首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Most models on settlement of open marine invertebrate populations are based on space-limitation. These models, however, do not recognise that free space may not drive the demography of populations when larval numbers are small or when larval supply varies along a gradient in the habitat. They also do not incorporate the effects of larval choice when settling. It has been hypothesised that, in gregarious barnacles, the effects of adult conspecifics, rather than available free space, may play a primary role in settlement. That is, cues from adults along perimeters of patches, rather than space available, may enhance colonisation. This study therefore aimed to distinguish between these separate influences on populations of Chamaesipho tasmanica, a gregarious barnacle characterised by relatively few larvae arriving to settle each year. Patches of 6, 3 and 1.5 cm diameter were cleared within aggregations of barnacles at three heights (Low, Mid, Upper) of Chamaesipho's distribution at two sites and during 2 years of settlement. Total numbers of settlers in each year were manipulated to determine the separate influences on settlement due to availability of substratum or the effects of conspecific adults. To test for the effects of available free space, numbers of settlers per unit area were analysed. To test for gregarious effects due to the presence of adults, numbers of settlers per unit perimeter were analysed. While available substratum was found not to affect settlement of this barnacle, gregarious settlement in response to adults at perimeters of patches was thought to be confounded by differential larval supply and differential conspecific cues among heights on the shore. Results from this study therefore have important implications for survival of gregarious populations following disturbances, especially in species where larval supply is poor.  相似文献   

2.
Adam TC 《Oecologia》2011,166(1):121-130
Many species disperse during their lifetime. Two factors that can affect the performance of individuals following dispersal are the presence of conspecifics and intrinsic habitat quality at the settlement site. Detecting the influence of these factors can be difficult for at least two reasons: (1) the outcomes of interactions with conspecifics are often variable including both competition and facilitation, and (2) selection of high quality habitats often leads to positive covariance between habitat quality and density. In this study, I investigate positive and negative effects of resident blue streak cleaner wrasse (Labroides dimidiatus) on the growth and survival of recently settled conspecifics while accounting for habitat quality. Juvenile L. dimidiatus settle near adult conspecifics, but likely have to compete with resident adults for access to food. However, field experiments indicate that settlers have access to more resources at occupied sites, and as a result, grow faster despite evidence for competition with residents. This result is a direct consequence of two factors: (1) resident conspecifics facilitate settlers by attracting client fish, and (2) resident conspecifics are strongly associated with high quality habitat. These results highlight the need to simultaneously consider habitat quality and competitive and facilitative interactions between conspecifics when making inferences about ecological processes from spatial patterns of individual performance.  相似文献   

3.
Social information in breeding site selection has received extensive study; however, few attempts have been made to link this process to pre‐existing models. We examine the importance of social information to three pertinent models of habitat selection that describe breeding aggregations and spatial patterns: 1) the ideal despotic distribution (IDD) which considers conspecific competition and habitat availability, 2) the perceptual constraints model which accounts for patch selection when animals experience a threshold of undetectable difference in quality, and 3) the “neighbourhood model” which predicts concordance between resources and settlers can be disrupted by conspecific attraction when resources are patchy. These models all predict initial settlers will select a high quality patch first. However, their predictions of subsequent settlement behaviour in remaining patches differ: the IDD predicts subsequent settlers will be distributed regularly, the perceptual constraints model predicts a random distribution, and the neighbourhood model predicts clustering from conspecific attraction. We examined which model best described settlement patterns of bobolink Dolichonyx oryzivorus and savannah sparrow Passerculus sandwichensis, in the context of social information. We observed settlement timing, quantified available resources, and determined where they occurred in the highest (local population “core”) and lowest densities (local population “periphery”). We then assessed whether individuals in the periphery settled in greater concordance with resources or conspecific presence. Core territories were clustered strongly on relevant resources, and these territory holders were older than in the periphery. Peripheral territories were likewise clustered but did not always co‐occur with the best available resources, matching the neighbourhood model prediction that social information may not always direct them to the best sites available. This suggests older individuals used their own experience to locate ideal habitat, whereas younger individuals attempted to aggregate on seemingly ideal habitat by using conspecific location; such information asymmetry due to age can be viewed as an “ideal aggregative distribution”.  相似文献   

