首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of humic acid (HA) on azo dye decolorization by Shewanella oneidensis MR-1 were studied. It was found that HA species isolated from different sources could all accelerate the decolorization of Acid Red 27 (AR27). Anoxic and anaerobic conditions were required for the enhancement of azo dye decolorization by HA. In the presence of 50 mg DOC L−1 Aldrich HA, 15–29% increases in decolorization efficiencies of azo dyes with different structures were achieved in 11 h. The enhancing effects increased with the increase of HA concentrations ranging from 25 to 150 mg DOC L−1, and the decolorization rates were directly proportional to the HA concentrations when they were below 100 mg DOC L−1. Lactate and formate were good electron donors for AR27 decolorization in the presence of HA. Both nitrate (0.1–3.0 mM) and nitrite (0.3–1.2 mM) inhibited AR27 decolorization in the presence of HA, and negligible decolorization was observed before their removal. Soluble FeCl3 could accelerate the decolorization process in the presence of HA, whereas insoluble hematite could not. These findings may affect the understanding of bioremediation of azo dye-polluted environments and help improve the treatment of azo dye wastewaters.  相似文献   

2.
The aim of this study is to dosimetrically characterize a new MRI based polymer gel system and to evaluate its usefulness in clinical practice just in terms of beam profile measurements.Normoxic N-vinylpyrrolidone based polymer gel (VIPET) phantoms were produced and used in order to perform three main sets of experiments: a) dose–response evaluation and reproducibility experiments, b) experiments for the evaluation of sensitivity of dose characteristics on ‘gel manufacture – irradiation’ time interval and c) experiments for the evaluation of sensitivity of dose characteristics on ‘irradiation – MRscanning’ time interval. It has been shown that this gel system can be used in a wide dose-range of 0–60 Gy. It exhibits a linear dose–response in the dose-range of 2–35 Gy. Following the proposed manufacturing method the dose–response characteristics are reproducible. Moreover, it seems that the optimum ‘gel manufacturing – irradiation’ time interval is 1 day. However, a ‘gel manufacturing – irradiation’ time interval up to ~1 week can be safely used. The optimum ‘irradiation – MRscanning’ time interval in terms of dose–response sensitivity and dose resolution can be reliably ranged from 1 day to 3 weeks. Finally, X-ray beam profile gel-measurements were performed and found to be in satisfying agreement with corresponding small sensitive volume ion chamber measurements. VIPET gel dosimeters preserved the spatial integrity of the dose distribution during a time period of 50 days post-irradiation. The studied gel system can be safely used in clinical practice within the practical limitations found and described in this work.  相似文献   

3.
A new γ-ray-radiation dosimetric system (TDS-HMTA), comprising a 'total dissolved solids (TDS)' meter and 0.02 M aqueous hexamethylenetetramine (HMTA) solution, is introduced for medical and biological applications. Gamma-ray radiolysis of aqueous HTMA solutions increases the concentrations (ppm) of TDS, which is measured by the TDS meter. The effects of HMTA concentration, absorbed radiation dose, absorbed dose rate, and storage time on the TDS concentration of irradiated HMTA solutions were studied. It was found that 0.02 M aqueous HMTA solution yields the highest sensitivity to γ-ray-radiation according to TDS concentration measurements. The effect of absorbed radiation dose was studied in the range 1.64–435.5 kGy. The TDS concentration increases linearly up to the maximum of the studied absorbed radiation dose range (R2 = 0.9965). The overall coefficient of variation (CV %) associated with TDS concentration measurements of 0.02 M HMTA solution as a function of absorbed dose was found to be 0.732%. The effect of dose rate on the TDS concentration was studied in the range 0.33–3.31 kGy/h. It was found, also, that the TDS concentration is relatively stable over a storage period of 144 h after irradiation with different doses. The tissue equivalency of 0.02 M aqueous HMTA solutions allow it to be used for radiation dose measurement during sterilization in human tissue banks. Therefore, this system (TDS–HMTA) could be considered as a promising candidate for γ-ray radiation dosimetry in technical, medical and research fields.  相似文献   

