首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites'' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.  相似文献   

2.
Since the 1970''s, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.  相似文献   

3.
4.

Background

Comparative genome analyses of parasites allow large scale investigation of selective pressures shaping their evolution. An acute limitation to such analysis of Plasmodium falciparum is that there is only very partial low-coverage genome sequence of the most closely related species, the chimpanzee parasite P. reichenowi. However, if orthologous genes have been under similar selective pressures throughout the Plasmodium genus then positive selection on the P. falciparum lineage might be predicted to some extent by analysis of other lineages.

Principal Findings

Here, three independent pairs of closely related species in different sub-generic clades (P. falciparum and P. reichenowi; P. vivax and P. knowlesi; P. yoelii and P. berghei) were compared for a set of 43 candidate ligand genes considered likely to be under positive directional selection and a set of 102 control genes for which there was no selective hypothesis. The ratios of non-synonymous to synonymous substitutions (dN/dS) were significantly elevated in the candidate ligand genes compared to control genes in each of the three clades. However, the rank order correlation of dN/dS ratios for individual candidate genes was very low, less than the correlation for the control genes.

Significance

The inability to predict positive selection on a gene in one lineage by identifying elevated dN/dS ratios in the orthologue within another lineage needs to be noted, as it reflects that adaptive mutations are generally rare events that lead to fixation in individual lineages. Thus it is essential to complete the genome sequences of particular species of phylogenetic importance, such as P. reichenowi.  相似文献   

5.
Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.  相似文献   

6.
Molecular and paleontological evidence now point to the last common ancestor between chimpanzees and modern humans living between five and seven million years ago. Any species considered to be more closely related to humans than chimpanzees we call hominins. Traditionally, early hominins have been conspicuous by their absence in the fossil record, but discoveries in the last 20 years have finally provided us with a number of very important finds. We currently have three described genera, Ardipithecus, Orrorin and Sahelanthropus, of which Ardipithecus is extremely well represented by cranial, dental, and postcranial remains. All three genera are argued to be hominins based on reduced canine size and an increased capacity for bipedal locomotion. The evolutionary relationships between these taxa and both earlier hominoids and later hominins are somewhat disputed, but this is to be expected for any species thought to be close to the root of the hominin lineage.  相似文献   

7.
Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl‐tRNA synthetases (aaRSs) have been explored as anti‐bacterial and anti‐fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure‐based knowledge of the most advanced three aaRSs—lysyl‐ (KRS), prolyl‐ (PRS), and phenylalanyl‐ (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.  相似文献   

8.
Malaria is a responsible for approximately 600 thousand deaths worldwide every year. Appropriate and timely treatment of malaria can prevent deaths but is dependent on accurate and rapid diagnosis of the infection. Currently, microscopic examination of the Giemsa stained blood smears is the method of choice for diagnosing malaria. Although it has limited sensitivity and specificity in field conditions, it still remains the gold standard for the diagnosis of malaria. Here, we report the development of a fluorescence in situ hybridization (FISH) based method for detecting malaria infection in blood smears and describe the use of an LED light source that makes the method suitable for use in resource-limited malaria endemic countries. The Plasmodium Genus (P-Genus) FISH assay has a Plasmodium genus specific probe that detects all five species of Plasmodium known to cause the disease in humans. The P. falciparum (PF) FISH assay and P. vivax (PV) FISH assay detect and differentiate between P. falciparum and P. vivax respectively from other Plasmodium species. The FISH assays are more sensitive than Giemsa. The sensitivities of P-Genus, PF and PV FISH assays were found to be 98.2%, 94.5% and 98.3%, respectively compared to 89.9%, 83.3% and 87.9% for the detection of Plasmodium, P. falciparum and P. vivax by Giemsa staining respectively.  相似文献   