4.
Many marine populations exhibit high variability in the recruitment of young into the population. While environmental cycles and oceanography explain some patterns of replenishment, the role of other growth-related processes in influencing settlement and recruitment is less clear. Examination of a 65-mo. time series of recruitment of a common coral reef fish, Stegastes partitus, to the reefs of the upper Florida Keys revealed that during peak recruitment months, settlement stage larvae arriving during dark lunar phases grew faster as larvae and were larger at settlement compared to those settling during the light lunar phases. However, the strength and direction of early trait-mediated selective mortality also varied by settlement lunar phase such that the early life history traits of 2–4 week old recruit survivors that settled across the lunar cycle converged to more similar values. Similarly, within peak settlement periods, early life history traits of settling larvae and selective mortality of recruits varied by the magnitude of the settlement event: larvae settling in larger events had longer PLDs and consequently were larger at settlement than those settling in smaller pulses. Traits also varied by recruitment habitat: recruits surviving in live coral habitat (vs rubble) or areas with higher densities of adult conspecifics were those that were larger at settlement. Reef habitats, especially those with high densities of territorial conspecifics, are more challenging habitats for young fish to occupy and small settlers (due to lower larval growth and/or shorter PLDs) to these habitats have a lower chance of survival than they do in rubble habitats. Settling reef fish are not all equal and the time and location of settlement influences the likelihood that individuals will survive to contribute to the population.  相似文献   

5.
In marine species with a pelagic larval stage, search behavior and selection of a suitable reef habitat can maximize the settlement success of recently settled juveniles and their subsequent performance (growth and survival of juveniles). Our objective was to test this hypothesis for a single target coral reef fish species (Chromis viridis) at Moorea Island. C. viridis settle on living coral colonies of Porites rus already populated with conspecifics. In the present study (conducted in experimental cages), we found that: 1) mortality rate of recently settled juveniles of C. viridis was lower in the settlement habitat (living coral colonies of P. rus) than in other habitats having physical structure different from those of P. rus colonies; 2) C. viridis juveniles preferentially colonized coral heads of P. rus with conspecifics present rather than uninhabited coral heads and they also preferentially colonized uninhabited coral heads rather than coral heads with heterospecifics; 3) mortality rate of C. viridis juveniles did not vary with the presence or absence of conspecifics or heterospecifics on P. rus colonies. Overall, the study allows us to highlight that site selection by juveniles for habitat containing conspecifics does not benefit their short term mortality rates, suggesting that in the short term at least, site selection has little importance.  相似文献   

6.
Over small spatial scales, variation in the density of settlers of benthic sessile species is the result of interactions among larval behavior, local hydrodynamic conditions, and the physical, chemical and biological characteristics of the benthic habitat. It has been shown repeatedly that adult benthic filter-feeders can consume larvae of their own and other species, but their effects on the distribution and abundance of recruits have rarely been demonstrated under natural conditions in the field, particularly on hard substrata. Here we experimentally quantified the effect of the large intertidal barnacle, Semibalanus cariosus (Pallas), on the density of recruits of three common barnacle species. The experiments were conducted at the peak of the barnacle recruitment season over three successive years, on the west coast of San Juan Island, Washington. A persistent and well documented community pattern in the mid intertidal zone of the study site is a sparse bed of adult S. cariosus with bare rock spaces essentially devoid of small barnacles among the large individuals. Field experiments consisted of small areas from which either all adult S. cariosus were killed leaving the shells attached to the rock, or live adult barnacles were left intact. Our results showed that over small spatial scales of a few to tens of centimeters, the large barnacle S. cariosus can interfere and significantly reduce net settlement and recruitment of conspecific as well as other barnacle species. Between 65 and 100% reduction in settlement could be attributed to larval predation by adults, as implied by barnacle settlement patterns on different treatments and by the presence of nauplius larvae in cirri and stomach contents of S. cariosus. The negative effect on barnacle settlement was consistent between years of relatively low barnacle recruitment, which appears to be the most common situation at the study site, but it disappeared on a year of unusually high recruitment, when settling larvae seem to have swamped the filtration ability of adult S. cariosus. The different barnacle species displayed contrasting settlement patterns on bare rock and on the lateral shells of the large barnacles, which appear to be a result of differences in larval behavior. Comparisons against the relative availability of these substrata in the experimental plots suggested that larvae of different species sample the benthic microhabitat in very different ways.  相似文献   

