首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Streams are highly heterogeneous ecosystems, in terms of both geomorphology and hydrodynamics. While flow is recognized to shape the physical architecture of benthic biofilms, we do not yet understand what drives community assembly and biodiversity of benthic biofilms in the heterogeneous flow landscapes of streams. Within a metacommunity ecology framework, we experimented with streambed landscapes constructed from bedforms in large-scale flumes to illuminate the role of spatial flow heterogeneity in biofilm community composition and biodiversity in streams. Our results show that the spatial variation of hydrodynamics explained a remarkable percentage (up to 47%) of the variation in community composition along bedforms. This suggests species sorting as a model of metacommunity dynamics in stream biofilms, though natural biofilm communities will clearly not conform to a single model offered by metacommunity ecology. The spatial variation induced by the hydrodynamics along the bedforms resulted in a gradient of bacterial beta diversity, measured by a range of diversity and similarity indices, that increased with bedform height and hence with spatial flow heterogeneity at the flume level. Our results underscore the necessity to maintain small-scale physical heterogeneity for community composition and biodiversity of biofilms in stream ecosystems.Biofilms (attached and matrix-enclosed microbial communities) are an important form of microbial life in streams and rivers, where they can greatly contribute to ecosystem functions and even large-scale carbon fluxes (1, 3). Streams are inherently heterogeneous and are characterized by a largely unidirectional downstream flow of water that controls the dispersal of suspended microorganisms (21), biofilm community composition (7), architecture (2), and metabolism (13), for instance. However, we do not understand how diverse microorganisms assemble into biofilm communities based on flow heterogeneity and related dispersal in these ecosystems.Dispersal, as the propagation and immigration of biota, can have important consequences for biodiversity and ecosystem functioning in heterogeneous landscapes (18, 25). Landscape topography and turbulent transport affect dispersal, a relationship that is well studied in the dispersal of plant seeds (31) but not in the microbial world. Only recently have microbial ecologists begun to understand the role of dispersal in large-scale biogeographic patterns (29) and metacommunity ecology (24, 44). This growing body of research on microbial dispersal and its consequences for spatial patterns of community assembly and composition rests entirely on free-living bacteria, while no comparable data exist for microbial biofilms. The confirmation of detachment as an intrinsic behavior in many biofilms has led to the appreciation of dispersal as an insurance policy for these microbial communities to seed new habitats during resource limitation or aging of the parental biofilm (4). However, microbial ecology lacks conceptual models to predict postemigration processes, such as cell propagation, immigration, and community assembly during colonization of new surfaces. The perception of biofilms as microbial landscapes and, at the same time, as integrated parts of the landscape they inhabit offers the possibility to test models for habitat selection by dispersal cells (4). In this study, we focused on the assembly of biofilm communities by dispersal cells in spatially variable-flow environments; we did not measure dispersal as the emigration of cells from established biofilms. We adopted metacommunity ecology as a framework that encapsulates environmental heterogeneity and dispersal (18) to illuminate the mechanisms underlying community assembly.If the effects of microbial diversity on ecosystem functions are to be understood, we need to address the proper spatial resolution at which microorganisms assemble into communities and at which their functioning becomes manifest. In streams, this is typically at the level of habitats and microhabitats ranging from meters to centimeters, where characteristic geomorphological features (e.g., bedforms) and induced hydrodynamic fields develop and where spatial variations in biofilm metabolism become apparent (13). The ensemble of these small-scale variations translates into the landscape heterogeneity of the streambed.The aim of this study was to test whether spatial flow heterogeneity generating diverse microhabitats induces spatial species turnover and increases the biodiversity of microbial biofilms. Microbial metacommunity ecology predicts mass effects rather than species sorting to drive community composition in ecosystems with low residence time, such as streams (14, 18, 24). To test this prediction, we constructed six streambed landscapes from bedforms of defined dimensions differing in height; the mean flow (at flume scale) was kept constant, whereas the spatial heterogeneity of flow increased across the gradient of the six landscapes. The inoculum (i.e., the stream water and naturally contained microorganisms) and water chemistry were equal in all flumes. This allowed us to isolate flow heterogeneity as a potential driver of biofilm community composition in a high-energy ecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA gene sequences from winter and summer communities and related bacterial community composition and microbial biomass to the hydrodynamics in representative microhabitats using causal modeling and forward selection of explanatory variables (9, 23).  相似文献   

