首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study (100 days duration) was conducted to evaluate the efficiency of an exotic earthworm species (epigeic-Eisenia foetida) for decomposition of different types of organic substrates (kitchen waste, agro-residues, institutional and industrial wastes including textile industry sludge and fibres) into valuable vermicompost. The percentage of, nitrogen, phosphorous and potassium in vermicompost was found to increase while pH and total organic carbon declined as a function of the vermicomposting period. 4.4-5.8-fold increases in TKN was observed in different feed mixtures at the end of vermicomposting period. The increase in TKN for different feed substrates was found in the order: textile sludge>textile fibre=institutional waste>agro-residues>kitchen waste. Available Phosphorus increased 1.4 to 6.5-fold in different feed mixtures in comparison to control. Reduction in TOC was highest in agro-residues (3-fold) followed by kitchen waste (2.2-fold), institutional waste (1.7-fold) and textile industrial wastes (sludge, 1.5-fold and fibre, 1.68-fold) in earthworm-inoculated pots than control. The data reveals that vermicomposting (using E. foetida) is a suitable technology for the decomposition of different types of organic wastes (domestic as well as industrial) into value-added material.  相似文献   

2.
Adi AJ  Noor ZM 《Bioresource technology》2009,100(2):1027-1030
Vermicomposting using Lumbricus rubellus for 49 days was conducted after 21 days of pre-composting. Three different combination of treatments were prepared with eight replicates for each treatment namely cow dung: kitchen waste in 30:70 ratio (T(1)), cow dung: coffee grounds in 30:70 ratio (T(2)), and cow dung: kitchen waste: coffee grounds in 30:35:35 ratio (T(3)). The multiplication of earthworms in terms of numbers and weight were measured at the end of vermicomposting. Consequently, only T(2) showed significant increase (from it initial stage) compared to other treatments. The presence of coffee grounds in T(2) and T(3) showed higher percentage of nutrient elements in vermicompost produced. The data reveal that coffee grounds can be decomposed through vermicomposting and help to enhance the quality of vermicompost produced rather than sole use of kitchen waste in vermicomposting.  相似文献   

3.
An epigeic (surface dweller) earthworm species Eisenia fetida and an anecic (deep burrower) earthworm species Lampito mauritii have been tested for decomposition of kitchen waste plus cow dung. Chemical analyses of worm-worked substrates by both species showed g/kg increases in nitrogen, phosphorus and potassium and decreases in C/N and C/P ratios after 150 days of vermicomposting. However, organic carbon matter showed reduction in their amounts for 3-4 months and afterwards slightly increased up to 150 days. E. fetida produced 0.27%, 156%, 41% and 38% increases in organic carbon, nitrogen, phosphorus, and potassium as well as 61% and 29% decreases in C/N and C/P ratios as compared to control after 150 days of earthworm inoculation. In contrast, L. mauritii produced 14%, 102%, 33% and 42% increases in organic carbon, nitrogen, phosphorus and potassium as well as 43% and 14% decreases in C/N and C/P ratios as compared to control after 150 days of earthworm activity. There was moderate mineralization and faster decomposition by E. fetida in comparison to moderate mineralization and moderate decomposition by L. mauritii. The average numbers of cocoons and adults produced were greater by E. fetida than by L. mauritii after 150 days. These results indicate E. fetida may be a better adapted species for decomposition of kitchen waste plus cow dung under tropical conditions.  相似文献   