7.
The adults of many coral reef fish species are site-attached, and their habitat is selected at the time of settlement by their larvae. The length of the planktonic larval period varies both intra- and interspecifically, and it is unknown how the age and size of larvae may affect their selection of habitat. To investigate the influence of age and size on habitat selection, I collected newly settled Hawaiian domino damselfish, Dascyllus albisella, daily from grids containing three coral species at four locations in Kaneohe Bay, Oahu, Hawaii. I recorded the coral species each fish was collected on, and measured and aged (by otoliths) the collected fish. The results indicate that the coral Pocillopora meandrina was selected by settling fish significantly more than the other two coral species. Younger and smaller larvae selected this coral species more frequently than older/larger larvae. In addition, younger/smaller individuals were found more commonly inside the bay than older/larger settling larvae. Differences in the choice of coral species and location of settlement may be partly due to ontogenetic differences in the sensory capacities of larvae to detect corals, conspecifics, and predators, or to a larval competency period. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Few studies have validated the use of artificial seagrass to study processes structuring faunal assemblages by comparison with natural seagrass. One metric (fish recruitment) for evaluating the use of artificial seagrass was used in the present study. Settlement and recruitment of juvenile fish was estimated in natural, Zostera capricorni Aschers, and artificial seagrass in Botany Bay, NSW, over 6 consecutive days. Tarwhine, Rhabdosargus sarba, dominated the catch from both habitats, and there was no significant difference in abundance of recruits among the habitats. This was at least partly caused by large spatial and temporal variation in abundance. Daily abundances of R. sarba recruits suggested movement between seagrass beds, but could not be confirmed without tagging individual fish. Rhabdosargus sarba settlers were less abundant than recruits, but were also patchily distributed amongst natural and artificial seagrass beds. Most other species were also found in similar abundance in the two habitats, except stripey, Microcanthus strigatus, which was more abundant in artificial seagrass. Overall, fish assemblages in natural and artificial seagrass were similar. Artificial seagrass may therefore be useful for monitoring settlement and recruitment of juvenile fishes to disturbed habitats, to predict the success of habitat remediation. However, if artificial seagrass is used to model processes occurring in natural seagrass, it is necessary to consider species-specific responses to the artificial habitat.  相似文献   

9.
Adults of many closely related coral reef fish species are segregated along gradients of depth or habitat structure. Both habitat selection by new settlers and subsequent competitive interactions can potentially produce such patterns, but their relative importance is unclear. This study examines the potential roles of habitat selection and aggression in determining the spatial distribution of adults and juveniles of four highly aggressive damselfishes at Lizard Island, northern Great Barrier Reef. Dischistodus perspicillatus, D. prosopotaenia, D. melanotus, and D. pseudochrysopoecilus maintain almost non-overlapping distributions across reef zones, with adults of one species dominating each reef zone. Juveniles exhibit slightly broader distributional patterns suggesting that subsequent interactions reduce overlap among species. Although habitat choice experiments in aquaria suggest that associations between juveniles and substrata types in the field are partly due to habitat selection, large overlaps in the use of substrata by the different species were also found, suggesting that substratum selection alone is insufficient in explaining the discrete spatial distributions of adults. The strength of aggressive interactions among all four species was tested by a "bottle" experiment, in which an adult or juvenile of each species was placed in the territories of adult fish on the reef. The greatest levels of interspecific aggression were directed against adults and juveniles of neighbouring species. The highest levels of aggression were associated with species exhibiting the greatest levels of overlap in resource use. Evidently both habitat selection and interspecific aggression combine to determine the adult distributions of these species.  相似文献   