3.
C Lin  LH Wang  TY Fan  FW Kuo 《PloS one》2012,7(7):e38689
Our previous studies have suggested that chilling sensitivity of coral oocytes may relate to their relatively high lipid intracellular content and lipid composition. The distribution of lipids during the oocyte development was determined here for the first time in two gorgonian species (Junceella juncea and Junceella fragilis). The main lipid classes in the two gorgonian oocytes were total lipid, wax ester, triacylglycerol, total fatty acid, phosphatidylethanolamine and phosphatidylcholine. The results indicated that early stage oocytes of J. juncea and J. fragilis were found to have increased lipid content than late stage oocytes. The content of wax ester was significantly higher in the early stage oocytes of two gorgonian corals (51.0±2.5 and 41.7±2.9 μg/mm(3)/oocyte) than those of late stage oocytes (24.0±1.4 and 30.4±1.2 μg/mm(3)/oocyte, respectively). A substantial amount of phosphatidylethanolamine and total fatty acid was detected at each stage of oocyte development in two gorgonian ranges from 107 to 42 μg/mm(3)/oocyte and 106 to 48 μg/mm(3)/oocyte, whilst low levels of phosphatidylcholine were found in two gorgonian oocytes. The levels of total lipid in the late stage oocytes of J. juncea were significantly higher than those of J. fragilis. The observed differences may partially be related to different habitat preferences as higher lipid levels in J. juncea, a deeper-water coral species exposed to lower temperature seawater, might relate to adjustments of cell membranes in order to increase membrane fluidity.  相似文献   

4.
Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP) genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria.  相似文献   

5.
The phyllosphere is one of the largest habitats for terrestrial microorganisms. To gain a better insight into the factors underlying the composition of bacterial communities inhabiting leaf surfaces we performed culture-dependent and independent (Denaturing Gradient Gel Electrophoresis) analyses on the bacteria associated with the leaves of three plant species: Amygdalus communis, Citrus paradisi, and Nicotiana glauca. We found that the culturable classes Bacilli and Actinobacteria were the predominant classes on the phyllosphere of all three plant species. In contrast to this consistency on the bacterial class level, we found a significant variation on the bacterial species-level based on the culturable methods. Although some variation was detected among individual plants within one plant species, the inter-specific variability exceeded the intra-specific variability. C. paradisi leaf surface had the highest predicted total species richness (Chao 2 and ICE) and the highest species diversity (βw) among the three plant species. Our findings demonstrate that environmental conditions, mainly the plant species within a site, govern the bacterial community composition on leaf surfaces.  相似文献   

6.
All physico-chemical parameters that affect bacterial growth rate will also affect bacterial molecular composition, which in turn influences the chemical composition of bacterial lysate and its turnover rate in the ecosystem. To produce qualitatively different lysates, Vibrio sp. cells were grown under different pH, salt, or temperature conditions in rich growth media and then washed and lysed by autoclaving. Both the absolute concentrations and the ratios between elements in the lysates varied with different growth conditions, implying differences in lysate quality. Either Pseudoalteromonas sp. or Vibrio sp. was grown on the lysates at non-limiting lysate concentrations. Different lysates supported growth rates of Pseudoalteromonas sp. in the range from 0.25 to 1.53 h−1. On the other hand, growth rates of Vibrio sp. grown on its own lysates were around 0.4 h−1 and were not dependent on lysate quality. Two orders of magnitude decrease in Zn concentration in Vibrio sp. cells grown on different lysates as compared to cells grown on rich growth medium suggested that Zn might be a factor limiting growth. In the simple microbial loop studied, the initial difference in lysate quality was preserved in Pseudoalteromonas sp., whereas Vibrio sp. decreased the initial differences in lysate quality, thereby neutralizing the primary effect of environmental conditions on carbon turnover.  相似文献   

7.
Rhizosphere bacteria were isolated from root tip segments of cucumber seedlings grown in a suppressive, slightly decomposed light-colored peat mix, a conducive, more decomposed dark-colored peat mix, and a suppressive dark peat mix amended with composted hardwood bark. The bacteria were identified by a gas chromatographic fatty acid methyl ester analysis. The total number of taxa recovered from a single root tip segment ranged from 9 to 18. No single taxon predominated on all root tip segments harvested from any of the mixes. The highest relative population density reached by a given taxon on any root tip segment was 45%. Hill's first and second diversity numbers, the modified Hill's ratio, and Hurlbert's rarefaction method, which were used as measures of species diversity, indicated that the organic matter decomposition level of the potting mixes did not affect bacterial species diversity. Bray-Curtis polar ordination and Dice resemblance functions, however, indicated that the organic matter decomposition level of a mix significantly influenced the composition of bacterial species in the rhizosphere. Pseudomonas spp. and other taxa capable of inducing suppression of pythium damping-off predominated in the suppressive mixes. These organisms were absent from the conducive mix, in which Arthrobacter and Bacillus spp. predominated. Although effective bacterial biocontrol agents were isolated from both the suppressive mixes and the conducive mix, the majority were isolated from the less decomposed suppressive mixes. Finally, the efficacy of strains was significantly greater in the slightly decomposed light peat mix than in the decomposed dark peat mix. Natural disease suppression within these mixes was associated with the organic matter decomposition level and the bacterial species compositions of the mixes.  相似文献   

