首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phenotypic plasticity in behavior induced by high rearing density is often part of a migratory syndrome in insects called phase polyphenism. Among locust species, swarming and the expression of phase polyphenism are highly correlated. The american grasshopper, Schistocerca americana, rarely swarms even though it is closely related to the swarming Old World desert locust, S. gregaria, as well as two swarming New World locusts. Anecdotal field observations of locust-like behavior in S. americana indicate that it may express behavioral phase polyphenism, but empirical investigations are lacking. In this study, I tested the hypothesis that S. americana expresses locust-like density-dependent changes in behavior during both the first and final nymphal instars. I then compared the expression of behavioral phase change between S. americana and S. gregaria. First instar S. americana exhibited significant geographic variation in behavior with grasshoppers from a North Carolina population expressing more pronounced density-dependent changes relative to grasshoppers from a Texas population. The behavior of final instar S. americana was only slightly affected by rearing density and there was no evidence for a difference between populations. Comparison with S. gregaria revealed that the magnitude of density-dependent behavioral change, particularly among final instar nymphs, was much reduced in S. americana.  相似文献   

2.
During outbreaks, locust swarms can contain millions of insects travelling thousands of kilometers while devastating vegetation and crops. Such large-scale spatial organization is preceded locally by a dramatic density-dependent phenotypic transition in multiple traits. Behaviourally, low-density 'solitarious' individuals avoid contact with one another; above a critical local density, they undergo a rapid behavioural transition to the 'gregarious phase' whereby they exhibit mutual attraction. Although proximate causes of this phase polyphenism have been widely studied, the ultimate driving factors remain unclear. Using an individual-based evolutionary model, we reveal that cannibalism, a striking feature of locust ecology, could lead to the evolution of density-dependent behavioural phase-change in juvenile locusts. We show that this behavioural strategy minimizes risk associated with cannibalistic interactions and may account for the empirically observed persistence of locust groups during outbreaks. Our results provide a parsimonious explanation for the evolution of behavioural plasticity in locusts.  相似文献   

3.
Density-dependent phase polyphenism is a defining characteristic of the paraphyletic group of acridid grasshoppers known as locusts. The cues and mechanisms associated with crowding that induce behavioural gregarization are best understood in the desert locust, Schistocerca gregaria, and involve a combination of sensory inputs from the head (visual and olfactory) and mechanostimulation of the hind legs, acting via a transient increase in serotonin in the thoracic ganglia. Since behavioural gregarization has apparently arisen independently multiple times within the Acrididae, the important question arises as to whether the same mechanisms have been recruited each time. Here we explored the roles of visual, olfactory and tactile stimulation in the induction of behavioural gregarization in the Australian plague locust, Chortoicetes terminifera. We show that the primary gregarizing input is tactile stimulation of the antennae, with no evidence for an effect of visual and olfactory stimulation or tactile stimulation of the hind legs. Our results show that convergent behavioural responses to crowding have evolved employing different sites of sensory input in the Australian plague locust and the desert locust.  相似文献   