10.
When facing decisions about where to live, juveniles have a strong tendency to choose habitats similar to where their parents successfully bred. Developing larval fishes can imprint on the chemical cues from their natal habitat. However, to demonstrate that imprinting is ecologically important, it must be shown that settlers respond and distinguish among different imprinted cues, and use imprinting for decisions in natural environments. In addition, the potential role innate preferences play compared to imprinted choices also needs to be examined. As environmental variability increases due to anthropogenic causes these two recognition mechanisms, innate and imprinting, could provide conflicting information. Here we used laboratory rearing and chemical choice experiments to test imprinting in larval anemonefish (Amphiprion percula). Individuals exposed to a variety of benthic habitat or novel olfactory cues as larvae either developed a preference for (spent >50 % of their time in the cue) or increased their attraction to (increased preference but did not spend >50 % of their time in the cue) the cue when re-exposed as settlers. Results indicate not only the capacity for imprinting but also the ability to adjust innate preferences after early exposure to a chemical cue. To test ecological relevance in the natural system, recruits were collected from anemones and related to their parents, using genetic parentage analysis, providing information on the natal anemone species and the species chosen at settlement. Results demonstrated that recruits did not preferentially return to their natal species, conflicting with laboratory results indicating the importance imprinting might have in habitat recognition.  相似文献   

11.
Social information use in songbird habitat selection commonly involves a conspecific attraction strategy. Individuals copy the breeding‐site choices of conspecifics, that is, bias their own settlement decisions towards sites (tracts of spatially limited habitat with similar structure) already occupied by others. In order to be adaptive, social information use has to be discriminative. Especially the decisions of good quality individuals, i.e. measuring high at observable fitness correlates, should be copied more frequently than those of poor quality individuals. It is unknown, however, whether songbirds discriminatively use conspecific presence by evaluating the quality of information providers in habitat selection. We experimentally tested whether wood warblers Phylloscopus sibilatrix selectively copied settlement decisions of conspecifics in relation to the quality of observed individuals. We also tested whether the use of social cues was influenced by the population density at a particular site in the preceding year. We found that wood warblers selectively used intraspecific social information, but in a pattern opposite to that expected based on existing hypotheses. Wood warblers copied breeding‐site choices of poor quality conspecifics and despite temporary attraction to sites where the presence of good quality individuals was simulated, they did not ultimately settle near these individuals. Population density in the preceding year did not influence settlement patterns. We argue that when making settlement decisions, wood warblers assessed the expected level of local intraspecific competition and selectively copied breeding‐site choices of conspecifics or refused to settle, depending on competitive abilities of observed individuals. This adds a novel aspect to the patterns and processes of social information use proposed thus far, and provides support for the predicted negative effect of intraspecific competition on benefit of information. Moreover, it seems that habitat selection in wood warblers is a complex decision‐making process, in which initial decisions are adjusted after acquiring more accurate information. Synthesis Social information use in songbird habitat selection commonly involves copying the breeding‐site choices of conspecifics (so‐called conspecific attraction). To be adaptive, this strategy has to be discriminative, but almost no empirical studies have tested this assertion. Our study shows that birds may selectively use social information by copying settlement decisions of poor quality conspecifics, but avoid settling near good quality individuals, likely because of their high competitive abilities. This decision‐making pattern supports the predicted, yet not experimentally tested, tradeoff between information value and cost of competition in social information use. Our study highlights also that the use of social cues in settlement decisions may be both positively and negatively biased.  相似文献   

