首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionLow-kV IORT (Low kilovoltage intraoperative radiotherapy) using INTRABEAM machine and dedicated spherical applicators is a candidate modality for breast cancer treatment. The current study aims to quantify the RBE (relative biologic effectiveness) variations of emitted X-rays from the surface of different spherical applicators and bare probe through a hybrid Monte Carlo (MC) simulation approach.Materials and methodsA validated MC model of INTRABEAM machine and different applicator diameters, based on GEANT4 Toolkit, was employed for RBE evaluation. To doing so, scored X-ray energy spectra at the surface of each applicator diameter/bare probe were used to calculate the corresponding secondary electron energy spectra at various distances inside the water and breast tissue. Then, MCDS (Monte Carlo damage simulation) code was used to calculate the RBE values according to the calculated electron spectra.ResultsPresence of spherical applicators can increase the RBE of emitted X-rays from the bare probe by about 22.3%. In return, changing the applicator diameter has a minimal impact (about 3.2%) on RBE variation of emitted X-rays from each applicator surface. By increasing the distance from applicator surface, the RBE increments too, so that its value enhances by about 10% with moving from 2 to 10 mm distance. Calculated RBE values within the breast tissue were higher than those of water by about 4% maximum value.ConclusionBall section of spherical IORT applicators can affect the RBE value of the emitted X-rays from INTRABEAM machine. Increased RBE of breast tissue can reduce the prescribed dose for breast irradiation if INTRABEAM machine has been calibrated inside the water.  相似文献   

2.
PurposeThis study aims at characterizing the dosimetric behavior of an INTRABEAM® miniature accelerator equipped with flat and surface applicators, converting the spherical dose distribution into a flat one.MethodsDosimetric characterization was carried out in two steps. Firstly characterization was made in standard conditions for dermatologic applications, which is with the applicator directly on contact with the skin. Secondly, characterization was made in more clinical conditions, such as obliquities and heterogeneities.ResultsBehaviors of flat and surface applicators are different. Dose distribution for surface applicators is uniform at surface, whereas for flat applicator the maximum homogeneity is shown at a particular depth in water. Some results are different from previously published studies due to differences in the X-ray source design. The study showed that in the absence of a perfect contact between the applicator and the skin of the patient, there is a dose distribution spread on the edge of the irradiation field where the contact is not made. Dose loss due to lack of backscatter radiations is significant. By contrast, influence of a denser material behind the measurement point has no significant influence on the dose at this point. Thickness of tissue treated with flat and surface applicators is only a few millimeters, depending on the applicator's size, making these applicators ideal for superficial lesions, compared to high energy electrons and iridium brachytherapy.ConclusionsThe INTRABEAM® miniature accelerator equipped with surface applicators is a reliable way of treating superficial cutaneous malignancies.  相似文献   

3.
PurposeTo study the impact of shielding elements in the proximity of Intra-Operative Radiation Therapy (IORT) irradiation fields, and to generate graphical and quantitative information to assist radiation oncologists in the design of optimal shielding during pelvic and abdominal IORT.MethodAn IORT system was modeled with BEAMnrc and EGS++ Monte Carlo codes. The model was validated in reference conditions by gamma index analysis against an experimental data set of different beam energies, applicator diameters, and bevel angles. The reliability of the IORT model was further tested considering shielding layers inserted in the radiation beam. Further simulations were performed introducing a bone-like layer embedded in the water phantom. The dose distributions were calculated as 3D dose maps.ResultsThe analysis of the resulting 2D dose maps parallel to the clinical axis shows that the bevel angle of the applicator and its position relative to the shielding have a major influence on the dose distribution. When insufficient shielding is used, a hotspot nearby the shield appears near the surface. At greater depths, lateral scatter limits the dose reduction attainable with shielding, although the presence of bone-like structures in the phantom reduces the impact of this effect.ConclusionsDose distributions in shielded IORT procedures are affected by distinct contributions when considering the regions near the shielding and deeper in tissue: insufficient shielding may lead to residual dose and hotspots, and the scattering effects may enlarge the beam in depth. These effects must be carefully considered when planning an IORT treatment with shielding.  相似文献   

