首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Listeria monocytogenes is an intracellular food-borne pathogen causing listeriosis in humans. This bacterium deploys an arsenal of virulence factors that act in concert to promote cellular infection. Bacterial surface proteins are of primary importance in the process of host cell invasion. They interact with host cellular receptors, inducing/modulating specific cellular responses. We previously identified Vip, a Listeria surface protein covalently attached to the bacterial cell wall acting as a key virulence factor. We have shown that Vip interacts with Gp96 localized at the surface of host cells during invasion and that this interaction is critical for a successful infection in vivo. To better understand the importance of Vip-Gp96 interaction during infection, we aimed to characterize this interaction at the molecular level. Here we demonstrate that, during infection, L. monocytogenes triggers the cellular redistribution of Gp96, inducing its exposure at the cell surface. Upon infection, Gp96 N-terminal domain is exposed to the extracellular milieu in L2071 fibroblasts and interacts with Vip expressed by Listeria. We identified Gp96 (Asp1–Leu170) as sufficient to interact with Vip; however, we also showed that the region Tyr179–Leu390 of Gp96 is important for the interaction. Our findings unravel the Listeria-induced surface expression of Gp96 and the topology of its insertion on the plasma membrane and improve our knowledge on the Vip-Gp96 interaction during Listeria infection.  相似文献   

2.
Listeria monocytogenes is a facultative intracellular pathogen that causes gastroenteritis, meningitis, encephalitis and maternofetal infections. 20–30% of eubacterial ORFs are predicted to encode membrane proteins. The bacterial cytoplasmic membrane is a macromolecular structure, which plays a key role for the pathogenesis. Despite this, little knowledge exists regarding the function of cytoplasmic membrane proteins of Listeria during infection. Here, we investigated a predicted membrane protein of the pathogen L. monocytogenes, Lmo0412, of unknown function. Lmo0412 is only present in the Listeria genus and low conserved in the non-pathogenic species L. innocua. Bacterial fractionation and western blot analyses showed that Lmo0412 was only detectable in the membrane of L. monocytogenes EGDe during logarithmic growth phase. lmo0412 expression in L. monocytogenes was down-regulated during in vitro infection of JEG-3 epithelial cells. An L. monocytogenes mutant deficient in this membrane protein showed increased invasion of Caco-2 and NRK-49F host cells using in vitro infection models. Moreover, the lack of Lmo0412 in this deletion mutant increased the viable bacteria counts in the spleen and liver of mice compared to the wild type strain. Taken together, these data suggest a selective advantage conferred by the absence of Lmo0412 for the virulence of L. monocytogenes.  相似文献   

3.
For many intracellular bacterial pathogens manipulating host cell survival is essential for maintaining their replicative niche, and is a common strategy used to promote infection. The bacterial pathogen Listeria monocytogenes is well known to hijack host machinery for its own benefit, such as targeting the host histone H3 for modification by SIRT2. However, by what means this modification benefits infection, as well as the molecular players involved, were unknown. Here we show that SIRT2 activity supports Listeria intracellular survival by maintaining genome integrity and host cell viability. This protective effect is dependent on H3K18 deacetylation, which safeguards the host genome by counteracting infection-induced DNA damage. Mechanistically, infection causes SIRT2 to interact with the nucleic acid binding protein TDP-43 and localise to genomic R-loops, where H3K18 deacetylation occurs. This work highlights novel functions of TDP-43 and R-loops during bacterial infection and identifies the mechanism through which L. monocytogenes co-opts SIRT2 to allow efficient infection.  相似文献   

4.
Listeria monocytogenes, which is an intracellular pathogen, causes various illnesses in human as well as in animals. The pathogenicity of this organism depends upon the presence of different virulence genes. A total of 324 tropical seafood and fishery environmental samples were screened for L. monocytogenes. The incidence of the human pathogenic species L. monocytogenes was 1.2 % of the samples. Listeria spp. was detected in 32.3, 27.1, and 5 % of fresh, frozen, and dry fish samples, respectively. Listeria innocua was found to be the most prevalent species of Listeria in the tropical seafood and environmental samples of Kerala. Listeria monocytogenes and L. innocua isolates were confirmed by multiplex PCR. L. monocytogenes isolates from the four positive samples showed phosphatidylinositol-specific phospholipase C reaction on Chromocult® Listeria selective agar. Molecular characterization of L. monocytogenes isolates for virulence genes revealed the presence of β-hemolysin (hly), plcA, actA, metalloprotease (mpl), iap and prfA genes in all the isolates recovered from the positive samples.  相似文献   