8.
Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects) predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect) was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as an indicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated by species-rich genera (e.g. Acropora), generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected.  相似文献   

9.
Tourova  T. P.  Sokolova  D. Sh.  Nazina  T. N.  Laptev  A. B. 《Microbiology》2021,90(4):416-427
Microbiology - The work was aimed at detection of potential degraders of polyethylene terephthalate (PET), polystyrene (PS), and steel 20 based on comparison of the taxonomic composition of the...  相似文献   

10.
In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females exhibited significantly diminished responses to experimental infusions made with sterilized white oak leaves, showing that attractive odorants were produced through microbial metabolic activity. We evaluated effects of infusion concentration and fermentation time on attraction of gravid females to infusions made from senescent bamboo or white oak leaves. We used plate counts of heterotrophic bacteria, total counts of 4′,6-diamidino-2-phenylindole-stained bacterial cells, and 16S ribosomal DNA (rDNA) polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) to show that changes in the relative abundance of bacteria and the species composition of bacterial communities influenced attraction of gravid A. aegypti and A. albopictus mosquitoes to infusions. DGGE profiles showed that bacterial species composition in infusions changed over time. Principal components analysis indicated that oviposition responses to plant infusions were in general most affected by bacterial diversity and abundance. Analysis of bacterial 16S rDNA sequences derived from DGGE bands revealed that Proteobacteria (Alpha-, Beta-, Delta-, and Gamma-) were the predominant bacteria detected in both types of plant infusions. Gravid A. aegypti were significantly attracted to a mix of 14 bacterial species cultured from bamboo leaf infusion. The oviposition response of gravid mosquitoes to plant infusions is strongly influenced by abundance and diversity of bacterial species, which in turn is affected by plant species, leaf biomass, and fermentation time.  相似文献   

11.
目的检测巴马和五指山小型猪细菌携带状况,为制定北京市实验用小型猪微生物检测标准提供基本数据。方法采集毛发、鼻拭子、气管分泌物、肛拭子和粪便等标本,采用分离培养、形态观察、生化反应等方法,检测不同部位细菌携带状况。结果两个品系小型猪群中均检出猪链球菌2型,大肠杆菌,绿脓杆菌,肺炎克雷伯杆菌,耳葡萄球菌和木糖葡萄球菌。结论采样部位和检测方法会影响细菌的检出率。  相似文献   

12.
13.
This study examined captive cotton-top tamarin (Saguinus oedipus) behavior across 3 different exhibits: (a) a rainforest (30.5 m in diameter), where tamarins free-ranged with other species; (b) a caged outdoor exhibit (5 m in diameter); and (c) a caged enclosure, with access indoors (6 × 9m) and outdoors (2.5 × 2.5 m). The study observed tamarins using focal animal scan sampling in 10 min blocks. Scoring was on the percentage of intervals in which they engaged in 12 behaviors. The findings show significant differences in activity, inactivity, and visibility across exhibits and have important implications for reintroduction efforts.  相似文献   

14.
Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods.  相似文献   

15.
A total of 44 bacterial species subdivided into 10 trial experiments have been used as prey for the recovery of bdellovibrios from samples of water from a brackish tidal pond and an aquarium saltwater tank. In an initial investigation, the recovery efficiency of each of the test bacterial species was compared with that of a designated standard prey, Vibrio parahaemolyticus P-5. The results revealed that in each case strain P-5 yielded an equal or significantly greater number of plaques of bdellovibrios than the test prey with but a single exception, strain CS5. In repeat experiments, CS5 yielded fewer plaques than P-5. To determine whether the use of multiple bacterial species compared with a single species as prey would increase the number of PFU of bdellovibrios recovered, material from plaques appearing on each of the test prey in the respective trials was sequentially subcultured onto two respective agar plates, the first containing as prey V. parahaemolyticus P-5 and the second containing the initial test organism. In nearly every case, subculture of plaques from lawns of the test prey to P-5 resulted in plaque formation. On the basis of the results, the use of several test prey and P-5 did not result in the recovery of any more bdellovibrio PFU than the use of P-5 alone. In this study, V. parahaemolyticus P-5 was observed to be the most efficient prey for the recovery of bdellovibrios from moderate salt water.  相似文献   

