首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 50-year tree-ring δ18O chronology of Abies spectabilis growing close to the tree line (3850 m asl) in the Nepal Himalaya is established to explore its dendroclimatic potential. Response function analysis with ambient climatic records revealed that tree-ring δ18O is primarily governed by rainfall during the monsoon season (June–September), and the regression model accounts for 35% of the variance in rainfall. Extreme dry years identified in instrumental weather data are detected in the δ18O chronology. Further, tree-ring δ18O is much more sensitive to rainfall fluctuations than other tree-ring parameters such as width and density typically used in dendroclimatology. Correlation analyses with Niño 3.4 SST reveal time-dependent behavior of ENSO–monsoon relationships.  相似文献   

2.
To ascertain whether browsing or hydrologic conditions influence the physiological performance of Salix and whether Salix and graminoids (Carex) use and possibly compete for similar water resources, we quantified the in situ seasonal patterns of plant water and carbon relations over three growing seasons. Our studies were designed to address the physiological factors which may be responsible for poor woody plant regeneration in montane riparian habitats of Rocky Mountain National Park, Colo. As these systems act to insure the delivery of fresh water to downstream users, the maintenance of their integrity is critical. We quantified plant water potentials, instantaneous rates of carbon fixation, leaf carbon isotope discrimination (Δ), leaf nitrogen content and water sources using stable isotopes of water (δ18O). The carbon and water relations of Salix were significantly affected by winter browsing by elk and in some cases by landscape position with regard to proximity to active streams. Winter browsing of Salix by elk significantly increased summer plant water potentials and integrative measures of gas exchange (Δ), though browsing did not consistently affect instantaneous rates of photosynthesis, leaf nitrogen or the sources of water used by Salix. No effect of experimental manipulations of surface water conditions on Salix physiology was observed, likely due to the mesic nature of our study period. Using a two-member linear mixing model, from δ18O values we calculated that Salix appears to rely on streams for approximately 80% of its water. In contrast, the graminoid Carex derives almost 50% of its water from rainfall, indicating divergent water source use by these two life forms. Based on these findings, winter browsing by elk improved Salix water balance possibly by altering the shoot to root ratio which in turn leads to higher water potentials and higher degrees of season-long gas exchange, while experimental damming had in general no effect on the physiological performance of Salix plants. In addition, as the water sources of Salix and Carex were significantly different, competition for water may not influence the growth, development, and regeneration of Salix. Thus, under the conditions of our study, herbivory had a positive effect on the physiological performance of Salix, but it is still unclear whether these changes in physiology transcend into improved Salix regeneration and survivorship. However, under drier environmental conditions such as lower snowpacks and lower stream flows, the browsing resistance of Salix and ecosystem regeneration may be greatly hindered because the reliance of Salix on stream water makes it vulnerable to changes in surface water and hydrological conditions. Received: 1 July 1998 / Accepted: 23 December 1998  相似文献   

3.
The extensive vertical exposure (> 150 m) of terrestrial sediments on Axel Heiberg Island, which contain thick fossiliferous lignites, presents an exceptional opportunity to follow the establishment and re-establishment of Arctic Metasequoia forests during the middle Eocene. We compared δD values in n-alkanes of chain length 23, 25, 27 and 29 with δ18O values in phenylglucosazone (P-G) derived from α-cellulose; we also analyzed %-abundance of ferns, gymnosperms and angiosperms using pollen and spores isolated from each lignite. Our results showed that forest composition was altered upon uplift, as gymnosperms became more abundant within the relatively well-drained upland sediments. This was also reflected in the small (1‰), but significant, increase in the δ13C value of TOM from lowland to upland environments. However, neither the δD values of n-alkanes nor the δ18O in P-G were statistically different in the upland sediments, as compared to the lowland sediments; from this we inferred that the oxygen isotope signature of environmental water available to the forests for plant growth was relatively uniform throughout the time of the fossil forests. The δD value of environmental water implied by both n-alkanes and P-G ranged from ? 168 to ? 131% and was considerably enriched compared to all environmental water samples available from the modern Arctic region (< ? 180%). In addition to indicating a warmer Eocene Arctic, subject to meteoric transport patterns different from today's, these results argue against the presence of an Eocene polar ice cap.  相似文献   