4.
The decomposition efficiency of Perionyx sansibaricus (Perrier) for vermicomposting was evaluated by using a variety of wastes such as agriculture waste, farm yard manure and urban solid waste. Vermicomposting resulted in significant increase in total N (80.8-142.3%), phosphorous (33.1-114.6%) and potassium (26.3-125.2%), whereas decrease in organic C (14.0-37.0%) as well as C:N ratio (52.4-69.8%) in different experimental beddings. P. sansibaricus showed maximum biomass production, growth rate (mg day(-1)), mean cocoon numbers, and reproduction rate (cocoon worm(-1)) in VLL (vegetable waste+leaf litter) as compared to other substrate materials. There was a consistent trend for earthworms' growth and reproduction rate, related to initial N-content of the substrate (P<0.05), but there was no clear effect of C:N ratio of the composted material on earthworm cocoon numbers and weight gain. Earthworm showed minimum total population mortality in VLL and maximum in HHCD (household waste+cow dung), after 150 days of experimentation. The increased level of plant metabolites in end product (vermicompost) and growth patterns of P. sansibaricus in different organic waste resources demonstrated the candidature of this species for wastes recycle operations at low-input basis.  相似文献   

5.
The aim of this work was to study the effect of different organic wastes, viz. cow dung, grass, aquatic weeds and municipal solid waste with lime and microbial inoculants on chemical and biochemical properties of vermicompost. Cow dung was the best substrate for vermicomposting. Application of lime (5 g/kg) and inoculation of microorganisms increased the nutrient content in vermicompost and also phosphatases and urease activities. Bacillus polymyxa, the free-living N-fixer, increased N-content of vermicompost significantly (p < or = 0.01) as compared to other inoculants.  相似文献   

6.
Vermitechnology was investigated as a means of reducing organic waste materials. Vermicomposting conditions were optimized to convert the biowastes to nutritious composts for amending agricultural soil. Studies were undertaken to select the most suitable earthworm species for vermicomposting, to enrich vermicompost by inoculation with beneficial microbes, to standardize an economically feasible method of vermicomposting, to achieve nutrient economy through vermicompost application in acid soils (pH 4.5), and to assess the performance of vermicompost as a bioinoculant in cow-pea, banana, and cassava. Earthworm species Eudrillus eugineae, Eisenia foetida, Perionyx sansibaricus, Pontoscolex corethrurus and Megascolex chinensis were compared for their efficiencies in biodegrading organic wastes. E. eugineae was found to be a superb agent. As a bioinoculant, vermicompost increased nitrogen and phosphorous availability by enhancing biological nitrogen fixation and phosphorous solubilisation. Vermicompost-amended acid-agriculture-soil significantly improved the yield, biometric character and quality of banana, cassava and cow-pea. Vermicompost application stimulated root growth, facilitating nutrient absorption and thereby favouring higher yield.  相似文献   

7.
Suthar S 《Bioresource technology》2006,97(18):2474-2477
Recycling of guar gum industrial waste through vermitechnology was studied under laboratory conditions by using composting earthworm Perionyx excavatus (Perrier). Three different combination of guar gum industrial waste namely guar gum industrial waste:cow dung:saw dust in 40:30:30 ratio (T1), guar gum industrial waste:cow dung:saw dust in 60:20:20 ratio (T2), and guar gum industrial waste:cow dung:saw dust in 75:15:10 ratio (T3) were used for vermicomposting experiments. Chemical changes during vermicomposting were measured and comparatively T2 showed great increase (from its initial level) for total N (25.4%), phosphorus (72.8%) and potassium (20.9%) than the other treatments. T2 also showed higher vermicomposting coefficient (VC), higher mean biomass for P. excavatus (146.68 mg) and higher cocoon production (about 21.9% and 645.5% more than the T1 and T3, respectively). Maximum earthworm mortality during vermicomposting was recorded with T3 treatment while zero mortality was recorded for T2 treatment after 150 days. Overall, T2 treatment appeared to be an ideal combination for enhancing maximum biopotential of earthworms to management guar gum industrial waste as well as for earthworm biomass and cocoon production.  相似文献   

8.
The aim of this work was to test combination of the thermocomposting and vermicomposting to improve the treatment efficiency and assess the optimum period required in each method to produce good quality compost. The results showed that pre-thermocomposting improved vermicomposting of kitchen waste. A 9-day thermocomposting prior to vermicomposting helped in mass reduction, moisture management and pathogen reduction.  相似文献   