4.
PurposeIn IOERT a single dose of radiation is delivered to the tumour site during surgery. Manual dose calculations are used and the irradiation target volume, electron energy and applicator are decided on site by the radiation oncologist. This work assesses the effect that irregular and curved surfaces, typical of pelvic IOERT, may have on the expected dose distribution.MethodsThe feasibility of using Gafchromic EBT3 films and a slab phantom to obtain 2D dose distributions was investigated. Different set-ups were tested by comparison with water tank measurements, applying the gamma function analysis with 2% and 2 mm criteria. The validated set-up was then used to obtain reference dose distributions, which were converted to colour-coded graphical representations. Phantoms with step-like and curved surfaces were created to simulate typical pelvic IOERT irradiation surfaces, and the dose distributions were obtained and compared with the reference distributions.ResultsGood agreement with water tank measurements was obtained for all applicators below 2 mm, using the chosen setup in reference conditions. In non-reference conditions, the presence of a step-like surface creates an adjacent hotspot, followed by a quick reduction of the dose in depth. With curved surfaces, the dose distribution is shifted forward, becoming curved and deeper, but when the applicator is larger than the hole, hotspots are also observed.ConclusionsThe shape of the irradiation surfaces alters the dose distribution. Visualization of these effects is important to assess target coverage and interpret in vivo measurements in pelvic IOERT.  相似文献   

5.
ObjectiveContact X-Ray 50 kV (CXRT) has proven its efficiency to treat rectum and skin cancers. The goal of this technological research was to design and produce a new CXRT machine with dedicated applicators to replace the Philips unit not any more manufactured.Materials and methodsThe P50 was assembled in UK and the characteristics of the machine were evaluated with spectrometers, ions chambers, Gafchromic films and Monte Carlo code. The applicators were designed and manufactured in Nice. Dosimetric data were measured for each applicator. Validated protocols were used to treat patients.ResultsBetween September 2009 and November 2011, the performances of the P50 was judged satisfactory with a dose rate close to 15 Gy/min depending on the applicator. The dose distribution was according to objectives. Clinical results achieved in 62 patients treated in centre Antoine-Lacassagne for rectum, skin or eyelid cancers confirmed the efficiency and good tolerance of CXRT. Similar results in rectal cancer were observed in Clatterbridge with 120 rectal cancers treated with P50.DiscussionThese results are encouraging and should contribute to the international dissemination of CXRT. New machine (Papillon Plus) should be designed and produced for intraoperative irradiation and treatment of vaginal vault.ConclusionThis experience of research and development well structured within the frame of TecSan project should be encouraged further to facilitate technological innovation in the field of radiotherapy.  相似文献   

6.
PurposeIn IOERT breast treatments, a shielding disk is frequently used to protect the underlying healthy structures. The disk is usually composed of two materials, a low-Z material intended to be oriented towards the beam and a high-Z material. As tissues are repositioned around the shield before treatment, the disk is no longer visible and its correct alignment with respect to the beam is guaranteed. This paper studies the dosimetric characteristics of four possible clinical positioning scenarios of the shielding disk. A new alignment method for the shielding disk in the beam is introduced. Finally, it suggests a new design for the shielding disk.MethodsAs the first step, the IOERT machine “Mobetron 1000” was modeled by using Monte Carlo simulation, tuning the MC model until an excellent match with the measured PDDs and profiles was achieved. Four possible shielding disk positioning scenarios were considered, determining the dosimetric impact. Furthermore, in our center, to prevent beam misalignment, we have developed a shielding disk equipped with guiding rods. Having ascertained a correct alignment between the disk and the beam, we can propose a new internal design of the shielding disk that can improve the dose distribution with a better coverage of the treated area.ResultsAll MC simulations were performed with a 12 MeV beam, the maximum energy of Mobetron 1000 and a 5.5 cm diameter flat tip applicator, this applicator being the most clinically used. The simulations were compared with measurements performed in a water phantom and showed good results within 2.2% of root mean square difference (RMSD). The misplacement positions of the shielding disk have dosimetric impacts in the treatment volume and a small translation could have a significant influence on healthy tissues. The D-scenario is the worst which could happens when the shielding disk is flipped upside down, giving up to 144% dose instead of 90% at the surface of the Pb/Al shielding disk. A new shielding design used, together with our alignment tool, is able to give a more homogeneous dose in the target area.ConclusionsThe accuracy of shielding disk position can still be problematic in IOERT dosimetry. Any method that can ascertain the good alignment between the shielding disk and the beam is beneficial for the dose distribution and is a prerequisite for an optimized shield internal design that could improve the coverage of the treated area and the protection of healthy tissues.  相似文献   