4.
《Dendrochronologia》2014,32(1):78-89
A main concern of dendroclimatic reconstruction is to distinguish in the tree ring proxy the influence of the climate variables of interest from other controlling factors. In order to investigate age, site and climate controls on tree ring width and cellulose δ18O, measurements have been performed in nearby groups of young (145 years old) and older (310–405 years old) oak trees in south-western France, covering the period 1860–2010.Within a given site, inter-tree deviations are small, pointing to a common climatic signal. Despite a similar inter-annual variability, the average level of cellulose δ18O in the young tree group is ∼0.8‰ higher than in the old trees. Such offsets might be caused by different soil properties and differences in the fraction of the source water used by trees from different depths. The δ18O of water in the top soil layer is directly related to the current growing season precipitation, while deeper water can have a lower and more constant δ18O. Local cave drip waters at 10 m depth indeed show a constant isotopic composition, which corresponds to pluri-annual mean precipitation.A 2‰ increasing trend is observed in cellulose δ18O of young trees in the first 30 years of growth, during a period when no trend is visible in older trees. This increase can be quantitatively explained by humidity gradients under the forest canopy, and a changing microclimate around the crown as trees grow higher.While relationships between tree ring width and climate appear complex, the isotopic composition of cellulose is strongly correlated with summer maximum temperature, relative humidity and evapotranspiration (r  0.70). Weaker correlations (r  0.40) are identified with precipitation δ18O from a 15-year long local record and from the REMOiso model output. These results imply that leaf water enrichment has a stronger control on the inter-annual variability of cellulose δ18O than the δ18O of precipitation.This study demonstrates the suitability of oak tree ring cellulose δ18O for reconstructing past summer climate variability in south-western France, provided that the sampling and pooling strategy accounts for the fact that trees from different sites and of different age can introduce non-climatic signals.  相似文献   

5.

Background and aims

Soil acidification is known to be one of the constraints of tree growth; however, it is unclear how it affects tree growth at photosynthesis level (i.e., through affecting stomatal conductance vs. carboxylation rate) during the growth of trees. This paper studied the effects of soil acidification on Pinus densiflora foliar chemistry and tree ring C isotope ratio (13C/12C, expressed as δ13C) and their relationship with tree growth.

Methods

Tree growth (diameter, annual growth ring area, and root biomass), soil chemistry (pH, mineral N, and exchangeable Ca and Al), foliage chemistry (N, Ca/Al, and δ13C), and tree ring δ13C in P. densiflora stands along a soil pH gradient (from 4.38 to 4.83, n?=?9) in southern Korea were investigated.

Results

Overall, trees with relatively poor growth under more acidic soil conditions (low pH and Ca/Al) had lower values of foliar N concentration and δ13C and tree ring δ13C, suggesting that restricted N uptake under more acidic soil conditions caused N limitation for photosynthesis, leading to poor tree growth. In addition, relationships between mean annual area increment and carbon isotope discrimination of tree rings at five-yr intervals from 1968 to 2007 revealed that the impact of soil acidification on tree growth became severer during the last 15 yrs as negative correlations between them became significant after 1993.

Conclusions

Reduced N uptake under acidic soil conditions resulted in lower radial growth of P. densiflora via non-stomatal limitation of photosynthesis.  相似文献   

6.
The Golan Heights borders the Upper Jordan Valley on its eastern side and likely served as a prime foraging area for hominin groups that inhabited the Upper Jordan Valley during the Mid-Pleistocene. This study tests the hypothesis that Mid-Pleistocene climate in the Golan region was similar to that of the present day. Carbon isotope composition of present day plant communities and soil organic carbon from the Golan were compared to those of paleosols from Nahal Orvim to reconstruct Mid-Pleistocene paleoclimatic conditions. After correcting the paleosol values for recent changes in atmospheric carbon isotope values and potential biodegradation, the isotopic results show a strong similarity to those of present day local plants and soils. These results indicate that during the Mid-Pleistocene, the Golan was dominated by C3 vegetation, shared similar climatic conditions with the present day, and displayed long-term environmental stability. The span of time of paleosol formation is unknown and might cover multiple climatic episodes; thus, although short climatic fluctuations may have occurred, their impact was not substantial enough to be detected in the Nahal Orvim paleosols. This study concludes that the Golan slopes provided hominins and large grazers with a reliable and highly nutritious foraging area that complemented the Jordan Valley riparian ecosystem.  相似文献   