5.
6.
Listeria monocytogenes is a gram-positive intracellular pathogen responsible for opportunistic infections in humans and animals. Here we identified and characterized the dtpT gene (lmo0555) of L. monocytogenes EGD-e, encoding the di- and tripeptide transporter, and assessed its role in growth under various environmental conditions as well as in the virulence of L. monocytogenes. Uptake of the dipeptide Pro-[14C]Ala was mediated by the DtpT transporter and was abrogated in a ΔdtpT isogenic deletion mutant. The DtpT transporter was shown to be required for growth when the essential amino acids leucine and valine were supplied as peptides. The protective effect of glycine- and proline-containing peptides during growth in defined medium containing 3% NaCl was noted only in L. monocytogenes EGD-e, not in the ΔdtpT mutant strain, indicating that the DtpT transporter is involved in salt stress protection. Infection studies showed that DtpT contributes to pathogenesis in a mouse infection model but has no role in bacterial growth following infection of J774 macrophages. These studies reveal that DptT may contribute to the virulence of L. monocytogenes.  相似文献   

7.
8.
Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection.  相似文献   

9.
Listeria monocytogenes is a food-borne pathogen that is the causative agent of human listeriosis, an opportunistic infection that primarily infects pregnant women and immunologically compromised individuals. Rapid, accurate discrimination between Listeria strains is essential for appropriate therapeutic management and timely intervention for infection control. A rapid method involving matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) that shows promise for identification of Listeria species and typing and even allows for differentiation at the level of clonal lineages among pathogenic strains of L. monocytogenes is presented. A total of 146 strains of different Listeria species and serotypes as well as clinical isolates were analyzed. The method was compared with the pulsed-field gel electrophoresis analysis of 48 Listeria strains comprising L. monocytogenes strains isolated from food-borne epidemics and sporadic cases, isolates representing different serotypes, and a number of Listeria strains whose genomes have been completely sequenced. Following a short inactivation/extraction procedure, cell material from a bacterial colony was deposited on a sample target, dried, overlaid with a matrix necessary for the MALDI process, and analyzed by MALDI-TOF MS. This technique examines the chemistry of major proteins, yielding profile spectra consisting of a series of peaks, a characteristic “fingerprint” mainly derived from ribosomal proteins. Specimens can be prepared in a few minutes from plate or liquid cultures, and a spectrum can be obtained within 1 minute. Mass spectra derived from Listeria isolates showed characteristic peaks, conserved at both the species and lineage levels. MALDI-TOF MS fingerprinting may have potential for Listeria identification and subtyping and may improve infection control measures.  相似文献   

10.
NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection. NLRC5, the largest member of the NLR family, has recently attracted much attention. However, in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways. The in vivo function of NLRC5 remains unknown. Here, we report that NLRC5 is a critical regulator of host defense against intracellular pathogens in vivo. NLRC5 was specifically required for the expression of genes involved in MHC class I antigen presentation. NLRC5-deficient mice showed a profound defect in the expression of MHC class I genes and a concomitant failure to activate L. monocytogenes-specific CD8+ T cell responses, including activation, proliferation and cytotoxicity, and the mutant mice were more susceptible to the pathogen infection. NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice. However, NLRC5 was dispensable for pathogen-induced expression of NF-κB-dependent pro-inflammatory genes as well as type I interferon genes. Thus, NLRC5 critically regulates MHC class I antigen presentation to control intracellular pathogen infection.  相似文献   

11.
Here we show that cells lacking the heme-regulated inhibitor (HRI) are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors. This effect is due to reduced functioning of the Yersinia type 3 secretion (T3S) system which injects virulence factors directly into the host cell cytosol. Reduced T3S activity is also observed in HRI null cells infected with the bacterial pathogen Chlamydia which results in a dramatic reduction in its intracellular proliferation. We go on to show that a HRI-mediated process plays a central role in the cellular infection cycle of the Gram-positive pathogen Listeria . For this pathogen, HRI is required for the post-invasion trafficking of the bacterium to the infected host cytosol. Thus by depriving Listeria of its intracellular niche, there is a highly reduced proliferation of Listeria in HRI null cells. We provide evidence that these infection-associated functions of HRI (an eIF2α kinase) are independent of its activity as a regulator of protein synthesis. This is the first report of a host factor whose absence interferes with the function of T3S secretion and cytosolic access by pathogens and makes HRI an excellent target for inhibitors due to its broad virulence-associated activities.  相似文献   