7.
PurposeDosimetric assessment of high dose rate (HDR) brachytherapy applicators, printed in 3D with acrylonitrile butadiene styrene (ABS) at different infill percentage.Materials and methodsA low-cost, desktop, 3D printer (Hamlet 3DX100, Hamlet, Dublin, IE) was used for manufacturing simple HDR applicators, reproducing typical geometries in brachytherapy: cylindrical (common in vaginal treatment) and flat configurations (generally used to treat superficial lesions). Printer accuracy was investigated through physical measurements. The dosimetric consequences of varying the applicator’s density by tuning the printing infill percentage were analysed experimentally by measuring depth dose profiles and superficial dose distribution with Gafchromic EBT3 films (International Specialty Products, Wayne, NJ). Dose distributions were compared to those obtained with a commercial superficial applicator.ResultsMeasured printing accuracy was within 0.5 mm. Dose attenuation was not sensitive to the density of the material. Surface dose distribution comparison of the 3D printed flat applicators with respect to the commercial superficial applicator showed an overall passing rate greater than 94% for gamma analysis with 3% dose difference criteria, 3 mm distance-to-agreement criteria and 10% dose threshold.ConclusionLow-cost 3D printers are a promising solution for the customization of the HDR brachytherapy applicators. However, further assessment of 3D printing techniques and regulatory materials approval are required for clinical application.  相似文献   

8.
Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE.  相似文献   

9.
External electron radiotherapy is performed using a cone or applicator to collimate the beam. However, because of a trade-off between collimation and scattering/bremsstrahlung X-ray production, applicators generate a small amount of secondary radiation (leakage). We investigate the peripheral dose outside the radiation field of a Varian-type applicator. The dose and fluence outside the radiation field were analyzed in a detailed Monte Carlo simulation. The differences between the calculation results and data measured in a water phantom in an ionization chamber were less than ±1% in regions more than 3 mm below the surface of the phantom and at the depth of dose maximum. The calculated fluence was analyzed inside and outside the radiation field on a plane just above the water phantom surface. Changing the electron energy affected the off-axis fluence distribution outside the radiation field; however, the size of the applicator had little effect on this distribution. For each energy, the distributions outside the radiation field were similar to the dose distribution at shallow depths in the water phantom. The effect of secondary electrons generation by photon transmission through the alloy making up the lowest scraper was largest in the region from the field edge to directly below the cutout and at higher beam energies. The results of the Monte Carlo simulation confirm that the peripheral dose outside the field is significantly affected by radiation scattered or transmitted from the applicator, and the effect increases with the electron energy.  相似文献   

