首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Introduction

Despite the crucial role of endothelial progenitor cells (EPCs) in vascular regeneration, the specific interactions between EPCs and hematopoietic cells remain unclear.

Methods

In EPC colony forming assays, we first demonstrated that the formation of EPC colonies was drastically increased in the coculture of CD34+ and CD34 cells, and determined the optimal concentrations of CD34+ cells and CD34 cells for spindle-shaped EPC differentiation.

Results

Functionally, the coculture of CD34+ and CD34 cells resulted in a significant enhancement of adhesion, tube formation, and migration capacity compared with culture of CD34+ cells alone. Furthermore, blood flow recovery and capillary formation were remarkably increased by the coculture of CD34+ and CD34 cells in a murine hind-limb ischemia model. To elucidate further the role of hematopoietic cells in EPC differentiation, we isolated different populations of hematopoietic cells. T lymphocytes (CD3+) markedly accelerated the early EPC status of CD34+ cells, while macrophages (CD11b+) or megakaryocytes (CD41+) specifically promoted large EPC colonies.

Conclusion

Our results suggest that specific populations of hematopoietic cells play a role in the EPC differentiation of CD34+ cells, a finding that may aid in the development of a novel cell therapy strategy to overcome the quantitative and qualitative limitations of EPC therapy.  相似文献   

3.
In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+) cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+) c-Kit(+) hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+) c-Kit(+) cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.  相似文献   

4.
目的:探讨体外培养脐带血单个核细胞定向诱导分化为不同阶段红系祖细胞的动力学变化情况。方法:用0.5%甲基纤维素沉降脐带血红细胞及人淋巴细胞分离液密度梯度离心法得到单个核细胞,在含EPO、SCF、IGF-1等细胞因子的无血清培养体系中诱导其定向分化为红系祖细胞,观察细胞增殖、存活率、细胞集落形成情况,并检测不同阶段细胞红系特异性表面标志CD71和CD235a的表达。结果:随着培养时间的延长,细胞数逐渐增多,14 d细胞可扩增140倍左右,收集诱导后的细胞进行瑞氏吉姆萨染色,可见大量红系祖细胞,诱导后的细胞集落形成能力强,形成的克隆大部分为红系集落。诱导过程中,14 d前CD71、CD235a的表达逐渐增高。按细胞表面标志表达的不同可将诱导的细胞分为4群,分别对应红系祖细胞的不同阶段;随着诱导天数的增加,各时间点细胞对应的早期红系祖细胞群(P2、P3)比例逐渐下降,中晚期红系祖细胞群(P4、P5)的比例逐渐上升。结论:无血清培养基添加细胞因子组合的红系诱导培养体系可较好地诱导扩增红系祖细胞,流式分选可获得相对均一而处于不同分化阶段的红系祖细胞群体。获得了红系祖细胞体外分化的动力学数据,为今后进一步优化红系诱导分化体系获得均一的红系祖细胞奠定了基础,并对未来利用干细胞制备均一的红系祖细胞应用于临床治疗有一定的指导作用。  相似文献   

5.
We investigated the role of homeobox B4 (HOXB4) mRNA/protein expression induced by human cytomegalovirus (HCMV) and/or all-trans retinoic acid (ATRA) in proliferation and committed differentiation of human cord blood hematopoietic stem cells (HSCs) into colony-forming-units of T-lymphocyte (CFU-TL) and erythroid (CFU-E) progenitors in vitro. Twelve cord blood samples were collected from the fetal placenta umbilical vein and cultured in vitro. The proliferation and differentiation of cord blood HSCs into CFU-TL and CFU-E were continuously disrupted with HCMV-AD169 and/or 6 × 10(-8) mol/l of ATRA. HOXB4 mRNA/protein expression in CFU-TL and CFU-E was detected in control, ATRA, HCMV and ATRA + HCMV groups on days 3, 7, and 12 of culture by fluorescent qRT-PCR/western blot. We found that HOXB4 mRNA/protein expression was detectable on day 3, increased on day 7 and was highest on day 12. HOXB4 mRNA/protein expression in HCMV group was downregulated compared with control group (P < 0.05). However, the levels were significantly upregulated in HCMV + ATRA group compared with HCMV group (P < 0.05). We concluded that the abnormal HOXB4 mRNA/protein expression induced by HCMV could play a role in hematopoietic damage. ATRA, at the concentration used, significantly up-regulated HOXB4 mRNA/protein expression in normal lymphocyte and erythrocyte progenitor cells as well as in HCMV-infected cells.  相似文献   

6.