9.
Although the relationships of the living hominoid primates (humans and apes) are well known, the relationships of the fossil species, times of divergence of both living and fossil species, and the biogeographic history of hominoids are not well established. Divergence times of living species, estimated from molecular clocks, have the potential to constrain hypotheses of the relationships of fossil species. In this study, new DNA sequences from nine protein-coding nuclear genes in great apes are added to existing datasets to increase the precision of molecular time estimates bearing on the evolutionary history of apes and humans. The divergence of Old World monkeys and hominoids at the Oligocene-Miocene boundary (approximately 23 million years ago) provides the best primate calibration point and yields a time and 95% confidence interval of 5.4 +/- 1.1 million years ago (36 nuclear genes) for the human-chimpanzee divergence. Older splitting events are estimated as 6.4 +/- 1.5 million years ago (gorilla, 31 genes), 11.3 +/- 1.3 million years ago (orangutan, 33 genes), and 14.9 +/- 2.0 million years ago (gibbon, 27 genes). Based on these molecular constraints, we find that several proposed phylogenies of fossil hominoid taxa are unlikely to be correct.  相似文献   

10.
Genetic diversity at class II DRB loci of the primate MHC   总被引:6,自引:0,他引:6  
The evolution of polymorphism at loci encoding the beta-chains of the MHC class II DR Ag was studied in primates by DNA amplification (polymerase chain reaction). Phylogenetic analysis of 63 DRB sequences from the polymorphic second exon (first domain) of nonhuman primates and 53 human sequences indicates the presence of five DRB loci in primates, derived from a DRB1-like ancestral locus over 20 million yr ago. Many of the allelic types at the DRB1 locus predate the divergence of hominoids (5 million yr ago) and some (DR4, DR3, 5, 6) predate the divergence of Old world monkeys and hominoids (20 million yr ago). The DRB3 locus appears to have arisen before the divergence of hominoids on an ancestral DRB1 lineage. The DRB2 and DRB5 loci were generated more than 20 million yr ago and the DRB4 locus more than 5 million yr ago. The DRB2 locus, a pseudogene in humans, is polymorphic in the nonhuman primates.  相似文献   

11.
Additional DNA sequence information from a range of primates, including 13.7 kb from pygmy chimpanzee (Pan paniscus), was added to data sets of beta-globin gene cluster sequence alignments that span the gamma 1, gamma 2, and psi eta loci and their flanking and intergenic regions. This enlarged body of data was used to address the issue of whether the ancestral separations of gorilla, chimpanzee, and human lineages resulted from only one trichotomous branching or from two dichotomous branching events. The degree of divergence, corrected for superimposed substitutions, seen in the beta-globin gene cluster between human alleles is about a third to a half that observed between two species of chimpanzee and about a fourth that between human and chimpanzee. The divergence either between chimpanzee and gorilla or between human and gorilla is slightly greater than that between human and chimpanzee, suggesting that the ancestral separations resulted from two closely spaced dichotomous branchings. Maximum parsimony analysis further strengthened the evidence that humans and chimpanzees share the longest common ancestry. Support for this human-chimpanzee clade is statistically significant at P = 0.002 over a human-gorilla clade or a chimpanzee-gorilla clade. An analysis of expected and observed homoplasy revealed that the number of sequence changes uniquely shared by human and chimpanzee lineages is too large to be attributed to homoplasy. Molecular clock calculations that accommodated lineage variations in rates of molecular evolution yielded hominoid branching times that ranged from 17-19 million years ago (MYA) for the separation of gibbon from the other hominoids to 5-7 MYA for the separation of chimpanzees from humans. Based on the relatively late dates and mounting corroborative evidence from unlinked nuclear genes and mitochondrial DNA for the close sister grouping of humans and chimpanzees, a cladistic classification would place all apes and humans in the same family. Within this family, gibbons would be placed in one subfamily and all other extant hominoids in another subfamily. The later subfamily would be divided into a tribe for orangutans and another tribe for gorillas, chimpanzees, and humans. Finally, gorillas would be placed in one subtribe with chimpanzees and humans in another, although this last division is not as strongly supported as the other divisions.  相似文献   

12.
Malaria is caused by protozoan parasites of the genus Plasmodium. Four species infect humans, causing up to 500 million new infections and 2 million deaths annually. Plasmodium vivaxauses the most prevalent form of recurrent human malaria, responsible for significant morbidity throughout Asia and South America. With increased levels of drug-resistant strains and insecticide-resistant mosquito vectors, efforts to develop possible vaccines have been a major focus of malaria research. Our improved understanding of the basic biology and life cycle of Plasmodium has led to the identification and development of possible vaccine candidates and strategies.  相似文献   