12.
The study of habitat selection has long been influenced by the ideal free model, which maintains that young adults settle in habitat according to its inherent quality and the density of conspecifics within it. The model has gained support in recent years from the finding that conspecifics produce cues inadvertently that help prebreeders locate good habitat. Yet abundant evidence shows that animals often fail to occupy habitats that ecologists have identified as those of highest quality, leading to the conclusion that young animals settle on breeding spaces by means not widely understood. Here, we report that a phenomenon virtually unknown in nature, natal habitat preference induction (NHPI), is a strong predictor of territory settlement in both male and female common loons (Gavia immer). NHPI causes young animals to settle on natal-like breeding spaces, but not necessarily those that maximize reproductive success. If widespread, NHPI might explain apparently maladaptive habitat settlement.  相似文献   

13.
Phillip S. Levin 《Oecologia》1993,94(2):176-185
Pronounced spatial variation in recruitment occurs in many marine invertebrate and fish populations and is thought to be critical to the demography of these species. In this study I examined the importance of habitat structure and the presence of conspecific residents to spatial variation in larval settlement and recruitment in a temperate fish Tautogolabrus adspersus. I define settlement as the movement of individuals from the water column to the benthic habitat, while I refer to recruitment as numbers of individuals surviving some arbitrary period of time after settlement. Experiments in which standard habitats were stocked with conspecifics showed that resident conspecifics were not an important factor contributing to small-scale variability in recruitment. Further correlative analyses demonstrated that large-scale variation in recruitment could not be explained by variability in older age classes. By contrast, manipulations of macroalgal structure within a kelp bed demonstrated that recruitment was significantly higher in habitats with a dense understory of foliose and filamentous algae than in habitats with only crustose algae. Understory algae varied in their pattern of disperison among sites, and the dispersion of fish matched that of the plants. In order to determine the effects of differences in patterns of algal dispersion on the demography of associated T. adspersus populations, I used experimental habitat units to manipulate patterns of dispersion. Settlement was significantly greater to randomly placed versus clumped habitats; however, no differences in recruitment between random and clumped habitats were detected. Because recruitment is a function of the numbers of settlers minus the subsequent loss of settlers, rates of mortality or migration must have been higher in the randomly placed habitats. These results are counter to the current paradigm for reef fishes which suggests that larval settlement is the crucial demographic process producing variability in population abundance. In this experiment patterns of settlement were modified by varying the patch structure of the habitat.Contribution number 278 from the Center for Marine Biology, University of New Hampshire  相似文献   

14.
Variation in the recruitment of benthic marine invertebrates is often attributed to the interaction of the supply of new individuals to a habitat and the availability of space for colonisation when they arrive. Also important in determining variation in recruitment is the response of the larvae to the characteristics of the habitat. Larvae of many benthic marine invertebrates have shown great specificity of requirements in setting their limits of distribution at the time of selection of a habitat. The tubeworm Galeolaria caespitosa shows great variation in recruitment from place to place on rocky intertidal seashores and is a gregarious animal with larvae showing directed responses to conspecific adults on the substratum. I hypothesised that, if variation in recruitment of G. caespitosa were independent of conditions on the substratum, the magnitude of recruitment in patches of the same shape but different sizes cleared within continuous mats of conspecific adults would be directly related to the area available for colonisation in the patch. Alternatively, if variation in recruitment were due to the response of larvae to conspecific adults on the substratum, the magnitude of recruitment would be a function of the perimeter of the patch, which, given patches of the same shape, is a measure of the influence of conspecific adults in that patch. To distinguish between these alternatives, small (area = 25 cm2; perimeter = 20 cm) and large (area = 225 cm2; perimeter = 60 cm) square patches were cleared within continuous mats of conspecific adults at four sites and recruitment of G. caespitosa was monitored over two seasons of recruitment. The density of recruits per unit area was, on average, almost three times greater in small than in large patches, indicating that recruitment of G. caespitosa is not directly related to the area of the patch. In contrast, the density of recruits per unit perimeter was not significantly different between small and large patches, indicating that recruitment of G. caespitosa is related to the proximity of conspecific adults in the patch. Therefore, at a given site, the perimeter of patches within mats of G. caespitosa is a better predictor of the relative magnitude of recruitment among patches than that provided by their areas. These results are contrary to many models of invertebrate recruitment that assume close linkage between available space on the substratum and settlement. Moreover, they highlight the importance of behavioural responses of animals at the time of selection of habitat in accounting for variation in recruitment. For populations of organisms that display gregarious behaviour at settlement, or conspecific attraction, this direct relationship between the perimeter of patches and recruitment could be used as a tool in restoring populations to disturbed habitats. The added benefit of such facilitative interactions in restoring populations is that they provide increasing returns to the population for a given supply of potential colonists to a habitat. Received: 1 November 1996 / Accepted: 20 January 1997  相似文献   