16.
Given the previously documented importance of lipid concentration and composition in the successful cryopreservation of gorgonian corals, these parameters were assessed in oocytes of five species of scleractinian coral; Platygyra daedalea, Echinopora gemmacea, Echinophyllia aspera, Oxypora lacera and Astreopora expansa. Wax esters, phosphatidylethanolamine, phosphatidylcholine, and fatty acids were all measured at detectable levels, and the latter were produced at significantly elevated quantities in E. gemmacea, E. aspera, and O. lacera. On the other hand, phosphatidylethanolamine, phosphatidylcholine, and wax ester were found at significantly higher concentrations in A. expansa oocytes. Triacylglycerol was not present in any species. Interestingly, the total lipid content of oocytes from all five scleractinians was significantly lower than that of oocytes of two gorgonian species, Junceella juncea and Junceella fragilis. As higher total lipid concentrations may be correlated with greater degrees of cellular membrane fluidity at lower temperatures, it stands to reason that gorgonian coral oocytes may be more likely to survive the cryopreservation process than oocytes of scleractinian corals.  相似文献   

17.
Roughly 40% of amphibian species are in decline with habitat loss, disease, and climate change being the most cited threats. Heterogeneity of extrinsic (e.g. climate) and intrinsic (e.g. local adaptations) factors across a species’ range should influence population response to climate change and other threats. Here we examine relative detectability changes for five direct-developing leaf litter frogs between 42-year sampling periods at one Lowland Tropical Forest site (51 m.a.s.l.) and one Premontane Wet Forest site (1100 m.a.s.l.) in southwest Costa Rica. We identify individualistic changes in relative detectability among populations between sampling periods at different elevations. Both common and rare species showed site-specific declines, and no species exhibited significant declines at both sites. Detection changes are correlated with changes in temperature, dry season rainfall, and leaf litter depth since1969. Our study species share Least Concern conservation status, life history traits, and close phylogenetic relationship, yet their populations changed individualistically both within and among species. These results counter current views of the uniformity or predictability of amphibian decline response and suggest additional complexity for conservation decisions.  相似文献   

18.
Toluene uptake by a benthic biofilm community was previously shown to vary seasonally from 0.03 m hr−1 in winter to 0.2 m hr−1 in summer in a solvent-contaminated stream of the Aberjona watershed. We used quantitative PCR to estimate the population dynamics of previously isolated species of toluene-degrading Xanthobacter autotrophicus and Mycobacterium sp. in both toluene-contaminated and uncontaminated reaches of the stream, and to estimate their relative roles in overall biodegradation rate. Quantification using specific 16S rDNA primers for X. autotrophicus and Mycobacterium sp. showed that populations of both species were much larger in the toluene-contaminated than the toluene-free reach, in agreement with earlier culture-based investigations. A relatively brief bloom of X. autotrophicus occurred in the contaminated reach in the summer, while Mycobacterium sp. populations occurred at elevated densities for more than 5 months. Calculations showed that Mycobacterium, previously thought to be less important than Xanthobacter in annual toluene degradation based on single time-point CFU estimates, appears actually more important because of this longer persistence.  相似文献   

19.

Background

Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria.

Methodology and Results

To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community.

Conclusions

The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation.  相似文献   

20.
The Rengen Grassland Experiment (RGE), set up on a Nardus grassland in 1941, consists of a control and five fertilizer treatments (Ca, CaN, CaNP, CaNP-KCl and CaNP-K2SO4). In 2005, soil chemical properties were analyzed to investigate the effect of soil variables on biomass production, plant species composition and species richness of vascular plants. Further, the effect of sampling scale (from 0.02 to 5.76 m2) on species richness was investigated. Soil properties (plant-available contents of K, P, C:N ratio, and pH) and biomass production were found to be strictly dependent on the fertilizers applied. Diversification of soil P content between treatments with and without P application is still in progress. Biomass production was most positively affected by P and K soil contents under N application. Furthermore, pH had a small positive effect on biomass production, and C:N ratio a moderately negative one. Two types of nutrient limitation were recognized: (1) limitation of total biomass production and (2) limitation of individual plant species. Long-term addition of a limiting nutrient affected the grassland ecosystem in three ways: (1) causing a change in plant species composition without significant increase in total biomass production, (2) causing no change in species composition but with significant increase in total biomass production, and (3) causing substantial change in plant species composition accompanied by significant increase in total biomass production. The explanatory power of all measured soil properties on plant species composition was almost the same as the power of the treatment effect (61.7% versus 62% of explained variability in RDA). The most powerful predictors of plant species composition were soil P, K and Mg contents, pH, and biomass production. The soil P content and biomass production were the only variables leading to a significant negative effect on species richness. An almost parallel increase in species richness with increasing sampling area was detected in all treatments. Constant differences among treatments were independent of sampling area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号