7.
8.
The δ18O and δD composition of water pools (leaf, root, standing water and soil water) and fluxes [transpiration (T), evaporation (E)] were used to understand ecohydrological processes in a managed Typha latifolia L. freshwater marsh. We observed isotopic steady‐state T and deep rooting in Typha. The isotopic mass balance of marsh standing water showed that E accounted for 3% of the total water loss, T accounted for 17% and subsurface drainage (D) accounted for the majority (80%). There was a vertical gradient in water vapour content and isotopic composition within and above the canopy sufficient for constructing an isotopic mass balance of water vapour during some sampling periods. During these periods, the proportion of T in evapotranspiration (T/ET) was between 56 ± 17% and 96 ± 67%, and the estimated error was relatively high (>37%) because of non‐local, background sources in vapour. Independent estimates of T/ET using eddy covariance measurements yielded similar mean values during the Typha growing season. The various T/ET estimates agreed that T was the dominant source of marsh vapour loss in the growing season. The isotopic mass balance of water vapour yielded reasonable results, but the mass balance of standing water provided more definitive estimates of water losses.  相似文献   

9.
We studied Holocene speleothems and tufa samples collected in numerous caves and rivers in the Dinaric Karst of Croatia, Slovenia, Bosnia and Herzegovina, as well as Serbia and Montenegro. Differences in the formation process of tufa and speleothems are discussed in the context of their isotopic composition (14C, 13C and 18O), as well as the chemistry of surface water (rivers, lakes) and drip water (in caves). The physical and chemical parameters monitored in the surface water (tufa precipitation) and drip water (speleothem precipitation) show that more stable conditions accompany speleothem rather than tufa formation. This is particularly obvious in the water temperature variations (2-22°C in surface water and 7-12°C in drip water) and in saturation index variation (3-11 in surface water and 1-6 in drip water). The range of 14C ages recorded by Holocene speleothems (∼12?000 yr) is wider by several thousands years than that of Holocene tufa samples (∼6000 yr). δ13C values for tufa samples range from −12‰ to −6‰ and for speleothem samples from −12‰ to +3‰ reflecting higher soil carbon and/or vegetation impact on the process of tufa than on speleothem formation. The differences in δ18O values of tufa and speleothem samples from different areas reflect different temperature conditions and differing isotopic composition in the water. The study shows that speleothems from the Dinaric Karst can be used as global palaeoclimatic records, whereas tufa records changes in the local palaeoenvironment.  相似文献   

10.
It has become a widespread practice to convert δ(18)O(p) values measured in human and animal dental enamel to a corresponding value of δ(18)O(w) and compare these data with mapped δ(18)O(w) groundwater or meteoric water values to locate the region where the owner of the tooth lived during the formation of the enamel. Because this is a regression procedure, the errors associated with the predicted δ(18)O(w) values will depend critically on the correlation between the comparative data used to perform the regression. By comparing four widely used regression equations we demonstrate that the smallest 95% error is likely to be greater than ±1% in δ(18)O(w) , and could be as large as ±3.5%. These values are significantly higher than those quoted in some of the recent literature, and measurements with errors at the higher end of this range would render many of the published geographical attributions statistically unsupportable. We suggest that the simplest solution to this situation is to make geographical attributions based on the direct comparison of measured values of δ(18)O(p) rather than on predicted values of δ(18)O(w).  相似文献   

11.
Molecular detection systems used to analyse the gut contents of invertebrate predators have enhanced our understanding of trophic interactions, but do not distinguish between the methods of consumption. Many predators regularly scavenge, which could have profound implications for quantitative analyses of the dynamics of predation. We report the first quantified assessment of the potential error caused by scavenging in post-mortem measurements of predation in a slug-carabid system. An anti-slug monoclonal antibody was able to detect antigens from decayed slugs after surprisingly long periods, significantly longer on relatively sterile peat than on natural soil. On soil the half-life of antibody-detectable slug proteins was 8.2 days while on peat it was 11.5 days. When slugs that had decayed on soil for 100 h were fed to the carabid predator Pterostichus melanarius, slug proteins could still be identified after 6 h (but not 12 h) digestion. Fresh and decayed slug was eaten in equal quantities by the beetles suggesting no aversion to the latter. The results suggest that significant errors may be caused by scavenging leading to inaccurate interpretation of predation rates in the field.  相似文献   