15.
In the marine environment, aggregated distribution in the genus Crepidula is a very common phenomenon. Works from Pechenik's group suggested that this is the result of gregarious settlement of larvae in response to cues associated with conspecific adults. In this study, we investigated the existence of larval metamorphic cues associated with adults of C. onyx, a slipper limpet introduced to Hong Kong from the U.S. in the 1970s, through a series of laboratory bioassays. The results showed that derived cues in adult C. onyx were waterborne and the waterborne cues were not derived from bacteria associated with the shell and soft body of the adult Crepidula. The natural biofilm also induced the larval metamorphosis of C. onyx. The cues from the biofilm were associated with the surface of the biofilm and were not waterborne. The aggregated distribution in nature of adult C. onyx may result from a selective larval settlement process. On a small scale in the water column near the conspecific adults, larvae of C. onyx initially detect the waterborne conspecific cues, which then lead to positive downward swimming or passive sinking. This activity increases the chances for larvae to make contact with the biofilm and to be exposed into the higher concentration of waterborne conspecific cues. This may eventually lead to the enhanced larval settlement pattern on or near the conspecific adults.  相似文献   

16.
Songbirds that follow a conspecific attraction strategy in the habitat selection process prefer to settle in habitat patches already occupied by other individuals. This largely affects the patterns of their spatio-temporal distribution and leads to clustered breeding. Although making informed settlement decisions is expected to be beneficial for individuals, such territory clusters may potentially provide additional fitness benefits (e.g., through the dilution effect) or costs (e.g., possibly facilitating nest localization if predators respond functionally to prey distribution). Thus, we hypothesized that the fitness consequences of following a conspecific attraction strategy may largely depend on the composition of the predator community. We developed an agent-based model in which we simulated the settling behavior of birds that use a conspecific attraction strategy and breed in a multi-predator landscape with predators that exhibited different foraging strategies. Moreover, we investigated whether Bayesian updating of prior settlement decisions according to the perceived predation risk may improve the fitness of birds that rely on conspecific cues. Our results provide evidence that the fitness consequences of conspecific attraction are predation-related. We found that in landscapes dominated by predators able to respond functionally to prey distribution, clustered breeding led to fitness costs. However, this cost could be reduced if birds performed Bayesian updating of prior settlement decisions and perceived nesting with too many neighbors as a threat. Our results did not support the hypothesis that in landscapes dominated by incidental predators, clustered breeding as a byproduct of conspecific attraction provides fitness benefits through the dilution effect. We suggest that this may be due to the spatial scale of songbirds’ aggregative behavior. In general, we provide evidence that when considering the fitness consequences of conspecific attraction for songbirds, one should expect a trade-off between the benefits of making informed decisions and the costs of clustering.  相似文献   

17.
Habitat degradation not only disrupts habitat‐forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage‐released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement‐stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four‐times better than non‐neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.  相似文献   