10.
A new tandem applicator with tungsten shield for Ir-192 radiation source used in intra-cavitary brachytherapy (ICBT) enabled intensity modulated brachytherapy (IMBT) in cervical cancer treatment through fluence-modulation by rotating shield. Our previous work employed group-wise and element-wise sparsity constraints for plan optimization of tandem applicator to minimizes the number of activated angles and source dwell points for delivery efficiency. It, however, did not incorporate the ovoid applicators into the optimizing process, which is generally used to prevent cancer recurrence. To integrate ovoid applicators to the new tandem applicator, this work proposed a comprehensive framework that modifies 1) dose deposition matrix for inverse planning, and 2) plan optimizing algorithm. The dose deposition matrix was newly formulated by the Monte-Carlo simulated dose distribution for 10 positions of ovoid applicators, followed by combining those with tandem-associated dose deposition matrix. The plan optimizing algorithm decomposed entire elements into tandem and ovoid applicators, which were governed by different constraints adaptive to specified plan objectives. The integrated framework was compared against conventional ICBT, and IMBT with tandem only for three patients with asymmetric dose distributions. Integrated IMBT framework resulted in the most optimal plans. Including fluence-modulation by rotating-shield outperformed conventional ICBT in dose sparing to critical organs. Adopting ovoid applicators to the optimization yielded more conformal dose distribution around inferior, laterally expanded region of target volume. The resulting plans reduced D5cc and D2cc by 30.9% and 27.8% for critical organs over conventional ICBT, and by 20.6% and 21.5% for target volume over IMBT with tandem only.  相似文献   

11.
AimThe investigation of the irradiation time calculation accuracy of the GGPB algorithm used for IORT.BackgroundConventionally, breast conserving therapy consists of breast conserving surgery followed by postoperative whole breast irradiation and boost. The use of intraoperative radiotherapy (IORT) enables the boost to be delivered already during the surgery. In this case, the treatment dose for IORT can be calculated by use of General Gaussian Pencil Beam (GGPB) algorithm, which is implemented in TPS Eclipse.Materials and methodsPDDs and OFs for electron beams from Mobetron and all available applicators were measured in order to configure the GGPB algorithm. Afterwards, the irradiation times for the prescribed dose of 3 Gy were calculated by means of it. The results of calculations were verified in the water phantom using the Marcus ionization chamber.ResultsThe results differed between energies. For 6 MeV the irradiation times calculated by the GGPB algorithm were correct, for the energy of 9 MeV they were too small and for the energy of 4 MeV they were too large for applicators with smaller diameters, while acceptable for the remaining ones.ConclusionThe GGPB algorithm can be used in intraoperative radiotherapy for energy and applicator sets for which no significant difference between the measured and the prescribed dose was obtained. For the rest of energy-applicator sets the configuration should be verified and possibly repeated.  相似文献   

12.
BackgroundGold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies.Scope of ReviewThis review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.Major conclusionsIn this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.General significanceUsing advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.  相似文献   

13.
PurposeTo evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application.MethodsTwo identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared.ResultsApart from a region close to the container’s neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively.ConclusionTrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry.  相似文献   

14.
This study explores how the metal materials of the applicator influence the dose distribution when performing brachytherapy for cervical cancer. A pinpoint ionization chamber, Monte Carlo code MCNPX, and treatment planning system are used to evaluate the dose distribution for a single Ir-192 source positioned in the tandem and ovoid. For dose distribution in water with the presence of the tandem, differences among measurement, MCNPX calculation and treatment planning system results are <5%. For dose distribution in water with the presence of the ovoid, the MCNPX result agrees with the measurement. But the doses calculated from treatment planning system are overestimated by up to a factor of 4. This is due to the shielding effect of the metal materials in the applicator not being considered in the treatment planning system. This result suggests that the treatment planning system should take into account corrections for the metal materials of the applicator in order to improve the accuracy of the radiation dose delivered.  相似文献   

15.
AimThe aim of this study was to design a safe bunker for an 18 MV linac in to configuration; primary barriers made from nanoparticle-containing concrete and pure concrete.BackgroundApplication of some nanoparticles in the shielding materials has been studied and it was shown that the presence of some nanoparticles improved radiation shielding properties.Materials and methodsSome percentage of different nanoparticles were modeled by the MCNP5 code of MC in the megavoltage radiotherapy treatment room's primary barriers. Other parts of the designed room, such as secondary barriers and maze door, were modeled as ordinary pure concrete. A safe bunker was designed according to the MC derived spectra at primary and secondary barriers location using a modeled and benchmarked 18 MV linac in free air. Then, the thickness of the required shielding materials for the door and also concrete for the walls and primary barriers were calculated separately.ResultsAccording to the results, required concrete thickness in primary and secondary barriers was reduced by around 0.8% compared to pure concrete application. Additionally, required lead and BPE decreased by 25% and 15%, respectively, due to primary barriers nanoparticles.ConclusionsIt was concluded that application of some nanoparticles in the shielding materials structures in megavoltage radiotherapy can make the shielding effective.  相似文献   