12.
? Accurate phenotyping remains a bottleneck in breeding for salinity and drought resistance. Here the combined use of stable isotope compositions of carbon (δ13C), oxygen (δ1?O) and nitrogen (δ1?N) in dry matter is aimed at assessing genotypic responses of durum wheat under different combinations of these stresses. ? Two tolerant and two susceptible genotypes to salinity were grown under five combinations of salinity and irrigation regimes. Plant biomass, δ13C, δ1?O and δ1?N, gas-exchange parameters, ion and N concentrations, and nitrate reductase (NR) and glutamine synthetase (GS) activities were measured. ? Stresses significantly affected all traits studied. However, only δ13C, δ1?O, δ1?N, GS and NR activities, and N concentration allowed for clear differentiation between tolerant and susceptible genotypes. Further, a conceptual model explaining differences in biomass based on such traits was developed for each growing condition. ? Differences in acclimation responses among durum wheat genotypes under different stress treatments were associated with δ13C. However, except for the most severe stress, δ13C did not have a direct (negative) relationship to biomass, being mediated through factors affecting δ1?O or N metabolism. Based upon these results, the key role of N metabolism in durum wheat adaptation to salinity and water stress is highlighted.  相似文献   

13.
We assessed the extent of recent environmental changes on leaf morphological (stomatal density, stomatal surface, leaf mass per unit area) and physiological traits (carbon isotope composition, δ(13)C(leaf) , and discrimination, Δ(13)C(leaf) , oxygen isotope composition, δ(18)O(leaf) ) of two tropical rainforest species (Dicorynia guianensis; Humiria balsamifera) that are abundant in the Guiana shield (Northern Amazonia). Leaf samples were collected in different international herbariums to cover a 200 year time-period (1790-2004) and the whole Guiana shield. Using models describing carbon and oxygen isotope fractionations during photosynthesis, different scenarios of change in intercellular CO(2) concentrations inside the leaf (C(i)), stomatal conductance (g), and photosynthesis (A) were tested in order to understand leaf physiological response to increasing air CO(2) concentrations (C(a)). Our results confirmed that both species displayed physiological response to changing C(a) . For both species, we observed a decrease of about 1.7‰ in δ(13)C(leaf) since 1950, without significant change in Δ(13)C(leaf) and leaf morphological traits. Furthermore, there was no clear change in δ(18)O(leaf) for Humiria over this period. Our simulation approach revealed that an increase in A, rather than a decrease in g, explained the observed trends for these tropical rainforest species, allowing them to maintain a constant ratio of C(i)/C(a) .  相似文献   

14.
The longitudinal variations in the nitrogen (δ15N) and oxygen (δ18O) isotopic compositions of nitrate (NO3 ?), the carbon isotopic composition (δ13C) of dissolved inorganic carbon (DIC) and the δ13C and δ15N of particulate organic matter were determined in two Southeast Asian rivers contrasting in the watershed geology and land use to understand internal nitrogen cycling processes. The $ \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} $ became higher longitudinally in the freshwater reach of both rivers. The $ \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} $ also increased longitudinally in the river with a relatively steeper longitudinal gradient and a less cultivated watershed, while the $ \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} $ gradually decreased in the other river. A simple model for the $ \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} $ and the $ \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} $ that accounts for simultaneous input and removal of NO3 ? suggested that the dynamics of NO3 ? in the former river were controlled by the internal production by nitrification and the removal by denitrification, whereas that in the latter river was significantly affected by the anthropogenic NO3 ? loading in addition to the denitrification and/or assimilation. In the freshwater-brackish transition zone, heterotrophic activities in the river water were apparently elevated as indicated by minimal dissolved oxygen, minimal δ13CDIC and maximal pCO2. The δ15N of suspended particulate nitrogen (PN) varied in parallel to the $ \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} $ there, suggesting that the biochemical recycling processes (remineralization of PN coupled to nitrification, and assimilation of NO3 ?-N back to PN) played dominant roles in the instream nitrogen transformation. In the brackish zone of both rivers, the $ \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} $ displayed a declining trend while the $ \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} $ increased sharply. The redox cycling of NO3 ?/NO2 ? and/or deposition of atmospheric nitrogen oxides may have been the major controlling factor for the estuarine $ \delta^{15} {\text{N}}_{{{\text{NO}}_{3} }} $ and $ \delta^{18} {\text{O}}_{{{\text{NO}}_{3} }} $ , however, the exact mechanism behind the observed trends is currently unresolved.  相似文献   