12.
BackgroundThe scope of the present work was to characterize the activity of class IIa bacteriocins in Listeria (L.) monocytogenes cells that constitutively express an activated form of PrfA, the virulence master regulator, since bacteriocin sensitivity was only characterized in saprophytic cells so far. The mannose phosphotransferase system (Man-PTS) has been shown to be the class IIa bacteriocin receptor in Listeria; hence, special attention was paid to its expression in virulent bacteria.MethodsL. monocytogenes FBprfA* cells were obtained by transconjugation. Bacterial growth was studied in TSB and glucose containing-minimal medium. Sensitivity to antimicrobial peptides was assessed by killing curves. Membranes of L. monocytogenes FBprfA* cells were characterized using proteomic and lipidomic approaches.ResultsThe mannose phosphotransferase system (Man-PTS) was downregulated upon expression of PrfA*, and these cells turned out to be more sensitive to enterocin CRL35 and pediocin PA-1, while not to nisin. Proteomic and lipidomic analysis showed differences between wild type (WT) and PrfA* strains. For instance, phosphatidic acid was only detected in PrfA* cells, whereas, there was a significant decline of plasmalogen-phosphatidylglycerol in the same strain.ConclusionsOur results support a model in which Man-PTS acts just as a docking molecule that brings class IIa bacteriocins to the plasma membrane. Furthermore, our results suggest that lipids play a crucial role in the mechanism of action of bacteriocins.General significanceThis is the first demonstration of the link between L. monocytogenes virulence and the bacterial sensitivity toward pediocin-like peptides.  相似文献   

13.
The atypical hemolytic Listeria innocua strains PRL/NW 15B95 and J1-023 were previously shown to contain gene clusters analogous to the pathogenicity island (LIPI-1) present in the related foodborne gram-positive facultative intracellular pathogen Listeria monocytogenes, which causes listeriosis. LIPI-1 includes the hemolysin gene, thus explaining the hemolytic activity of the atypical L. innocua strains. No other L. monocytogenes-specific virulence genes were found to be present. In order to investigate whether any other specific L. monocytogenes genes could be identified, a global approach using a Listeria biodiversity DNA array was applied. According to the hybridization results, the isolates were defined as L. innocua strains containing LIPI-1. Surprisingly, evidence for the presence of the L. monocytogenes-specific inlA gene, previously thought to be absent, was obtained. The inlA gene codes for the InlA protein which enables bacterial entry into some nonprofessional phagocytic cells. PCR and sequence analysis of this region revealed that the flanking genes of the inlA gene at the upstream, 5′-end region were similar to genes found in L. monocytogenes serotype 4b isolates, whereas the organization of the downstream, 3′-end region was similar to that typical of L. innocua. Sequencing of the inlA region identified a small stretch reminiscent of the inlB gene of L. monocytogenes. The presence of two clusters of L. monocytogenes-specific genes makes it unlikely that PRL/NW 15B95 and J1-023 are L. innocua strains altered by horizontal transfer. It is more likely that they are distinct relics of the evolution of L. innocua from an ancestral L. monocytogenes, as postulated by others.  相似文献   

14.
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell–cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at ‘tricellular junctions’—specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.  相似文献   