4.
Locusts represent an impressive example of migratory polyphenism, with high densities triggering a switch from a solitarious, shorter dispersal range, and sometimes greenish phenotype to a gregarious and sometimes darker form exhibiting behavioral, morphological and physiological traits associated with long-distance migratory swarms. While such polyphenism has been well documented in Locusta migratoria and Schistocerca gregaria, the extent to which other grasshoppers exhibit this type of migratory polyphenism is unclear. Anecdotally, the Chinese grasshopper, Oedaleus asiaticus, forms migratory swarms comprised mostly of a darker, brown-colored morph, but also exhibits a non-migratory green-colored morph that predominates at low densities. In a population in Inner Mongolia not currently exhibiting migratory swarms, we found that while green and brown O. asiaticus are found concurrently across our sampled range, only brown grasshoppers were found in high densities. Differences between field-collected brown and green forms matched some but not key predictions associated with the hypothesis that the brown form is morphologically and physiologically specialized for gregarious migration. Controlling for body mass, brown forms had more massive thoraxes, abdomens and legs, and higher metabolic rates, but not more flight muscle or lipid stores. Further, the brown and green grasshoppers did not differ in gregarious behavior, and neither would fly in multiple lab and field trials. Lab or field-rearing at high densities for one-to-multiple juvenile instars caused grasshoppers to exhibit some morphological traits predicted to benefit migration (larger wings and a shift in relative mass from abdomen to thorax), but did not change color or induce flight behavior. One hypothesis to explain these data is that a migratory form of O. asiaticus is partially triggered by high field densities, but that existing ecological conditions blocked full expression of such traits (and outbreak swarms). Alternatively, color variation in this species may more tightly linked to other functions in this species such as crypsis or disease resistance, and mechanisms other than late-juvenile rearing density (e.g. genetic variation, maternal effects) may be more critical for promoting variation in color and/or migratory polyphenism.  相似文献   

5.
Locust phase polyphenism is an extreme form of density-dependent phenotypic plasticity in which solitary and cryptic grasshoppers can transform into gregarious and conspicuous locusts in response to an increase in local population density. We investigated the evolution of this complex phenotypic plasticity in a phylogenetic framework using a morphological phylogeny of Cyrtacanthacridinae, which contains some of the most important locust species, and a comprehensive literature review on the biology and ecology of all known members of the subfamily. A phylogenetic analysis based on 71 morphological characters yielded a well-resolved tree and found that locust phase polyphenism evolved multiple times within the subfamily. The literature review demonstrated that many cyrtacanthacridine species, both locust and sedentary, are capable of expressing density-dependent color plasticity. When this color plasticity was divided into two smaller components, background coloration and development of black pigmentation, and when these plastic traits were optimized on to the phylogeny, we found that the physiological mechanisms underlying this plasticity were plesiomorphic for the subfamily. We also found that different locust species in Cyrtacanthacridinae express both similarities and differences in their locust phase polyphenism. Because locust phase polyphenism is a complex syndrome consisting of numerous plastic traits, we treat it as a composite character and dissected it into smaller components. The similarities among locust species could be attributed to shared ancestry and the differences could be attributed to the certain components of locust phase polyphenism evolving at different rates.
© The Willi Hennig Society 2007.  相似文献   

6.
Attempts to uncover the adaptive significance of density-dependent colour polyphenism in the desert locust, Schistocerca gregaria (Orthoptera: Acrididae), have been unsuccessful. Desert locust juveniles can change colour as part of a phenotypically plastic response to changes in local population density known as phase polyphenism. They are typically cryptic in colour at low rearing density (solitarious phase), but become conspicuous at high density (gregarious phase). Recent evidence indicates that this colour change functions interspecifically as an aposematic signal. Other recent evidence, however, suggests that previous attempts to demonstrate an intraspecific function of gregarious coloration in mediating group interactions among locusts may have been confounded by the effects of multiple sensory cues. We reinvestigated the intraspecific function of density-dependent colour polyphenism and specifically controlled for potentially confounding olfactory and tactile cues. We found no effect of gregarious phase (yellow and black) coloration as either a gregarizing stimulus to behaviourally solitarious locusts or as a visual aggregation stimulus behaviourally to gregarious locusts. We did, however, find that nonmoving solitarious phase (green) coloration significantly increased the activity levels of behaviourally gregarious locusts. We cannot explain this result and its biological relevance remains unknown. In the absence of support for the intraspecific visual cue hypothesis, we favour an aposematic perspective on the function of density-dependent colour polyphenism in the desert locust. The aposematic perspective parsimoniously accounts for density-dependent changes in both colour and behaviour. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

7.
Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with those on the desert locust and other relevant studies. We attribute the presence of density-dependent phenotypic plasticity in the non-swarming Schistocerca species to phylogenetic conservatism, but there may be a possible role of local adaptation in further shaping the ultimate expressions of plasticity.  相似文献   