9.
Coffee pulp is the main solid residue from the wet processing of coffee berries. Due to presence of anti-physiological and anti-nutritional factors, coffee pulp is not considered as adequate substrate for bioconversion process by coffee farmers. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. The plant nutrients, nitrogen (80.6%), phosphorus (292%) and potassium (550%) content found to increase significantly in the vermicompost produced using native earthworms as compared to the initial values, while the calcium (85.7%) and magnesium (210%) content found to increase significantly in compost produced utilizing exotic worms. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group’s population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis).  相似文献   

10.
Surindra Suthar   《Bioresource technology》2009,100(24):6422-6427
The aim of this study was to assess the potential of Allolobophora parva Eisen as a candidate for vermicomposting practices. Five organic waste mixtures: cow dung (CD), biogas plant slurry (BGS), cow dung + vegetable waste (CD + VW), BGS + VW and VW + Soil were vermicomposted using A. parva. Vermicomposting showed a decrease in pH, organic C and C:N ratio, but increase total N, available P and exchangeable K at the end. C:N ratio of end material (vermicompost) was within the agronomic acceptable limit (<20). The high level of NPK in worm-processed material indicates the candidature of this species for waste management operations. The earthworm also showed an excellent growth in different wastes. Results thus indicate that A. parva appeared a potential tool for conversion of organic wastes into value added products for sustainable land restoration practices.  相似文献   

11.
Industrial wastes and sludges management by vermicomposting   总被引:3,自引:0,他引:3  
Vermicomposting has been arising as an innovative ecotechnology for the conversion of various types of wastes into vermicompost. Vermicompost is humus like, finely granulated and stabilized material which can be used as a soil conditioner to reintegrate the organic matter to the agricultural soils. Industrial wastes remain largely unutilized and often cause environmental problems like ground and surface water pollution, foul odours, occupying vast land areas etc. Non-toxic and organic industrial wastes could be potential raw material for vermitechnology. In the last two decades, vermitechnology has been applied for the management of industrial wastes and sludges and to convert them into vermicompost for land restoration practices. The success of the process depends upon several process parameters like quality of raw material, pH, temperature, moisture, aeration etc., type of vermicomposting system and earthworm species used. The review discusses the vermitechnology and the present state of research in the vermicomposting industrial sludges and wastes.  相似文献   

12.
Comparative studies were performed to evaluate composting potential, biomass growth and biology of a non-native (Eisenia fetida) and an endemic (Lampito mauritii) species of earthworm in the semiarid environment of Jodhpur district of Rajasthan in India. Earthworms were reared in a mixed bedding material comprised of biogas slurry, cowdung, wheat straw, leaflitter, sawdust and kitchen waste. The percentage of organic carbon of the culture bedding material declined upto 105 days with E. fetida and 120 with L. mauritii. The percentage of nitrogen, phosphorous and potassium increased as a function of the vermicomposting period. In contrast, C/N and C/P ratios decreased day by day. Both species were effective for decomposition and mineralization of mixed bedding in the semiarid environment. A comparative assessment of biomass growth of E. fetida and L. mauritii was done under controlled laboratory conditions. The optimum temperature, moisture content and pH for E. fetida were 25 degrees C, 70% and 6.5, respectively. However, the optimum temperature, moisture content and pH for growth and development of L. mauritii were 30 degrees C, 60% and 7.5, respectively. The biology and reproductive rates of both species were also studied in the laboratory using mixed bedding. Cocoon production was higher for E. fetida than L. mauritii. The net reproductive rate was 9 per month in the case of E. fetida and 1 per month for L. mauritii. Fertilized eggs of E. fetida and L. mauritii developed into adults within 4 and 5 1/4 months, respectively. These observations indicate E. fetida may be a more efficient breeder than L. mauritii in the desert region of Rajasthan.  相似文献   