15.
Essential aspects of the innate immune response to microbial infection are conserved between insects and mammals. This has generated interest in using insects as model organisms to study host-microbe interactions. We used the greater wax moth Galleria mellonella, which can be reared at 37°C, as a model host for examining the virulence potential of Listeria spp. Here we report that Galleria is an excellent surrogate model of listerial septic infection, capable of clearly distinguishing between pathogenic and nonpathogenic Listeria strains and even between virulent and attenuated Listeria monocytogenes strains. Virulence required listerial genes hitherto implicated in the mouse infection model and was linked to strong antimicrobial activities in both hemolymph and hemocytes of infected larvae. Following Listeria infection, the expression of immune defense genes such as those for lysozyme, galiomycin, gallerimycin, and insect metalloproteinase inhibitor (IMPI) was sequentially induced. Preinduction of antimicrobial activity by treatment of larvae with lipopolysaccharide (LPS) significantly improved survival against subsequent L. monocytogenes challenge and strong antilisterial activity was detected in the hemolymph of LPS pretreated larvae. We conclude that the severity of septic infection with L. monocytogenes is modulated primarily by innate immune responses, and we suggest the use of Galleria as a relatively simple, nonmammalian model system that can be used to assess the virulence of strains of Listeria spp. isolated from a wide variety of settings from both the clinic and the environment.Listeriae are rod-shaped, motile, facultative, anaerobic Gram-positive bacteria that are ubiquitously distributed in the environment (28). Of the six species that comprise the genus Listeria, only L. monocytogenes and L. ivanovii are pathogenic and cause disease, while strains of the species L. innocua, L. welshimeri, L. seeligeri, and L. grayi are generally considered to be nonpathogenic (26). L. monocytogenes is a major food-borne pathogen, and listeriosis is an invasive disease that in its severest form can lead to meningitis, meningoencephalitis, septicemia, and abortions (38). Listeriosis occurs primarily in pregnant women, newborn infants, and the elderly as well as in immunocompromised patients, with a mortality rate of about 30% (22, 36). The virulence of L. monocytogenes has been linked to a 9.6-kb pathogenicity island designated vgc (virulence gene cluster) that comprises six genes encoding its major virulence determinants. These are (i) prfA, a master regulator of many known listerial virulence genes; (ii) hly, encoding listeriolysin, a hemolysin required for bacterial escape from the host primary vacuole to the host cytoplasm; (iii) two phospholipase genes denoted plcA and plcB, for facilitating lysis of host cell membranes; (iv) actA, encoding a surface bound protein that directs polymerization of host cell actin and is required for intracellular motility; and (v) mpl, encoding a metalloproteinase which is thought to work together with the plcB product to facilitate cell-to-cell spread (28). Presently, identification and characterization of novel virulence factors rely on assessing mutant bacteria for growth in the organs of infected mice. Nevertheless, the dependence on mouse infection models limits large-scale screening for additional mutants defective in their ability to grow in the host intracellularly or for those required to overcome host innate defenses (33).The possibility of addressing many aspects of mammalian innate immunity in invertebrates has opened a new arena for developing invertebrate models to study human infections. Recently the use of invertebrate models, in particular the fruit fly Drosophila melanogaster, has been introduced for the study of septic listerial infections (37). Listeria mutants attenuated for virulence in a mouse model exhibited lowered virulence in this model. The Drosophila model system has powerful genetic tools available and has thus provided deeper insights into molecular mechanisms of the interactions between Listeria and the insect innate immune system (1, 8-10, 18, 24). However, a recent study has shown that even nonpathogenic L. innocua strains cause lethal infections of Drosophila, limiting it use as a discerning model for the study of virulence potential among pathogenic L. monocytogenes isolates (32).We have a longstanding interest in host-pathogen interactions of the greater wax moth, Galleria mellonella, in particular with entomopathogenic microbes (55). Recently, Galleria has also emerged as a reliable model host to study the pathogenesis of many human pathogens (7, 11, 12, 17, 21, 30, 31, 39-42, 44, 46, 48-51). Among the advantages provided by the Galleria model host (e.g., low rearing costs, convenient injection feasibility, and status as an ethically acceptable animal model), it is of particular importance that Galleria has a growth optimum at 37°C, to which human pathogens are adapted and which is essential for synthesis of many virulence/pathogenicity factors. Significantly, a correlation between the virulence of a pathogen in G. mellonella and that in mammalian models has been established (16, 25).The innate immunity of Galleria is a complex, multicomponent response involving hemolymph coagulation, cellular phagocytosis, and phenol oxidase-based melanization. Importantly, killing of pathogens is achieved similarly to that in mammals, i.e., by enzymes (e.g., lysozymes), reactive oxygen species, and antimicrobial peptides (e.g., defensins). Galleria employs recognition of nonself microbe-associated molecular patterns by germ line-encoded receptors (e.g., Toll and peptidoglycan recognition proteins) (52). Recently, we have found that Galleria also senses pathogens by danger signaling, by detecting either nucleic acids released from damaged cells or peptides resulting from proteolytic cleavage of self proteins by matrix metalloproteinases (3-6).In this work we examined the Galleria model of septic infection for its ability to differentially distinguish between infections caused by strains with different virulence potentials in the mouse infection model, as well as in avirulent strains of Listeria. We found that the Galleria model is highly discriminatory in assessing the pathogenic potential of Listeria spp., and we observed a strong correlation with the virulence previously determined in the mouse model of infection. Here, we present data indicating that the Galleria model also replicates many aspects of innate immune function, such as the constitutive expressions of potential antimicrobial factors following infection. Also, prior induction of immunity in Galleria can protect larvae from septic infection with highly pathogenic L. monocytogenes.  相似文献   