8.
The density-dependent phase polyphenism in locusts offers an excellent model to investigate the epigenetic regulatory mechanisms underlying phenotypic plasticity. In this study, we identified histone-modifying enzymes mediating histone post-translational modifications, which serve as a major regulatory mechanism of epigenetic processes, on the basis of the whole genome sequence of the migratory locust, Locusta migratoria. We confirmed the existence of various functional histone modifications in the locusts. Compared with other sequenced insect genomes, the locust genome contains a richer repertoire of histone-modifying enzymes. Several locust histone-modifying enzymes display vertebrate-like characteristics, such as the presence of a Sirt3-like gene and multiple alternative splicing of GCN5 gene. Most histone-modifying enzymes are highly expressed in the eggs or in the testis tissues of male adults. Several histone deacetylases and H3K4-specific methyltransferases exhibit differential expression patterns in brain tissues between solitarious and gregarious locusts. These results reveal the main characteristics of histone-modifying enzymes and provide important cues for understanding the epigenetic mechanisms underlying phase polyphenism in locusts.  相似文献   

9.
Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food‐related behaviors and a specific gene family called foraging (for), which encodes a cGMP‐dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long‐term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well‐established phase‐related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
Chemical communication plays an important role in density‐dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3‐butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4‐vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4‐vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4‐vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation.  相似文献   

11.
Phase polyphenism and preventative locust management   总被引:1,自引:0,他引:1  
The ecology of phase polyphenism plays a major role in locust swarm formation. We describe how recent advances in the understanding of phase polyphenism can be combined with existing management approaches as part of a preventative Desert locust management strategy. We start with a brief overview of phase polyphenism with particular emphasis on the role that resource distribution patterns play in the process of locust phase change. We then review current perspective on preventative locust management, and conclude by proposing a framework for quantitatively assessing the risk that phase change will occur in local locust populations. Importantly, the data required to implement this framework can be readily collected with little additional effort or cost just by slightly modifying locust habitat survey protocols that are already in operation. Incorporating gregarization risk assessment into existing preventative management strategies stands to make a considerable contribution toward realizing sustainable goals of reductions in the pesticide, manpower and financial support necessary to combat Desert locust upsurges, outbreaks and ultimately plagues.  相似文献   

12.
Locusts are grasshopper species that exhibit phase polyphenism resulting in the expression of gregarious behaviors that favor the development of large devastating bands and swarms. Desert locust preventative management aims to prevent crop damage by controlling populations before they can reach high densities and form mass migrating swarms. The areas of potential gregarization for Desert locust are large and need to be physically assessed by survey teams for efficient preventative management. An ongoing challenge is to be able to guide where prospection surveys should occur depending on local meteorological and vegetation conditions. In this study, we analyzed the relationship between historical prospection data of Desert locust observations from 2005 to 2009 and spatio-temporal statistics of a vegetation index gathered by remote-sensing with the help of multiple models of logistic regression. The vegetation index was a composite Normalized Difference Vegetation Index (NDVI) given every 16 days and at 250 m spatial resolution (MOD13Q1 from MODIS satellite). The statistics extracted from this index were: (1) spatial means at different scales around the prospection point, (2) relative differences of NDVI variation through time before the prospection, and (3) large-scale summary of vegetation quantity. The multi-model framework showed that vegetation development a month and a half before the survey was amongst the best predictors of locust presence. Also, the local vegetation quantity was not enough to predict locust presence. Vegetation quantity on a scale of a few kilometers was a better predictor but varied non-linearly, reflecting specific biotope types that support Desert locust development. Using one of the best logistic regression models and NDVI data, we were able to derive a predictive model of probability of finding locusts in specific areas. This methodology should help in more efficiently focusing survey efforts on specific parts of the gregarization areas based on the predicted probability of locusts being present.  相似文献   