16.
BackgroundPhotoneutrons are produced in radiation therapy with high energy photons. Also, capture gamma rays are the byproduct of neutrons interactions with wall material of radiotherapy rooms.AimIn the current study an analytical formula was proposed for capture gamma dose calculations in double bend mazes in radiation therapy rooms.Materials and methodsA total of 40 different layouts with double-bend mazes and a 18 MeV photon beam of Varian 2100 Clinac were simulated using MCNPX Monte Carlo (MC) code. Neutron capture gamma ray dose equivalent was calculated by the MC method along the maze and at the maze entrance door of all the simulated rooms. Then, all MC resulted data were fitted to an empirical formula for capture gamma dose calculations. Wu–McGinley analytical formula for capture gamma dose equivalent at the maze entrance door in single-bend mazes was also used for comparison purposes.ResultsFor capture gamma dose equivalents at the maze entrance door, the difference of 2–11% was seen between MC and the derived equation, while the difference of 36–87% was found between MC and the Wu–McGinley methods.ConclusionOur results showed that the derived formula results were consistent with the MC results for all of 40 different geometries. However, as a new formula, further evaluations are required to validate its use in practical situations. Finally, its application is recommend for capture gamma dose calculations in double-bend mazes to improve shielding calculations.  相似文献   

17.
PurposeMonte Carlo study of radiation transmission around areas surrounding a PET room.MethodsAn extended population of patients administered with 18F-FDG for PET-CT investigations was studied, collecting air kerma rate and gamma ray spectra measurements at a reference distance. An MC model of the diagnostic room was developed, including the scanner and walls with variable material and thickness. MC simulations were carried out with the widely used code GEANT4.ResultsThe model was validated by comparing simulated radiation dose values and gamma ray spectra produced by a volumetric source with experimental measurements; ambient doses in the surrounding areas were assessed for different combinations of wall materials and shielding and compared with analytical calculations, based on the AAPM Report 108.In the range 1.5–3.0 times of the product between the linear attenuation coefficient and thickness of an absorber (μ x), it was observed that the effectiveness of different combinations of shielding is roughly equivalent. An extensive tabulation of results is given in the text.ConclusionsThe validation tests performed showed a satisfactory agreement between the simulated and expected results. The simulated dose rates incident on, and transmitted by the walls in our model of PET scanner room, are generally in good agreement with analytical estimates performed using the AAPM Publication No. 108 method. This provides an independent confirmation of AAPM's approach. Even in this specific field of application, GEANT4 proved to be a relevant and accurate tool for dosimetry estimates, shielding evaluation and for general radiation protection use.  相似文献   

18.
PurposeWe performed the first investigations, via measurements and Monte Carlo simulations on phantoms, of the feasibility of a new technique for synchrotron radiation rotational radiotherapy for breast cancer (SR3T).MethodsA Monte Carlo (MC) code based on Geant4 toolkit was developed in order to simulate the irradiation with the SR3T technique and to evaluate the skin sparing effect in terms of centre-to-periphery dose ratio at different energies in the range 60–175 keV. Preliminary measurements were performed at the Australian Synchrotron facility. Radial dose profiles in a 14-cm diameter polyethylene phantom were measured with a 100-mm pencil ionization chamber for different beam sizes and compared with the results of MC simulations. Finally, the dose painting feasibility was demonstrated with measurements with EBT3 radiochromic films in a phantom and collimating the SR beam at 1.5 cm in the horizontal direction.ResultsMC simulations showed that the SR3T technique assures a tumour-to-skin absorbed dose ratio from about 7:1 (at 60 keV photon energy) to about 10:1 (at 175 keV), sufficient for skin sparing during radiotherapy. The comparison between the results of MC simulations and measurements showed an agreement within 5%. Two off-centre foci were irradiated shifting the rotation centre in the horizontal direction.ConclusionsThe SR3T technique permits to obtain different dose distributions in the target with multiple rotations and can be guided via synchrotron radiation breast computed tomography imaging, in propagation based phase-contrast conditions. Use of contrast agents like iodinated solutions or gold nanoparticles for dose enhancement (DE-SR3T) is foreseen and will be investigated in future work.  相似文献   