13.
African great apes are naturally infected by a multitude of Plasmodium species most of them recently discovered, among which several are closely related to human malaria agents. However, it is still unknown whether these animals can serve as source of infections for humans living in their vicinity. To evaluate this possibility, we analysed the nature of Plasmodium infections from a bank of 4281 human blood samples collected in 210 villages of Gabon, Central Africa. Among them, 2255 were detected positive to Plasmodium using molecular methods (Plasmodium Cytochrome b amplification). A high throughput sequencing technology (454 GS-FLX Titanium technology, Roche) was then used to identify the Plasmodium species present within each positive sample. Overall, we identified with confidence only three species infecting humans in Gabon: P. falciparum, P. malariae and P. ovale. None of the species known to infect non-human primates in Central Africa was found. Our study shows that ape Plasmodium parasites of the subgenus Laverania do not constitute a frequent source of infection for humans. It also suggests that some strong host genetic barriers must exist to prevent the cross species transmission of ape Plasmodium in a context of ever increasing contacts between humans and wildlife.  相似文献   

14.
It is widely believed that human malaria parasites infect only man as a natural host. However, earlier morphological observations suggest that great apes are likely to be natural reservoirs as well. To identify malaria parasites in great apes, we screened 60 chimpanzees imported into Japan. Using the sequences of small subunit rRNA and the mitochondrial genome, we identified infection of Plasmodium malariae, a human malaria parasite, in two chimpanzees that were imported about thirty years ago. The chimpanzees have been asymptomatic to the present. In Japan, indigenous malaria disappeared more than fifty years ago; and thus, it is most likely inferred that the chimpanzees were infected in Africa, and P. malariae isolates were brought into Japan from Africa with their hosts, suggesting persistence of parasites at low level for thirty years. Such a long term latent infection is a unique feature of P. malariae infection in humans. To our knowledge, this is the first to report P. malariae infection in chimpanzees and a human malaria parasite from nonhuman primates imported to a nonendemic country.  相似文献   

15.
The time to the most recent common ancestor of the extant populations of Plasmodium falciparum is controversial. The controversy primarily stems from the limited availability of sequences from Plasmodium reichenowi, a chimpanzee malaria parasite closely related to P. falciparum. Since the rate of nucleotide substitution differs in different loci and DNA regions, the estimation of genetic distance between P. falciparum and P. reichenowi should be performed using orthologous sequences that are evolving neutrally. Here, we obtained full-length sequences of two housekeeping genes, sarcoplasmic and endoplasmic reticulum Ca2+-ATPase (serca) and lactate dehydrogenase (ldh), from 11 isolates of P. falciparum and 1 isolate of P. reichenowi and estimate the interspecific genetic distance (divergence) between the two species and intraspecific genetic distance (polymorphism) within P. falciparum. Interspecific distance and intraspecific distance at synonymous sites of interspecies-conserved regions of serca and ldh were 0.0672±0.0088 and 0.0011±0.0007, respectively, using the Nei and Gojobori method. Based on the ratio of interspecific distance to intraspecific distance, the time to the most recent common ancestor of P. falciparum was estimated to be (8.30±5.40) × 104 and (11.62±7.56) × 104 years ago, assuming the divergence time of the two parasite species to be 5 and 7 million years ago, respectively.This article contains an online supplementary table.Reviewing Editor: Dr. Martin Kreitman  相似文献   