4.
PurposeAdvanced 3D dosimetry is required for verifications of complex dose distributions in modern radiotherapy. Two 3D polymer gel dosimeters, coupled with magnetic resonance (MR) imaging (3 T MRI) readout and data processing with polyGeVero® software, were tested for the verification of calculated 3D dose distributions by a treatment planning system (TPS) and ArcCHECK®–3DVH®, related to eradication of a lung tumour.MethodsN-vinylpyrrolidone-containing 3D polymer gel dosimeters were used: VIC (containing ascorbic acid and copper sulfate pentahydrate) and VIC-T (containing tetrakis(hydroxymethyl)phosphonium chloride). Three remote centers were involved in the dosimeters preparation and irradiation (Poland), and MRI (Austria). Cross beam calibration of the dosimeters and verification of a 3D dose distribution calculated with an Eclipse External Beam TPS and ArcCHECK®–3DVH® were performed. The 3D-to-3D comparisons of the VIC and VIC-T with TPS and ArcCHECK®–3DVH® along with ArcCHECK®–3DVH® versus TPS dose matrixes were performed with the aid of the polyGeVero® by analyzing dose profiles, isodoses lines, gamma index, gamma angle, dose difference, and related histograms.ResultsThe measured MR-relaxation rate (R2 = 1/T2) for the dosimeters relates to the dose, as follows: R2 = 0.0928 ± 0.0008 [Gy−1 s−1] × D [Gy] + 2.985 ± 0.012 [s−1] (VIC) and 0.1839 ± 0.0044 [Gy−1 s−1] × D [Gy] + 2.519 ± 0.053 [s−1] (VIC-T). The 3D-to-3D comparisons revealed a good agreement between the measured and calculated 3D dose distributions.ConclusionsVIC and VIC-T with 3T MRI readout and polyGeVero® showed potential for verifications of calculated irradiation plans. The results obtained suggest the implementation of the irradiation plan for eradication of the lung tumour.  相似文献   

5.
The combined effects of initial sucrose and initial Remazol Turquoise Blue-G (RTBG) reactive dye concentrations on the specific growth rate and dye bioaccumulation efficiency of Candida utilis was investigated and optimized using response surface methodology (RSM) in this study. A 22 full factorial central composite design was successfully used for experimental design and analyses of the results. Two numerical correlations fitted to a second-order quadratic equation were obtained to estimate the responses of specific growth rate and dye uptake yield. The statistical analysis indicated that both the microbial growth and removal yield of dye enhanced with raising sucrose concentration up to 15 g l?1 and diminished with the increase in initial RTBG dye concentration up to approximately 500 mg l?1 due to inhibition caused by high concentrations of RTBG dye. The optimum combination predicted via RSM confirmed that C. utilis was capable of bioaccumulating RTBG with the maximum uptake yield of 82.0% in 15 g l?1 sucrose and 50 mg l?1 dye containing growth medium.  相似文献   

6.
Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs.  相似文献   

7.
A robust microbial biosensor was constructed from a bionanocomposite prepared by a direct mixing of bacterial cells of Gluconobacter oxydans and carbon nanotubes with ferricyanide employed as a mediator for enhanced sensitivity of ethanol oxidation. A successful integration of the device into flow injection analysis mode of operation provided a high sensitivity of detection of (74 ± 2.7) μA mM−1 cm−2, a low detection limit of 5 μM and a linear range from 10 μM up to 1 mM. A short response time of the biosensor allowed a sample throughput of 67 h−1 at 0.3 ml min−1. The biosensor exhibited high operational stability with a decrease in the biosensor response of 1.7% during 43 h of continuous operation. The device was used to analyse ethanol in fermentation samples with a good agreement with a HPLC method.  相似文献   