18.
Theoretical models of habitat selection often incorporate negative density dependence. Despite strong negative density‐dependent effects on habitat selection, more recent studies indicate that animals settle near members of their own (conspecific) and other species (heterospecific) when selecting habitat with social cues. Social cue use for habitat selection is particularly common among songbirds, but few studies have investigated if songbirds use social cues to assess conspecific or heterospecific density (as opposed to just presence/absence) when making settlement decisions. We conducted a playback experiment to evaluate if yellow warblers (Setophaga petechia) and willow flycatchers (Empidonax traillii), two potential competitors for breeding habitat, use social cues to assess density (conspecific for warblers and heterospecific for flycatchers) when selecting breeding locations at two spatial scales. We simulated yellow warbler density to be high or low at multiple treatment plots (3.14 ha) with song playback and then evaluated settlement decisions by comparing yellow warbler and willow flycatcher abundances across plots (broad‐scale habitat selection) and individual space use within plots (fine‐scale territory establishment). Yellow warbler density treatments did not affect habitat selection by yellow warblers at the broad scale, but caused individuals to cluster territories at high‐density treatments. Willow flycatchers were most abundant at high‐density treatment plots, but yellow warbler density treatments did not affect territory locations. The results indicate that perceived density affects the habitat selection process for both conspecifics and heterospecifics.  相似文献   

19.
Habitat selection by animals that migrate or disperse ultimately determines the biotic and abiotic environment they will experience in subsequent life stages. Intuitively, for habitat selection to be adaptive, animals should respond positively to cues produced by habitat characteristics that will enhance their fitness in the new environment. However, there are many examples of dispersing animals where individuals are attracted to cues produced by factors that reduce their fitness after arrival. In this study, we use a temperate reef fish to examine the relative importance of habitat-associated cues in habitat selection decisions, and assess whether use of these cues is adaptive across early life stages. We used a series of laboratory- and field-based manipulative experiments to test: (1) what habitat-associated cues are likely used to locate suitable habitat; (2) whether in situ settlement patterns reflect the cue response tested in the laboratory; and (3) whether the aspects of the habitat that stimulate settlement are the same as those that maximize survival. We observed a positive response to multiple habitat-associated cues, with conspecific cues eliciting the strongest behavioral response in laboratory choice experiments, and a strong inverse density-dependent relationship at settlement. Macroalgal cues also elicited a positive response at settlement, but were associated with higher mortality after settlement, suggesting that habitat selection decisions are not always adaptive. We argue that this non-intuitive behavior may still be adaptive if it improves fitness at an earlier life stage, as habitat selection behavior is the result of tradeoffs in fitness costs across multiple stages.  相似文献   

20.
As animals with complex life cycles metamorphose from one stage to the next, carry-over effects from earlier stages can affect future mortality. To examine the relationship between early life history traits and survival, seven monthly cohorts of newly-settled bluehead wrasse Thalassoma bifasciatum were collected immediately after settlement and over sequential 3-day periods. Otolith analysis was used to quantify mean larval and juvenile growth rates, pelagic larval duration (PLD), and settlement size and condition of different age classes to identify the traits most important for survival. Overall, survivors tended to have shorter PLDs, to settle at smaller sizes and higher condition levels, and to exhibit faster early juvenile growth. Water temperature contributed to among-cohort variability in traits as warmer water led to faster larval and juvenile growth and shorter PLDs. Trait-specific fitness functions demonstrated that temperature can influence fitness by changing the nature of selection on each trait. Estimates of selection intensity revealed that settlement condition contributed the most to variation in fitness across cohorts, followed by juvenile growth. Frequent loss of low settlement condition individuals and occasional loss of the very highest condition fish suggest that particularly high settlement condition during the warmest temperatures may be detrimental. Not only does the quality of settlers vary over time, but selective loss of individuals with particular phenotypic traits is not pervasive and can vary with environmental conditions such as temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号