Background

Aortic stenosis (AS) is the most common valvular disease. Endothelial progenitor cells (EPCs) have a role in the repair of endothelial surfaces after injury. Reduced numbers of EPCs are associated with endothelial dysfunction and adverse clinical events, suggesting that endothelial injury in the absence of sufficient repair by circulating EPCs promotes the progression of vascular and possibly valvular disorders. The aim of this study was to assess EPC number in patients with AS and to study the predictive value of their circulating levels on prognosis.

Methods

The number of EPCs was determined by flow cytometry in 241 patients with AS and a control group of 73 pts. Thirty-eight, 52 and 151 patients had mild, moderate and severe AS, respectively. We evaluated the association between baseline levels of EPCs and death from cardiovascular causes during follow up.

Results

EPC level was significantly higher in patients with AS compared to the control group (p = 0.017). Two hundred and three patients with moderate and severe AS were followed for a median of 20 months. One hundred and twenty patients underwent an intervention. Thirty four patients died during follow up, 20 patients died due to cardiac causes. Advanced age, the presence of coronary artery disease, AS severity index (combination of high NYHA class, smaller aortic valve area and elevated pulmonary artery pressure) and a low EPC number were predictors of cardiac death in the univariate analysis. Multivariate logistic regression model identified low EPCs number and AS severity index as associated with cardiac death during follow up (p = 0.026 and p = 0.037, respectively).

Conclusions

EPC number is increased in patients with AS. However, in patients with moderate or severe AS a relatively low number of EPCs is associated with cardiac death at follow up. These results may help to identify AS patients at increased cardiovascular risk.  相似文献   

7.
8.

Background and Purpose

We evaluated the hypothesis that the number of circulating EPC could be associated with the risk of stroke recurrence (SR) or vascular events (VE) after an ischemic stroke.

Methods

We studied prospectively consecutive patients with cerebral infarction within the first 48 hours after the onset. We recorded demographic factors, vascular risk factors, previous Rankin scale (RS) score, and etiology. We analyzed EPC counts by flow cytometry in blood collected at day 7 and defined EPC as CD34+/CD133+/KDR+ cells. Mean follow-up was 29.3 ± 16 months. We evaluated SR as well as VE. Patients were classified as to the presence or absence of EPC in the circulation (either EPC+ or EPC-). Bivariate analyses, Kaplan-Meier survival curves and Cox regression models were used.

Results

We included 121 patients (mean age 70.1±12.6 years; 65% were men). The percentage of EPC+ patients was 47.1%. SR occurred in 12 (9.9%) and VE in 18 (14.9%) patients. SR was associated significantly with a worse prior RS score, previous stroke and etiology, but not with EPC count. VE were associated significantly with EPC-, worse prior RS score, previous stroke, high age, peripheral artery disease and etiology. Cox regression model showed that EPC- (HR 7.07, p=0.003), age (HR 1.08, p=0.004) and a worse prior RS score (HR 5.8, p=0.004) were associated significantly with an increased risk of VE.

Conclusions

The absence of circulating EPC is not associated with the risk of stroke recurrence, but is associated with an increased risk of future vascular events.  相似文献   

9.
10.
Infections with hemorrhagic fever viruses are characterized by increased permeability leading to capillary leakage. Hantavirus infection is associated with endothelial dysfunction, and the clinical course is related to the degree of vascular injury. Circulating endothelial progenitor cells (cEPCs) play a pivotal role in the repair of the damaged endothelium. Therefore, we analyzed the number of cEPCs and their mobilizing growth factors in patients suffering from hantavirus disease induced by infection with Puumala virus. The numbers of EPCs of 36 hantavirus-infected patients and age- and gender-matched healthy controls were analyzed by flow cytometry. Concentrations of cEPC-mobilizing growth factors in plasma were determined by enzyme-linked immunosorbent assay. Laboratory parameters were correlated with the number of cEPCs. In patients infected with hantavirus, the number of cEPCs was significantly higher than that in healthy controls. Levels of mobilizing cytokines were upregulated in patients, and the mobilization of cEPCs is paralleled with the normalization of clinical parameters. Moreover, higher levels of cEPCs correlated with higher serum albumin levels and platelet concentrations. Our data indicate that cEPCs may play a role in the repair of hantavirus-induced endothelial damage, thereby influencing the clinical course and the severity of symptoms.  相似文献   