8.
《Médecine Nucléaire》2007,31(3):77-84
Polymer gels are relative chemical dosimeters. They allow to access to three-dimensional dose distribution. The aim of this study has been to investigate the preparation and the use of a polymer gel with a tissue equivalent density known as MAGIC gel from magnetic resonance imaging and x-ray computed tomography for non-sealed source dosimetry. This kind of gel is “normoxic” because it can be manufactured and used in normal room atmosphere. In the first part of this study, its accuracy and sensibility were studied using external beam irradiation by photons. Spin-spin relaxation rate (R2) and Computed Tomography (CT) number had been used to record gel responses. Using the same manufacture process, radiolabelled gels composed of 95% MAGIC gel and 5% of 90Y termed 90Y-MAGIC95, with varying activity ranged from 0 to 30 MBq were made. In case of photon external beam irradiation, a linear response is observed whatever the calibration method and the imaging system used (the correlation coefficient r2 > 0.98 in all cases). 90Y-MAGIC95 radiolabelled gel responses were recorded after 28, 76 and 124 h. The R2/dose curves are not linear; three phases can be described, the first being linear with a slow slope (0.14 s−1 Gy−1 instead of 0.41 s−1 Gy−1 for external beam irradiation of the same gel batch). This study shows safety of radiolabelled MAGIC gels manufacturing process and their large dosimetric feasibility. 90Y-MAGIC95 gel response appears to be reproducible and related to the absorbed dose, thus this gel is a promising tool for non-sealed source dosimetry.  相似文献   

9.
Nowadays MOSFET dosimeters are widely used for dose verification in radiotherapy procedures. Although their sensitive area satisfies size requirements for small field dosimetry, their use in radiosurgery has rarely been reported. The aim of this study is to propose and optimize a calibration method to perform surface measurements in 6 MV shaped-beam radiosurgery for field sizes down to 18 × 18 mm2. The effect of different parameters such as recovery time between 2 readings, batch uniformity and build-up cap attenuation was studied. Batch uniformity was found to be within 2% and isocenter dose attenuation due to the build-up cap over the MOSFET was near 2% irrespective of field size. Two sets of sensitivity coefficients (SC) were determined for TN-502RD MOSFET dosimeters using experimental and calculated calibration; the latter being developed using an inverse square law model. Validation measurements were performed on a realistic head phantom in irregular fields. MOSFET dose values obtained by applying either measured or calculated SC were compared. For calibration, optimal results were obtained for an inter-measurement time lapse of 5 min. We also found that fitting the SC values with the inverse square law reduced the number of measurements required for calibration. The study demonstrated that combining inverse square law and Sterling–Worthley formula resulted in an underestimation of up to 4% of the dose measured by MOSFETs for complex beam geometries. With the inverse square law, it is possible to reduce the number of measurements required for calibration for multiple field–SSD combinations. Our results suggested that MOSFETs are suitable sensors for dosimetry when used at the surface in shaped-beam radiosurgery down to 18 × 18 mm2.  相似文献   

10.
Summary Addition of 2.5 mM cyclic adenosine monophosphate (cAMP) to the solution bathing a rat diaphragm muscle alters the magnitude of depolarization responses to iontophoretic pulses of acetylcholine (ACh) at neuromuscular endplates. Alterations are repeatable with small variability on a given preparation for initial and repeat experiments on both hemidiaphragms, but are different on each preparation. Five min after addition of the nucleotide solution, increases (potentiations) of up to 30% above control levels and decreases (attenuations) to 50% below control levels are observed. The effects on sensitivity to ACh of dibutyryl cAMP (1.25 mM), monobutyryl cAMP (0.25 mM), and cAMP (2.5 mM) in Ca++-free solution are a function of whether the experiment is an initial one on that preparation or a repeat experiment after 10 or more minutes of perfusion flow. In all three cases, initial exposure attenuates sensitivity (means at 5 min: –30, –10, and –20%, respectively) and repeat exposure potentiates sensitivity (means: 20% at 5 min, 15% at 5 min, and 10% at 2 min respectively). A concentration of dibutyryl cAMP (0.25 mM) which is without effect on sensitivity alone, produces a large, transient potentiation (mean: 45% at 1 min) in conjunction with 0.5 mM theophylline. A decrease in the rate of desensitization is observed during exposure to 0.25 mM cAMP. These results are interpreted in terms of a physiological mechanism whereby receptor activity at the postjunctional membrane is modulated by cAMP formed from prejunctionally released ATP.  相似文献   

