron beams, respectively. It is found that the dose tend to increase at the field edge shaped with TFP, which might be influenced by the thickness. TFP has several unique features and is very promising as a useful tool for radiation protection for electron beams, among others.  相似文献   

12.
The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth–dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within ±1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9–21 times faster than PENELOPE.  相似文献   

13.
Electron beam dose distribution is dependent on the beam energy and complicated trajectory of particles. Recent treatment planning systems using Monte Carlo calculation algorithm provide accurate dose calculation. However, double check of monitor units (MUs) based on an independent algorithm is still required. In this study, we have demonstrated single equation that reproduces the measured relative output factor (ROF) that can be used for MU calculation for electron radiotherapy. Electron beams generated by an iX (Varian Medical Systems) and a PRIMUS (Siemens) accelerator were investigated. For various energies of electron beams, the ROF at respective dmax were measured using diode detector in a water phantom at SSD of 100 cm. Curve fitting was performed with an exponential generalized equation ROF = α(β – e−γR) including three variables (α, β, γ) as a function of field radius and electron energy. The correlation coefficients between the ROF measured and that calculated by the equation were greater than 0.998. For ROF of Varian electron beams, the average values of all fitting formulas were applied for two of the constants; α and β. The parameter γ showed good agreement with the quadratic approximation as a function of mean energy at surface (E0). The differences between measured and calculated ROF values were within ±3% for beams with cutout radius of ≥1.5 cm for electron beams with energies from 6 MeV to 15 MeV. The proposed formula will be helpful for double-check of MUs, as it requires minimal efforts for MU calculation.  相似文献   

14.
Given the substantial literature on the use of Monte Carlo (MC) simulations to verify treatment planning system (TPS) calculations of radiotherapy dose in heterogeneous regions, such as head and neck and lung, this study investigated the potential value of running MC simulations of radiotherapy treatments of nominally homogeneous pelvic anatomy. A pre-existing in-house MC job submission and analysis system, built around BEAMnrc and DOSXYZnrc, was used to evaluate the dosimetric accuracy of a sample of 12 pelvic volumetric arc therapy (VMAT) treatments, planned using the Varian Eclipse TPS, where dose was calculated with both the Analytical Anisotropic Algorithm (AAA) and the Acuros (AXB) algorithm. In-house TADA (Treatment And Dose Assessor) software was used to evaluate treatment plan complexity, in terms of the small aperture score (SAS), modulation index (MI) and a novel exposed leaf score (ELS/ELA). Results showed that the TPS generally achieved closer agreement with the MC dose distribution when treatments were planned for smaller (single-organ) targets rather than larger targets that included nodes or metastases. Analysis of these MC results with reference to the complexity metrics indicated that while AXB was useful for reducing dosimetric uncertainties associated with density heterogeneity, the residual TPS dose calculation uncertainties resulted from treatment plan complexity and TPS model simplicity. The results of this study demonstrate the value of using MC methods to recalculate and check the dose calculations provided by commercial radiotherapy TPSs, even when the treated anatomy is assumed to be comparatively homogeneous, such as in the pelvic region.  相似文献   

15.
PurposeIn the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy.MethodsSmall collimated (1 cm diameter and 1.5 × 1.5 cm2 square) electron beams (6, 12 and 20 MeV) from a clinical linear accelerator (Varian Clinac 2100C) are incident perpendicular and parallel to the strong and localized magnetic fields (0–0.7 T) generated by a permanent magnet device. Gafchromic EBT3 film is placed inside a slab phantom to measure two-dimensional dose distributions. A benchmarked and comprehensive Monte Carlo model (Geant4) is established to directly compare with experiments.ResultsWith perpendicular fields a 5% narrowing of the beam FWHM and a 10 mm reduction in the 15% isodose penetration is seen for the 20 MeV beam. In the inline setup the penumbral width is reduced by up to 20%, and a local central dose enhancement of 100% is observed. Monte Carlo simulations are in agreement with the measured dose distributions (2% or 2 mm).ConclusionA new range of experiments have been performed to offer insight into how an electron beam mode could offer additional choices in MRI-linac radiotherapy. The work extends on historic studies to bring a successful unified experimental and Monte Carlo modeling approach for studying small field electron beam dosimetry inside magnetic fields. The results suggest further work, particularly on the inline magnetic field scenario.  相似文献   

16.
PurposeWe developed an x-ray-opaque-marker (XOM) system with inserted fiducial markers for patient-specific quality assurance (QA) in CyberKnife (Accuray) and a general-purpose linear accelerator (linac). The XOM system can be easily inserted or removed from the existing patient-specific QA phantom. Our study aimed to assess the utility of the XOM system by evaluating the recognition accuracy of the phantom position error and estimating the dose perturbation around a marker.MethodsThe recognition accuracy of the phantom position error was evaluated by comparing the known error values of the phantom position with the values measured by matching the images with target locating system (TLS; Accuray) and on-board imager (OBI; Varian). The dose perturbation was evaluated for 6 and 10 MV single-photon beams through experimental measurements and Monte Carlo simulations.ResultsThe root mean squares (RMSs) of the residual position errors for the recognition accuracy evaluation in translations were 0.07 mm with TLS and 0.30 mm with OBI, and those in rotations were 0.13° with TLS and 0.15° with OBI. The dose perturbation was observed within 1.5 mm for 6 MV and 2.0 mm for 10 MV from the marker.ConclusionsSufficient recognition accuracy of the phantom position error was achieved using our system. It is unnecessary to consider the dose perturbation in actual patient-specific QA. We concluded that the XOM system can be utilized to ensure quantitative and accurate phantom positioning in patient-specific QA with CyberKnife and a general-purpose linac.  相似文献   