11.
缺血性功能障碍是重要的全球健康问题。血管内皮细胞 (vascular endothelial cell, VEC) 在血管生成和创面修复中发挥关键作用,血管重建不足可导致慢性不愈合伤口。因此,了解有效的血管内皮细胞生成策略有助于受损组织中的血管再生。胚胎干细胞 (embryonic stem cell, ESC) 在组织的内皮化研究中应用广泛。内皮祖细胞 (endothelial progenitor cell, EPC) 是血管内皮细胞发育中不可或缺的部分。本研究目的在于找到一种小鼠胚胎干细胞 (mouse embryonic stem cell, mESC) 衍生为内皮祖细胞的快速、易筛选且高重复性的方法,并从内皮祖细胞定向分化中获得存活率高和功能性好的血管内皮细胞。结果表明,胚胎干细胞通过10 ng/mL VEGF和5 ng/mL bFGF定向诱导分化为增殖能力强的“铺路石”样祖细胞。同时,差异贴壁法有助于EPC的筛选。而EPC可诱导3 d的祖细胞高表达CD133和CD34(相对表达量分别为0.88 ± 0.04和2.12 ± 0.02);采用acctuse酶消化祖细胞,并在50 ng/mL VEGF和25 ng/mL bFGF的条件下诱导7 d分化为血管内皮样细胞,该细胞不仅高表达内皮细胞标志基因CD31、CD144、LAMA5、Tek、KDR和vWF,高表达标志蛋白CD31、CD144、LAMA5(相对表达量分别为1.07 ± 0.03、0.60 ± 0.02和0.70 ± 0.02),而且具有良好的迁移、成管和Weibel Palade (W-P) 小体形成能力。随后,将PBS、EPC和VEC分别应用于大小相同的创面治疗,EPC和VEC均能加快组织愈合程度(相对愈合率分别为78.93 ± 75.35%、95.57 ± 83.73%和100.00 ± 0.00%),VEC明显增强了伤口的血管生成能力和炎症反应。该研究初步证实,mESC衍生的EPC定向诱导7 d后可分化为血管内皮细胞。此内皮细胞具有较好的组织修复功能,干细胞促进血管生成的生理途径有望成为组织重塑的新靶点。  相似文献   

12.
13.
Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.  相似文献   

14.

Background

Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain tumor vascularisation and promote the metastatic switch. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca2+ entry (SOCE), which is activated by a depletion of the intracellular Ca2+ pool, regulates the growth of human EPCs, where is mediated by the interaction between the endoplasmic reticulum Ca2+-sensor, Stim1, and the plasmalemmal Ca2+ channel, Orai1. As oncogenesis may be associated to the capability of tumor cells to grow independently on Ca2+ influx, it is important to assess whether SOCE regulates EPC-dependent angiogenesis also in tumor patients.

Methodology/Principal Findings

The present study employed Ca2+ imaging, recombinant sub-membranal and mitochondrial aequorin, real-time polymerase chain reaction, gene silencing techniques and western blot analysis to investigate the expression and the role of SOCE in EPCs isolated from peripheral blood of patients affected by renal cellular carcinoma (RCC; RCC-EPCs) as compared to control EPCs (N-EPCs). SOCE, activated by either pharmacological (i.e. cyclopiazonic acid) or physiological (i.e. ATP) stimulation, was significantly higher in RCC-EPCs and was selectively sensitive to BTP-2, and to the trivalent cations, La3+ and Gd3+. Furthermore, 2-APB enhanced thapsigargin-evoked SOCE at low concentrations, whereas higher doses caused SOCE inhibition. Conversely, the anti-angiogenic drug, carboxyamidotriazole (CAI), blocked both SOCE and the intracellular Ca2+ release. SOCE was associated to the over-expression of Orai1, Stim1, and transient receptor potential channel 1 (TRPC1) at both mRNA and protein level The intracellular Ca2+ buffer, BAPTA, BTP-2, and CAI inhibited RCC-EPC proliferation and tubulogenesis. The genetic suppression of Stim1, Orai1, and TRPC1 blocked CPA-evoked SOCE in RCC-EPCs.