11.
This work deals with the dosimetric features of a particular phenolic compound (IRGANOX 1076®) for dosimetry of clinical photon beams by using electron spin resonance (ESR) spectroscopy. After the optimization of the ESR readout parameters (namely modulation amplitude and microwave power) to maximise the signal without excessive spectrum distortions, basic dosimetric properties of laboratory-made phenolic dosimeters in pellet form, such as reproducibility, dose–response, sensitivity, linearity and dose rate dependence were investigated. The dosimeters were tested by measuring the depth dose profile of a 6 MV photon beam. A satisfactory intra-batch reproducibility of the ESR signal of the manufactured dosimeters was obtained. The ESR signal proved to increase linearly with increasing dose in the investigated dose range 1–13 Gy. The presence of an intrinsic background signal limits the minimum detectable dose to a value of approximately 0.6 Gy. Reliable and accurate assessment of the dose was achieved, independently of the dose rate. Such characteristics, together with the fact that IRGANOX 1076® is almost tissue-equivalent, and the stability of the ESR signal, make these dosimeters promising materials for ESR dosimetric applications in radiotherapy.  相似文献   

12.
The present study was designed to incubate luteal cells isolated from pseudopregnant cats and to investigate the effects of cholesterol and cAMP on luteal progesterone production. Corpora lutea were collected from the cats on days 10 and 15 of pseudopregnancy. Luteal cells were isolated from the ovaries by collagenase digestion. Steroidogenic luteal cells were stained for 3β-hydroxysteroid dehydrogenase (3β-HSD) activity. Cells (2 × 104) staining positive for 3β-HSD were cultured for up to 7 days. The cells were treated with 22(R)-hydroxycholesterol (22R-HC) and dibutyryl cyclic AMP (dbcAMP) on days 1, 3 and 7.Treatment of cells with 22R-HC resulted in a dose-dependent increase (p < 0.001) in progesterone production. When 22R-HC was used at a concentration of 10 μg/ml, it resulted in 2.7- and 5.1-fold increases in progesterone production on days 3 and 5, respectively. When the dose was doubled (20 μg/ml), treated cells produced four times more progesterone on days 3 and 7, and three times more on day 5. By day 7, progesterone production increased up to 9.1 times more than the control.Incubation of cells with both concentrations of dbcAMP (0.1 mM and 1 mM) resulted in significant stimulations of progesterone on days 5 and 7 (p < 0.001). However, on day 3, only higher doses of dbcAMP (1 mM) resulted in significant stimulation (p < 0.05). Progesterone production was increased up to 2- and 2.9-fold of the control when cells were treated with lower concentration of dbcAMP (0.1 mM) on days 5 and 7, respectively. Incubation of cells with 1 mM concentrations of dbcAMP induced a 3.2-fold increase on day 5 and a 5-fold increase on day 7.In conclusion, a successful incubation was performed for long-life culturing of luteal cells collected from pseudopregnant cats. The method works well and allows for optimal growth and development of cells in the culture. The present study also demonstrated that incubating cat luteal cells with 22R-HC and dbcAMP induces a significant increase in luteal progesterone synthesis.  相似文献   