15.
Human hydration assessment is a key component for the prevention and proper treatment of heat-related fluid and electrolyte imbalances within military, sports and clinical medicine communities. Despite the availability of many different methods for assessing hydration status, the need for a valid method or technology that is simple, rapid, non-invasive, universal (detects both hypertonic and isotonic hypovolaemia) and is applicable for static (single point in time) and dynamic (change across time) hydration assessment is widely acknowledged. The eye is one candidate body region that might afford such a measure given the intricate balance between ocular dynamics (tear and aqueous humor formation) and blood (plasma osmolality and volume), which is considered the criterion measure for hydration assessment. The aim of this review is to introduce and discuss the potential for using ocular measurements for non-invasive hydration assessment, including tear fluid osmolarity (Tosm), non-invasive tear break-up time (NITBUT) and intraocular pressure (IOP). There is a relevant physiological basis for testing the merit of ocular measures for human hydration assessment and recent data indicate that Tosm and IOP may have utility. Further investigations are warranted to determine the degree to which ocular measures can act as accurate and reliable non-invasive hydration status markers.  相似文献   

16.
Adams HD  Kolb TE 《Oecologia》2004,140(2):217-225
We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and 13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf 13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.  相似文献   

17.
U. Focken  K. Becker 《Oecologia》1998,115(3):337-343
In two laboratory experiments using tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio), we investigated the effect of lipid content in the fish carcass on the stable carbon isotope ratio (δ13C). In both experiments, a significant negative correlation was found between lipid content in the carcass dry matter and δ13C of total dry matter, but there was no influence on the δ13C of fat-free dry matter or lipids. As the lipid content of fish is known to vary with reproductive stage, season or nutritional state, separate analysis of fractions of the proximate composition of dry matter will lead to more reliable results than analysing the whole body. The differences in δ13C between diet and fish carcass (trophic shift) were different for the two species, calling for feeding trials under controlled conditions using the species and the feeds in question before applying the stable isotope tracer technique in the analysis of food webs. Received: 1 December 1997 / Accepted: 1 March 1998  相似文献   

18.
19.
Estimating density of elusive carnivores with capture–recapture analyses is increasingly common. However, providing unbiased and precise estimates is still a challenge due to uncertainties arising from the use of (1) bait or lure to attract animals to the detection device and (2) ad hoc boundary-strip methods to compensate for edge effects in area estimation. We used photographic-sampling data of the Malagasy civet Fossa fossana collected with and without lure to assess the effects of lure and to compare the use of four density estimators which varied in methods of area estimation. The use of lure did not affect permanent immigration or emigration, abundance and density estimation, maximum movement distances, or temporal activity patterns of Malagasy civets, but did provide more precise population estimates by increasing the number of recaptures. The spatially-explicit capture–recapture (SECR) model density estimates ±SE were the least precise as they incorporate spatial variation, but consistent with each other (Maximum likelihood-SECR = 1.38 ± 0.18, Bayesian-SECR = 1.24 ± 0.17 civets/km2), whereas estimates relying on boundary-strip methods to estimate effective trapping area did not incorporate spatial variation, varied greatly and were generally larger than SECR model estimates. Estimating carnivore density with ad hoc boundary-strip methods can lead to overestimation and/or increased uncertainty as they do not incorporate spatial variation. This may lead to inaction or poor management decisions which may jeopardize at-risk populations. In contrast, SECR models free researchers from making subjective decisions associated with boundary-strip methods and they estimate density directly, providing more comparable and valuable population estimates.  相似文献   

20.
The conformational stability of the extended antiparallel dimer structure of Met-enkephalin in water was analyzed by examining the hydration structure of enkephalin using molecular dynamics simulations. The result shows that, despite of the hydrophicility of the terminal atoms in the pentapeptide, the main contributor for the stability of the dimer in water is the four intermolecular hydrogen bonds between the Gly2 and Phe4 groups. The three-dimensional model of the δ-opioid pharmacophore for this dimer structure was also established. Such a model was demonstrated to match the δ-opioid pharmacophore query derived from the non-peptides SIOM, TAN-67, and OMI perfectly. This result thus strongly supports the assumption that the dimer structure of Met-enkephalin is a possible δ-receptor binding conformation. Figure Schematic model of the extended antiparallel dimer structure of Met-enkephalin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号