13.
Humic substances and three hydrolytic enzymes (beta-glucosidase, phosphatase and urease) were extracted by neutral sodium pyrophosphate from an olive waste (dry olive cake), alone or mixed with municipal biosolids, during a nine month vermicomposting process. Easily degradable compounds decreased during the vermicomposting process because of microbial consumption. When municipal biosolids were added to dry olive cake, microbial activity increased and the amounts of compounds extracted by pyrophosphate were three times lower than olive cake alone. In both instances, beta-glucosidase, phosphatase and urease activities of the organic extracts either increased or remained the same after a nine month period of vermicomposting, thus suggesting that the humus enzyme complexes resisted microbial and earthworm attack. It is known that humus immobilised enzymes also remain active in soil environments, reactivating the nutrient cycles in soil. The use as amendments of vermicomposted olive cake, alone or when mixed with biosolids, could be a good alternative to reactivate the C, P and N-cycles in degraded soils for regeneration purposes.  相似文献   

14.
The utilization of agricultural waste organic materials through composting technology has gained significant traction in agricultural production as an effective means of crop nutrient management. However, the differences in the impact of organic amendments prepared by traditional composting and vermicomposting on soil properties still deserve further research. Based on field experiments conducted in greenhouse, compared to chemical fertilizer treatments as control, we utilized traditional compost (OF) and vermicompost (VcF) derived from agricultural organic waste edible mushroom bran and cow manure (2:8). Variations in soil physiochemical properties, activities of soil enzymes related C and P cycling, abundances and diversities of bacterial 16S rRNA and fungal ITS gene at total DNA level were analyzed. Both compost treatments enhanced soil organic carbon, soil total phosphorus, and soil available P content significantly and also increased the activities of soil α-glucosidase, β-glucosidase, acid phosphomonoesterase, and alkaline phosphomonoesterase significantly. The above results suggested that soil C and P transformations were stimulated effectively by both organic amendments. OF and VcF increased the fungal ITS absolute abundances significantly while diversity indices of soil bacterial community increased significantly under both treatments. Correlation analysis indicated that bacterial community composition was strongly correlated with several soil property indexes while fungal community composition was only significantly correlated with soil total phosphorous content. In conclusion, similar to traditional compost, vermicompost significantly improved soil nutrient cycling (especially C and P aspects). In terms of soil microbes, bacteria and fungi showed different responding mechanism to vermicompost: bacteria adjust microbial structure, while fungi tend to proliferated. In consideration of the advantages of vermicompost in technology and economic cost, it could be applied in the subsequent agricultural production more frequently.  相似文献   

15.
Cadmium (Cd) uptake mediated alterations in functional components of photo assimilation during conversion of cow dung and poultry cast to vermicompost were studied in two Indian rice cultivars; MO 16 and MTU 7029. It was found that higher amount of Cd accumulate in plants grown in soil amended with vermicompost which in turn damaged functional components in photo assimilation. Enhancement of root growth was recognized as reason for Cd accumulation. Metabolic alterations noticed among plants were not taken place during application of raw materials used for vermicomposting such as cow dung and poultry cast amendment. Rice varieties accumulated Cd differentially where MTU 7029 accumulated more Cd compare to MO 16. It was also noticed that existence of negative correlation between zinc status of the plant and Cd accumulation.  相似文献   

16.
Deka H  Deka S  Baruah CK  Das J  Hoque S  Sarma H  Sarma NS 《Bioresource technology》2011,102(24):11212-11217
Laboratory investigation on vermicomposting efficacy of Perionyx excavatus for recycling of distillation waste biomass of java citronella (Cymbopogon winterianus Jowitt) was carried out in two seasonal trials i.e. summer and winter periods. The experiment was conducted in earthen pots using a mixture of citronella waste material and cowdung in the proportion of 5:1. A control treatment without earthworms was setup for comparison of the results. The vermicompost had shown 5.8 folds reduction in C/N ratio and 5.6 folds enhancement in ash content. The nutrient contents (N, P, K, Ca and Mg) in the vermicompost had increase in the range of 1.2 - 4.1 fold than the initial level. The FT-IR spectra of the vermicompost confirmed increase in nitrogen rich compounds and decrease in aliphatic/aromatic compounds as compared to the initial level of the biowaste materials. The vermicomposting process is influenced by seasonal variation and summer was more productive than winter.  相似文献   