Conclusions

SOCE is remodelled in EPCs from RCC patients and stands out as a novel molecular target to interfere with RCC vascularisation due to its ability to control proliferation and tubulogenesis.  相似文献   

15.
Hematopoietic stem cells transplantation (HSCT) causes endothelial cell damage, disrupting hematopoietic microenviroment and leading to various complications. We hypothesized that infusion of endothelial progenitor cells (EPCs) may improve endothelium repair, facilitate hematopoietic reconstitution, and alleviate complications associated with HSCT. C57Bl6, and BALB/c mice received total body irradiation followed by infusion of C57Bl6-derived bone marrow (BM) cells, with or without concomitant infusion of C57Bl6-derived EPCs. The time course of hematopoietic and immune reconstitution and the severity of the graft-versus-host disease (GVHD) were monitored. Further, to confirm that EPCs promote endothelial cell recovery, HSCT mice were treated with anti-VE-cadherin antibody targeting the endothelium. The EPCs-treated mice exhibited accelerated recovery of BM vasculature, cellularity, hematopoietic stem and progenitor cell recovery, improved counts of lymphocyte subsets in peripheral blood, and facilitated spleen structure reconstruction. EPCs infusion also ameliorated the GVHD in the C57Bl6????BALB/c allo-HSCT model. Systemic administration of anti-VE-cadherin antibody significantly delayed hematological and immune reconstitution in the EPCs-infused mice. In conclusion, our data demonstrate that infusion of EPCs augments the hematopoietic and immune reconstitution, and alleviates the GVHD. These findings further highlight the relationship between the microvascular recovery, hematopoietic and immune reconstitution, and the GVHD.  相似文献   

16.
胚胎干细胞在不同的诱导条件下具有多向分化的潜能,多种胞内外信号途径参与其分化过程的调控。现就胚胎干细胞向血管内皮细胞分化的诱导条件及分子机制做一综述,并阐明不同阶段的内皮前体细胞所表达的不同分子标志,同时提出胚胎干细胞在再生医学中的应用前景。  相似文献   

17.
18.
Abstract

The present study examined the cellular functions of low-molecular-weight protein tyrosine phosphatase (LMW-PTP), which consists of two active isoforms IF-1 and IF-2, in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), focusing on cell growth and migration. We transduced recombinant IF-1 and IF-2, and ribozyme targeting both isoforms using an adenovirus vector in these cells. We detected the expression of IF-1 and IF-2 in both types of cells. IF-1 as well as IF-2 inhibited PDGF-induced DNA synthesis and migration in VSMCs. In contrast, both isoforms enhanced lysophosphatidic acid-stimulated cell migration without change in DNA synthesis in ECs. Whereas there is a report indicating that reactive oxygen species-dependent inactivation of LMW-PTP regulates actin cytoskeleton reorganization during cell spreading and migration, the isoforms conversely suppressed the PDGF-induced H2O2 generation with subsequent decrease in the p38 activity in VSMCs. Catalytically inactive LMW-PTP exerted the opposite and similar effects to the wild type in ECs and in VSMCs, respectively, suggesting that substrates for the phosphatase differ between these cells. Moreover, high concentrations of glucose suppressed the expression of LMW-PTP in both cells. These data suggest that LMW-PTP negatively regulates the pathogenesis of atherosclerosis and that glucose-dependent suppression of LMW-PTP expression may promote the development of atherosclerosis in diabetics.  相似文献   

19.
20.

Background

Impairment of endothelial progenitor cells (EPCs) has been shown to contribute to the development of bronchopulmonary dysplasia (BPD). In the current study, the relationship between EPC changes of after birth and the development of BPD was investigated, and the effects of inhaled nitric oxide (iNO) on EPCs were evaluated.

Methods

Sixty infants with a gestational age of less than 32 weeks and a birth weight of less than 1500 g were studied. NO was administered to infants who were receiving mechanical ventilation or CPAP for at least 2 days between the ages of 7 and 21 days. EPC level was determined by flow cytometry at birth, 7, 21 and 28 days of age and 36 weeks’ postmenstrual age (PMA), before and after the iNO treatment. Plasma concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 and granulocyte-macrophage colony-stimulating factor were determined via immunochemical assay.

Results

Twenty-five neonates developed BPD, 35 neonates survived and did not develop BPD. EPC level was decreased on day 7 and 21 in infants who later developed BPD compared with infants that did not develop BPD. From birth to 21 days of age, BPD infants had a persistently lower VEGF concentration compared with non-BPD infants. No difference was found between the two groups at day 28 or 36 weeks PMA. In infants that later developed BPD, iNO raised the KDR+CD133+ and CD34+KDR+CD133+ EPC numbers along with increasing the level of plasma VEGF.

Conclusion

EPC level was reduced at 7 days of age in infants with BPD, and iNO increased the EPC number along with increasing the level of VEGF. Further studies are needed to elucidate the mechanism leading to the decrease of EPCs in infants with BPD and to investigate the role of iNO treatment in the prevention of BPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号