19.
PurposeCertain radiation responsive skin diseases may develop symptoms on the upper or the lower half of the body. The concept of a novel Hemi-Body Electron Irradiation (HBIe) technique, described in this work, provides a low cost, LINAC based, intermediate treatment option in between extremely localized and Total Skin irradiation techniques.Materials and methodsThe HBIe technique, developed in our department, incorporates a custom crafted treatment chamber equipped with adjustable Pb shielding and a single electron beam in extended Source-Skin Distance (SSD) setup. The patient is positioned in ‘Stanford’ technique positions. The geometrical setup provides both optimal dose homogeneity and dose deposition up to a depth of 2 cm. To confirm this, the following characteristics were measured and evaluated: a) percentage depth dose (PDD) on the treatment plane produced by a single electron beam at perpendicular incidence for six fields at ‘Stanford’ angles, b) 2D profile of the entrance dose on the treatment plane produced by a single field and c) the total surface dose on an anthropomorphic phantom delivered by all 6 fields.ResultsThe resulting homogeneity of the surface dose in the treatment plane for an average patient was 5–6%, while surface dose homogeneity on the anthropomorphic phantom was 7% for both the upper and the lower HBIe variants. The total PDD exhibits an almost linear decrease to a practical range of 2 g/cm2.ConclusionIn conclusion, HBIe was proven effective in delivering the prescribed dose to the target area, while protecting the healthy skin.  相似文献   

20.

Aim

The aim of the study is to evaluate the differences in dosimetry between tandem-ovoid and tandem-ring gynaecologic brachytherapy applicators in image based brachytherapy.

Background

Traditionally, tandem ovoid applicators were used to deliver dose to tumor in intracavitary brachytherapy. Tandem-ring, tandem-cylinder and hybrid intracavitary, interstitial applicators are also used nowadays in cervical cancer brachytherapy.

Methods and materials

100 CT datasets of cervical cancer patients (stage IB2 – IIIB) receiving HDR application (50 tandem-ovoid and 50 tandem-ring) were studied. Brachytherapy was delivered using a CT-MRI compatible tandem-ovoid (50 patients) and a tandem-ring applicator (50 patients). DVHs were calculated and D2cc was recorded for the bladder and rectum and compared with the corresponding ICRU point doses. The point B dose, the treated volume, high dose volume and the treatment time were recorded and compared for the two applicators.

Results

The mean D2cc of the bladder with TR applicator was 6.746 Gy. TO applicator delivered a mean D2cc of 7.160 Gy to the bladder. The mean ICRU bladder points were 5.60 and 5.63 Gy for TR and TO applicator, respectively. The mean D2cc of the rectum was 4.04 Gy and 4.79 Gy for TR and TO applicators, respectively. The corresponding ICRU point doses were 5.10 Gy and 5.66 Gy, respectively.

Conclusions

The results indicate that the OAR doses assessed by DVH criteria were higher than ICRU point doses for the bladder with both tandem-ovoid and tandem-ring applicators whereas DVH based dose was lower than ICRU dose for the rectum. The point B dose, the treated volume and high dose volume was found to be slightly higher with the tandem-ovoid applicator. The mean D2cc dose for the bladder and rectum was lower with tandem-ring applicators. The clinical implication of the above dosimetric differences needs to be evaluated further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号