17.
The aim of this study was to couple biochemical and molecular methodologies for evaluating the impact of two recycling technologies (composting and vermicomposting) on a toxic organic waste. To do this, six enzyme activities controlling the key metabolic pathways of the breakdown of organic matter, real-time PCR assays targeting 16S rRNA genes, and denaturing gradient gel electrophoresis (DGGE) profiling-sequence analysis of PCR-amplified 16S rRNA fragments have been used to determine the functional diversity, bacterial number, and bacterial community structure, respectively, in a mixture of olive waste and sheep manure, and in the derived compost and vermicompost. Both the recycling technologies were effective in activating the microbial parameters of the toxic waste, the vermicomposting being the best process to produce greater bacterial diversity, greater bacterial numbers and greater functional diversity. Although several identical populations were detected in the processed and non-processed materials, each technology modified the original microbial communities of the waste in a diverse way, indicating the different roles of each one in the bacterial selection.  相似文献   

18.
Vermicomposting is a suitable technology for processing different wastes, to produce a valuable end product (vermicompost). However, the pathogenic load of the waste must be greatly reduced in order to prevent risks to human health. Although Eisenia andrei may reduce the levels of several pathogens, the feasibility of vermicomposting, with regard to pathogen reduction, has not been tested on an industrial scale. This work studied whether vermicomposting in a continuous feeding vermireactor, is able to reduce the pathogenic load of cow manure. The effect of E. andrei on pathogens depended on the type of pathogen; thus, levels of Clostridium, total coliforms and Enterobacteria were not modified, but levels of faecal enterococci, faecal coliforms and Escherichia coli were reduced to acceptable levels. Pathogens could have maintained their levels in continuous feeding vermireactors, as fresh layers of manure are added to the top, which allows the vertical spread of pathogens through leaching.  相似文献   

19.
Investigations were made to explore the potential of an epigeic earthworm Eisenia foetida to transform textile mill sludge spiked with poultry droppings in to value added product, i.e., vermicompost. The growth and reproduction of E. foetida was monitored in a range of different feed mixtures for 77 days in the laboratory under controlled experimental conditions. The maximum growth was recorded in 100% cow dung (CD). Replacement of poultry droppings by cow dung in feed mixtures and vice versa had little or no effect on worm growth rate and reproduction potential. Worms grew and reproduced favourably in 70% poultry droppings (PD)+30% solid textile mill sludge (STMS) and 60% PD+40% STMS feed mixtures. Greater percentage of STMS in the feed mixture significantly affected the biomass gain and cocoon production. Net weight gain by earthworms in 100% CD was 2.9-18.2 fold higher than different STMS containing feed mixtures. The mean number of cocoon production was between 23.4+/-4.65 (in 100% CD) and 3.6+/-1.04 (in 50% PD+50% STMS) cocoons earthworm(-1) for different feed mixtures tested. Vermicomposting resulted in significant reduction in C:N ratio and increase in nitrogen and phosphorus contents. Total potassium, total calcium and heavy metals (Fe, Zn, Pb and Cd) contents were lower in the final product than initial feed mixtures. Our trials demonstrated vermicomposting as an alternate technology for the recycling and environmentally safe disposal/management of textile mill sludge using an epigeic earthworm E. foetida if mixed with poultry droppings.  相似文献   

20.
A comparative study was conducted between exotic and local (epigeic--Eisenia fetida and anaecic--Lempito mauritii, respectively) species of earthworms for the evaluation of their efficacy in vermicomposting of municipal solid waste (MSW). Vermicomposting of MSW for 42 days resulted in significant difference between the two species in their performance measured as loss in total organic carbon, carbon-nitrogen ratio (C:N) and increase in total Kjeldahl nitrogen, electrical conductivity and total potassium and weight loss of MSW. The change in pH and increase in number of earthworms and cocoons and weight of earthworms were non-significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号