13.
Growth of Pseudomonas oxalaticus in carbon- and energy-limited continuous cultures with mixtures of acetate and formate resulted in the simultaneous utilization of both substrates at all dilution rates tested. During growth on these mixtures, acetate repressed the synthesis of ribulosebisphosphate carboxylase. The degree of this repression was dependent on the dilution rate and on the ratio of acetate and formate in the medium reservoir. At fixed acetate and formate concentrations in the inflowing medium of 30 and 100 mM, respectively, and dilution rates above 0.10h-1, the severe repression of autotrophic enzymes resulted in a marked increase in bacterial dry weight compared to the growth yield of the organisms on the two substrates separately. Also, at these dilution rates a significant increase in isocitrate lyase activity was observed in the cells as compared to growth on acetate alone. This indicated that under these conditions more acetate was assimilated and less dissimilated since acetate was partly replaced by formate as the energy source. When formate was added to the reservoir of an acetate-limited culture (SR=30 mM), derepression of RuBPCase synthesis was observed at formate concentrations of 50 mM and above. Below this concentration formate only served as an energy source for acetate assimilation; when its concentration was increased above 50 mM a progressively increasing contribution of carbon dioxide fixation to the total carbon assimilation was observed as the activity of RuBPCase in the cells increased. It is concluded that in Pseudomonas oxalaticus the synthesis of enzymes involved in autotrophic carbon dioxide fixation via the Calvin cycle is regulated by a repression/derepression mechanism.Abbreviations RuBPCase ribulosebisphosphate carboxylase - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenol-indophenol - FDH formate dehydrogenase - SR concentration of growth-limiting substrate in reservoir  相似文献   

14.
Cobalt-60 irradiators and soft X-ray machines are frequently used for research purposes, but the dosimetry is not always performed using the recommended protocols. This may lead to confusing and untrustworthy results within the conducted research. Postal dosimetry systems have already been approved by the IAEA, with thermoluminescence dosimeters (TLD) and optically stimulated luminescence (OSL) as the most commonly used dosimeter systems in these cases. The present study tests the Fricke dosimeter properties as a potential system to be used in postal dosimetry for a project using research irradiators. The Fricke solution was prepared according to the literature, and the linearity and fading tests were performed accordingly. All calculated doses were measured using a NE2571 Farmer ionization chamber as a reference. Doses ranging from 25 to 300 Gy were delivered by a research irradiator, with 150 kV and 22 mA to the Fricke solutions inside polyethylene (PE) bags (4 × 4 × 0.2 cm3). The results compared with the ionization chamber showed a linear response to the range of doses used. Fading tests showed no significant difference for the absorbed doses over 9 days, with a maximum difference of 1.5% found between days 0 and 3. The Fricke dosimeter presented good linearity, for low and high doses, and low uncertainties for the fading even for 9 days after irradiation. These preliminary results are motivating, and as the next step, we intend to design a postal dosimetry system using the PE bags of Fricke solution.  相似文献   

15.
PurposeTo characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator.MethodsThe dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.).The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors.ResultsA good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under 60Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes.ConclusionsThe microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions.  相似文献   

16.
Human leukocyte interferon enhanced nitroblue tetrazolium dye (NBT) reduction by human neutrophils (PMNs). Increase in NBT reduction paralleled increase in interferon dose. When human leukocyte interferon was heated to 60 C or 80 C for 30 min, both the antiviral activity and the effect on NBT reduction decreased. Human leukocyte interferon neutralized with anti-human leukocyte interferon serum showed no effect on NBT reduction. A human fibroblast interferon preparation also enhanced NBT reduction. The species dependency of interferon was shown in NBT reduction as well as in antiviral activity.  相似文献   

17.
The effect of electrons and gamma irradiation on the induction of micronuclei in cytokinesis-blocked human peripheral blood lymphocytes was investigated to understand the relative biological effectiveness (RBE) of electrons compared with gamma rays. Blood samples were irradiated with an 8 MeV pulsed electron beam, at a mean instantaneous dose rate of 2.6 × 105 Gy s−1. Gamma irradiation was carried out at a dose rate of 1.98 Gy min−1 using 60Co gamma source. A dose-dependent increase in micronuclei yield was observed. The dose–response relationships for induction of micronuclei fitted well to a linear–quadratic relationship and the coefficients α and β of the dose–response curve were estimated by fitting the data using error-weighted minimum χ 2 method. The RBE of 8 MeV electrons were found to be near unity as compared with gamma rays.  相似文献   