16.
To study the genomic divergences among hominoids and to estimate the effective population size of the common ancestor of humans and chimpanzees, we selected 53 autosomal intergenic nonrepetitive DNA segments from the human genome and sequenced them in a human, a chimpanzee, a gorilla, and an orangutan. The average sequence divergence was only 1.24% +/- 0.07% for the human-chimpanzee pair, 1.62% +/- 0.08% for the human-gorilla pair, and 1.63% +/- 0.08% for the chimpanzee-gorilla pair. These estimates, which were confirmed by additional data from GenBank, are substantially lower than previous ones, which included repetitive sequences and might have been based on less-accurate sequence data. The average sequence divergences between orangutans and humans, chimpanzees, and gorillas were 3.08% +/- 0.11%, 3.12% +/- 0.11%, and 3.09% +/- 0.11%, respectively, which also are substantially lower than previous estimates. The sequence divergences in other regions between hominoids were estimated from extensive data in GenBank and the literature, and Alus showed the highest divergence, followed in order by Y-linked noncoding regions, pseudogenes, autosomal intergenic regions, X-linked noncoding regions, synonymous sites, introns, and nonsynonymous sites. The neighbor-joining tree derived from the concatenated sequence of the 53 segments--24,234 bp in length--supports the Homo-Pan clade with a 100% bootstrap value. However, when each segment is analyzed separately, 22 of the 53 segments (approximately 42%) give a tree that is incongruent with the species tree, suggesting a large effective population size (N(e)) of the common ancestor of Homo and Pan. Indeed, a parsimony analysis of the 53 segments and 37 protein-coding genes leads to an estimate of N(e) = 52,000 to 96,000. As this estimate is 5 to 9 times larger than the long-term effective population size of humans (approximately 10,000) estimated from various genetic polymorphism data, the human lineage apparently had experienced a large reduction in effective population size after its separation from the chimpanzee lineage. Our analysis assumes a molecular clock, which is in fact supported by the sequence data used. Taking the orangutan speciation date as 12 to 16 million years ago, we obtain an estimate of 4.6 to 6.2 million years for the Homo-Pan divergence and an estimate of 6.2 to 8.4 million years for the gorilla speciation date, suggesting that the gorilla lineage branched off 1.6 to 2.2 million years earlier than did the human-chimpanzee divergence.  相似文献   

17.

SUMMARY

Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.  相似文献   

18.
Summary The living hominoids are human, the two species of chimpanzees, gorilla, orangutan, and nine species of gibbons. The cercopithecoids (Old World monkeys) are the sister group of the hominoids. A consensus about the phylogeny of the hominoids has been reached for the branching order of the gibbons (earliest) and the orangutan (next earliest), but the branching order among gorilla, chimpanzees, and human remains in contention. In 1984 we presented DNA-DNA hybridization data, based on 183 DNA hybrids, that we interpreted as evidence that the branching order, from oldest to most recent, was gibbons, orangutan, gorilla, chimpanzees, and human. In the present paper we report on an expanded data set totaling 514 DNA hybrids, which supports the branching order given above. The ranges for the datings of divergence nodes are Old World monkeys, 25–34 million years (Myr) ago; gibbons, 16.4–23 Myr ago; orangutan, 12.2–17 Myr ago; gorilla, 7.7–11 Myr ago; chimpanzees-human, 5.5–7.7 Myr ago. The possible effects of differences in age at first breeding are discussed, and some speculations about average genomic rates of evolution are presented.  相似文献   

19.
Microscopy is considered as the gold standard for malaria diagnosis although its wide application is limited by the requirement of highly experienced microscopists. PCR and serological tests provide efficient diagnostic performance and have been applied for malaria diagnosis and research. The aim of this study was to investigate the diagnostic performance of nested PCR and a recently developed an ELISA-based new rapid diagnosis test (RDT), NovaLisa test kit, for diagnosis of malaria infection, using microscopic method as the gold standard. The performance of nested-PCR as a malaria diagnostic tool is excellent with respect to its high accuracy, sensitivity, specificity, and ability to discriminate Plasmodium species. The sensitivity and specificity of nested-PCR compared with the microscopic method for detection of Plasmodium falciparum, Plasmodium vivax, and P. falciparum/P. vivax mixed infection were 71.4 vs 100%, 100 vs 98.7%, and 100 vs 95.0%, respectively. The sensitivity and specificity of the ELISA-based NovaLisa test kit compared with the microscopic method for detection of Plasmodium genus were 89.0 vs 91.6%, respectively. NovaLisa test kit provided comparable diagnostic performance. Its relatively low cost, simplicity, and rapidity enables large scale field application.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号