13.
封传红  张梅  马利  白马吞珠  黄冲  沈丽  李庆  郭聪 《生态学报》2020,40(20):7534-7542
西藏飞蝗Locusta migratoria tibetnsis Chen暴发成灾的重要原因之一是蝗蝻具有群集迁移危害习性。为阐明西藏飞蝗灾变的行为机制,为西藏飞蝗的监测预警和防治提供科学依据,利用视频跟踪技术测定了自然环境中西藏飞蝗蝗蝻群集迁移的运动速度、方向,建立自推进粒子模型模拟蝗蝻群集迁移行为,分析群集迁移效应。结果表明,①不同自然环境中的西藏飞蝗蝗蝻在群集迁移过程中,群体内个体的运动表现出定向集体运动,群集迁移速度为0.1256 m/s,0.2 m以内的个体蝗蝻方向趋向一致。沙滩、翻耕农田和草地蝗蝻群运动一致性参数均较高,分别为0.8502、0.7870和0.6987。②西藏飞蝗蝗蝻群由分散运动转变为群集迁移存在临界密度,密度较低时群体内个体分散运动,当蝗蝻密度达到12-15头/m2时,蝗蝻群体由分散运动转变为高度一致的群集迁移运动。③蝗蝻群通过群集迁移可以显著增加迁移距离,随机运动蝗蝻1 d扩展只有70-80 m,而群集迁移1 d最大距离可达2.5 km。蝗蝻群集迁移可以提高发现特别是远距离食物等资源的概率,使群体中更多的个体受益。④尽管未发现室外蝗蝻群存在先验个体,但模拟发现在群集迁移群体中,只需要少数先验个体(3%-5%)即可引导整个蝗蝻群运动。  相似文献   

14.
Desert locusts [Schistocerca gregaria Forskål (Orthoptera, Acrididae)] change phase in response to population density: solitarious insects avoid one another, but when crowded they change to the gregarious phase and aggregate. The attraction/repulsion responses of gregarious and solitarious locusts maintain phase differences in locust populations. Despite considerable research, the cues for aggregation are poorly understood; moreover, the repulsion response of solitarious locusts has not previously been investigated. This study analyzes the role of visual and olfactory stimuli in triggering these different responses to conspecifics. Isolation-reared insects were repelled by both olfactory and visual stimuli from other locusts. Crowd-reared insects were attracted by the combination of olfactory and visual cues. In addition, olfactory stimuli affected other behaviors in both phases, and behavioral differences between isolation- and crowd-reared locusts were clear even in the absence of conspecifics. The sensory and neurological mechanisms underlying these responses are not well understood and will form the basis for neurobiological investigations of locust phase.  相似文献   

15.
16.
17.
1. The density‐dependent prophylaxis hypothesis predicts that individuals in high‐density populations will invest more resources in immune defence than individuals at lower densities. 2. However, recent work suggests that this prediction may not apply to all situations; solitarious species may paradoxically have higher scores than crowded counterparts in certain immune assays. 3. To investigate the relationship between a key immune parameter and field population densities, the total haemocyte counts (THCs) of Australian plague locusts (Chortoicetes terminifera) from three population densities in Western Australia were compared. 4. THCs were negatively correlated with field population densities, and locusts removed from a marching band and kept in isolation had increased THCs relative to group‐housed controls. 5. These results demonstrate that immune investment can inversely relate to population density in field conditions. 6. We suggest that isolated locusts increase their haemocyte densities relative to crowded conspecifics in response to potentially greater exposure to parasitoids and nematodes.  相似文献   