17.
PurposeThe aim of the presented study was to complement existing literature on benchmarking proton dose by comparing dose calculations with experimental measurements in heterogeneous phantom. Points of interest inside and outside the target were considered to quantify the magnitude of calculation uncertainties in current and previous proton therapy practice that might especially have an impact on the dose in organs at risk (OARs).MethodsThe RayStation treatment planning system (RaySearch Laboratories), offering two dose calculation algorithms for pencil beam scanning in proton therapy, i.e., Pencil Beam (PB) and Monte Carlo (MC), was utilized. Treatment plans for a target located behind the interface of the heterogeneous tissues were generated. Dose measurements within and behind the target were performed in a water phantom with embedded slabs of various tissue equivalent materials and 24 PinPoint ionization chambers (PTW). In total 12 test configurations encompassing two different target depths, oblique beam incidence of 30 degrees and range shifter, were considered.ResultsPB and MC calculated doses agreed equally well with the measurements for all test geometries within the target, including the range shifter (mean dose differences ± 3%). Outside the target, the maximum dose difference of 9% (19%) was observed for MC (PB) for the oblique beam incidence and inserted range shifter.ConclusionThe accuracy of MC dose algorithm was superior compared to the PB algorithm, especially outside the target volumes. MC based dose calculation should therefore be preferred in treatment scenarios with heterogeneities, especially to reduce clinically relevant uncertainties for OARs.  相似文献   

18.
PurposeTo verify the accuracy of 4D Monte Carlo (MC) simulations, using the 4DdefDOSXYZnrc user code, in a deforming anatomy. We developed a tissue-equivalent and reproducible deformable lung phantom and evaluated 4D simulations of delivered dose to the phantom by comparing calculations against measurements.MethodsA novel deformable phantom consisting of flexible foam, emulating lung tissue, inside a Lucite external body was constructed. A removable plug, containing an elastic tumor that can hold film and other dosimeters, was inserted in the phantom. Point dose and position measurements were performed inside and outside the tumor using RADPOS 4D dosimetry system. The phantom was irradiated on an Elekta Infinity linac in both stationary and moving states. The dose delivery was simulated using delivery log files and the phantom motion recorded with RADPOS.ResultsReproducibility of the phantom motion was determined to be within 1 mm. The phantom motion presented realistic features like hysteresis. MC calculations and measurements agreed within 2% at the center of tumor. Outside the tumor agreements were better than 5% which were within the positional/dose reading uncertainties at the measurement points. More than 94% of dose points from MC simulations agreed within 2%/2 mm compared to film measurements.ConclusionThe deformable lung phantom presented realistic and reproducible motion characteristics and its use for verification of 4D dose calculations was demonstrated. Our 4DMC method is capable of accurate calculations of the realistic dose delivered to a moving and deforming anatomy during static and dynamic beam delivery techniques.  相似文献   

19.
The study of damages to DNA molecules of Ehrlich ascites tumor cells exposed in water phantom to fast neutron beam (mean energy of 6 MeV) showed that changes in the extent of DNA injury did not correlate with the absorbed dose distribution at the phantom depth of 8-12 cm, and also that the dose-response function in the phantom was different from that obtained upon irradiation of cells in the air.  相似文献   

20.
PurposeTo determine the surface dose of a water phantom using a semiconductor detector for diagnostic kilovoltage x-ray beams.MethodsAn AGMS-DM+ semiconductor detector was calibrated in terms of air kerma measured with an ionization chamber. Air kerma was measured for 20 x-ray beams with tube voltages of 50–140 kVp and a half-value layer (HVL) of 2.2–9.7 mm Al for given quality index (QI) values of 0.4, 0.5, and 0.6, and converted to the surface dose. Finally, the air kerma and HVL measured by the AGMS-DM+ detector were expressed as a ratio of the surface dose for 10 × 10 and 20 × 20 cm2 fields. The ratio of both was represented as a function of HVL for the given QI values and verified by comparing it with that calculated using the Monte Carlo method.ResultsThe air kerma calibration factor, CF, for the AGMS-DM+ detector ranged from 0.986 to 1.016 (0.9% in k = 1). The CF values were almost independent of the x-ray fluence spectra for the given QI values. The ratio of the surface dose to the air kerma determined by the PTW 30,013 chamber and the AGMS-DM+ detector was less than 1.8% for the values calculated using the Monte Carlo method, and showed a good correlation with the HVL for the given QI values.ConclusionIt is possible to determine the surface dose of a water phantom from the air kerma and HVL measured by a semiconductor detector for given QI values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号