18.
A commercial silicon PIN-photodiode was tested and characterized as ionizing radiation detector for radiological applications. A current-to-voltage amplification stage was designed and realized in order to acquire the photodiode signal in current mode. The system was tested with clinical beams routinely used for radiography and mammography. A Monte Carlo simulation of the detector was performed with the MCNPX code in order to model and fully understand, in particular, the impact of the sensor casing on the low energy response of the device. A reproducible output linearity was found over the dose range 0.03–4.5 mGy of great clinical relevance. The system sensitivity was found to be stable at 0.2 V s Gy−1 for effective X-ray energies between 17 and 40 keV. The batch-to-batch reproducibility of the diodes was also experimentally investigated for two different batches of 14 diodes each. An inter-comparison with dosimeters routinely used in medical physics (i.e. Barracuda MPD RTI) showed a linear correlation between PIN-photodiode readout and absorbed dose measured with Barracuda, in the range of doses received by mammography and radiology patients.  相似文献   

19.
PurposeThe purpose of this study was to; (1) investigate employing a novel position-sensitive mega-size polycarbonate (MSPC) dosimeter for photoneutron (PN) depth, profile and dose equivalent distributions studies in a multilayer polyethylene phantom in a Siemens ONCOR accelerator, and (2) develop depth dose equivalent distribution matrix data at different depths and positions of the phantom for patient PN dose equivalent determination and in particular for PN secondary cancer risk estimation.MethodsPosition-sensitive MSPC dosimeters were successfully exposed at 9 different depths of the phantom in a 10 × 10 cm2 X-ray field. The dosimeters were processed in mega-size electrochemical chambers at optimum conditions. Each MSPC dosimeter was placed at a known phantom depth for PN depth dose equivalents and profiles on transverse, longitudinal and diagonal axes and isodose equivalent distribution studies in and out of the X-ray beam.ResultsPN dose equivalent distributions at any depth showed the highest value at the beam central axis and decreases as the distance increases. PN dose equivalent at any position studied in the axes has a maximum value on the phantom surface which decreases as depth increases due to flux reduction by multi-elastic scattering interactions.ConclusionsExtensive PN dose equivalent matrix data at different depths and positions in the phantom were determined. The position-sensitive MSPC dosimeters proved to be highly efficient for PN depth, profile and isodose equivalent distribution studies. The extensive data obtained highly assists for determining PN dose equivalent of a patient undergoing high-energy X-ray therapy and for PN secondary cancer risk estimation.  相似文献   

20.
Occupational radiation dose of staff handling 125I assessment at the Benin radioimmunoassay laboratory, have been undertaken from October 2012 to April 2013 to determine level of radiation safety. Equivalent dose to skin, whole body and extremities, were measured by the mean of thermoluminescence dosimetry. Firstly, three permanent workers and two students were provided with finger ring dosimeters to wear at index finger base of both hands. Ring dosimeters were used for four months. Secondly, three permanent workers and three students were provided with badge dosimeters to wear at the chest level. Badge dosimeters were renewed monthly for six months. The exposed ring and badge dosimeters were evaluated in Ghana. Permanent workers highest average equivalent dose received at index finger base of both hands was 142.75 ± 89.54, microSV/2 months and that of students was 34.69 ± 29.23, microSV/2 months. Workers skin exposure was below one third of prescribed dose limits for permanents workers (500mSv/yr) and students (150mSv/yr). Whole body exposure, expressed in mSv/month, of permanent workers and students, respectively ranged from 0.12 to 0.23 and from 0.11 to 0.16. Radio-immuno-assay laboratory workers are weakly exposed to ionizing radiation. They are safe from deterministic effect risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号