18.
A behavioural analysis of phase change in the desert locust   总被引:2,自引:0,他引:2  
A programme of research into phase change in the desert locust, Schistocerca gregaria, is described. The ability to change phase between solitarious and gregarious forms in response to population density is a key feature of locusts and is central to their occasional yet catastrophic impact on humans. Phase polymorphism is an extreme form of phenotypic plasticity. The most labile phase characteristic is behaviour. It is argued that a fully integrated study of behavioural phase change provides a powerful tool for understanding both the mechanisms of phase change and locust population dynamics, both of which offer possibilities for improved management and control of desert locust plagues. An assay for measuring behavioural phase-state in individual locusts was derived, based on logistic regression analysis. Experiments are described that used the assay to quantify the time-course of behavioural change, both within the life of individual locusts and across generations. The locust-related stimuli that provoke behavioural gregarization were investigated. Complex interactions were found between tactile, visual and olfactory stimuli, with the former exerting the strongest effect. Behavioural analysis also directed a study of the mechanisms whereby adult females exert an epigenetic influence over the phase-state of their developing offspring. Female locusts use their experience of the extent and recency of being crowded to predict the probability that their offspring will emerge into a high-density population, and alter the development of their embryos accordingly through a gregarizing agent added to the foam that surrounds the eggs at laying. There is also a less pronounced paternal influence on hatchling phase-state. An understanding of the time-course of behavioural phase change led to a study of the effect of the fine-scale distribution of resources in the environment on interactions between individual locusts, and hence on phase change. This, in turn, stimulated an exploration of the implications of individual behavioural phase change for population dynamics. Cellular automata models were derived that explore the relationships between population density, density of food resources and the distribution of resources in the environment. The results of the simulation showed how the extent of gregarization within a population increases with rising population size relative to food abundance and increasing concentration of food resources. Of particular interest was the emergence of critical zones across particular combinations of resource abundance, resource distribution and population size, where a solitarious population would rapidly gregarize. The model provided the basis for further laboratory and field experiments, which are described.  相似文献   

19.
Density-dependent aposematism in the desert locust   总被引:1,自引:0,他引:1  
The ecological processes underlying locust swarm formation are poorly understood. Locust species exhibit phenotypic plasticity in numerous morphological, physiological and behavioural traits as their population density increases. These density-dependent changes are commonly assumed to be adaptations for migration under heterogeneous environmental conditions. Here we demonstrate that density-dependent nymphal colour change in the desert locust Schistocerca gregaria (Orthoptera: Acrididae) results in warning coloration (aposematism) when the population density increases and locusts consume native, toxic host plants. Fringe-toed lizards (Acanthodactylus dumerili (Lacertidae)) developed aversions to high-density-reared (gregarious-phase) locusts fed Hyoscyamus muticus (Solanaceae). Lizards associated both olfactory and visual cues with locust unpalatability, but only gregarious-phase coloration was an effective visual warning signal. The lizards did not associate low rearing density coloration (solitarious phase) with locust toxicity. Predator learning of density-dependent warning coloration results in a marked decrease in predation on locusts and may directly contribute to outbreaks of this notorious pest.  相似文献   

20.
The behaviour of herbivorous insects is influenced by their nutritional state. Nutrition-induced behavioural changes are often interpreted as adaptive mechanisms for controlling nutrient intake; however, their influence on other life history traits has received far less attention. We investigated the effect of food quality and distribution on the behaviour and phase state of desert locusts, Schistocerca gregaria Forsk?l (Orthoptera, Acrididae), which change from the 'solitarious' to the 'gregarious' phase in response to population density. Phase change involves many morphological, physiological and behavioural changes. Solitarious insects are cryptic whereas gregarious locusts aggregate. Individual phase change is stimulated by mechanical contact with other locusts. A clumped resource distribution promotes change to the gregarious phase by increasing crowding and contact between individuals. In this study, we found that the effect of food distribution on locust phase depended on the nutritional quality of the food. We used three synthetic food treatments: near optimal, dilute and a choice of two unbalanced but complementary foods. Clumped resource distribution led to increased gregarization in the dilute and the complementary diet treatments. This effect was particularly pronounced on the complementary foods, owing to the interaction of crowding and locomotion. Gregarization was most pronounced in the dilute diet treatment, owing to increased activity. These diet-induced effects are explained in terms of behavioural changes in locomotion, quiescence and feeding that are consistent with what is known from earlier work on locust feeding behaviour and behavioural phase change. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号