16.
17.
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the external environment prior to ingestion and subsequently within the animal host. Growth at high salt concentrations and low temperatures is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We utilized a novel system for generating chromosomal mutations (based on a lactococcal pWVO1-derived Ori+ RepA vector, pORI19) to identify a listerial OpuC homologue. Mutating the operon in two strains of L. monocytogenes revealed significant strain variation in the observed activity of OpuC. Radiolabeled osmolyte uptake studies, together with growth experiments in defined media, linked OpuC to carnitine and glycine betaine uptake in Listeria. We also investigated the role of OpuC in contributing to the growth and survival of Listeria in an animal (murine) model of infection. Altering OpuC resulted in a significant reduction in the ability of Listeria to colonize the upper small intestine and cause subsequent systemic infection following peroral inoculation.  相似文献   

18.
The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids. CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and unexpected function for PNPase in “CRISPRology”.  相似文献   

19.
The genomes of six Listeria bacteriophages were sequenced and analyzed. Phages A006, A500, B025, P35, and P40 are members of the Siphoviridae and contain double-stranded DNA genomes of between 35.6 kb and 42.7 kb. Phage B054 is a unique myovirus and features a 48.2-kb genome. Phage B025 features 3′ overlapping single-stranded genome ends, whereas the other viruses contain collections of terminally redundant, circularly permuted DNA molecules. Phages P35 and P40 have a broad host range and lack lysogeny functions, correlating with their virulent lifestyle. Phages A500, A006, and B025 integrate into bacterial tRNA genes, whereas B054 targets the 3′ end of translation elongation factor gene tsf. This is the first reported case of phage integration into such an evolutionarily conserved genetic element. Peptide fingerprinting of viral proteins revealed that both A118 and A500 utilize +1 and −1 programmed translational frameshifting for generating major capsid and tail shaft proteins with C termini of different lengths. In both cases, the unusual +1 frameshift at the 3′ ends of the tsh coding sequences is induced by overlapping proline codons and cis-acting shifty stops. Although Listeria phage genomes feature a conserved organization, they also show extensive mosaicism within the genome building blocks. Of particular interest is B025, which harbors a collection of modules and sequences with relatedness not only to other Listeria phages but also to viruses infecting other members of the Firmicutes. In conclusion, our results yield insights into the composition and diversity of Listeria phages and provide new information on their function, genome adaptation, and evolution.The opportunistic pathogen Listeria monocytogenes is ubiquitous in nature and can become endemic in food processing environments, causing contamination of dairy products, meats, vegetables, and processed ready-to-eat food (14). L. monocytogenes is the causative agent of epidemic and sporadic listeriosis. The risk of infection is markedly increased among immunocompromised patients, newborns, pregnant women, and the elderly and is associated with a mortality rate of about 20 to 30% (37).Although all strains of L. monocytogenes are considered potentially pathogenic, epidemiological evidence has shown that certain serovars are more frequently associated with both sporadic cases and larger food-borne outbreaks. However, genetic variation within the virulence genes of wild-type strains appears to be limited and could not be directly linked to differences in pathogenicity (30) or environmental distribution.It is becoming increasingly clear that bacteriophages have an important role in bacterial biology, diversity, and evolution, as indicated by the advances in genome sequencing which revealed a high incidence of phage-related sequences in bacterial genomes. Many phages have been described for the genus Listeria, and lysogeny appears to be widespread (28). Availability of the genome sequences of different L. monocytogenes and L. innocua strains also revealed the presence of several different putative prophages in the genomes of these bacteria, constituting up to 7% of the coding capacities of the genomes (15, 32). Although the genomes of L. monocytogenes were found to be essentially syntenic, a significant portion of sequence variability is apparently based upon phage insertions and subsequent rearrangements. Investigations of prophage contributions to population dynamics in Salmonella suggest that prophages can improve the competitive fitness of the lysogenized host strains (5). This type of selective pressure also results in diversification and generation of new strains by lysogenic conversion. In the case of Listeria, however, the potential influence of prophages on their host strains, such as phenotypic variation or provision of selective benefits, has not been investigated. To gain more insight in bacteriophage-host interactions and the molecular biology and characteristics of Listeria phages, more information on the structure, information content, and variability of different Listeria phage genomes is required.Although a number of Listeria phages have been isolated and described (25, 27, 42), only limited information was available at the sequence level for phages PSA, A118, A511, and P100 (9, 19, 26, 41). As the result of a comprehensive study to determine the diversity of this group of bacterial viruses, we here report the complete nucleotide sequences of a representative set of six different Listeria phages from the Siphoviridae (A006, A500, B025, P35, and P40) and Myoviridae (B054) families in the order Caudovirales. In addition to molecular and in silico analyses, we also determined the physical genome structures and attachment loci of the temperate phages, and we describe integration of the B054 prophage into a highly conserved elongation factor gene. Another interesting finding is the unusual decoding used by some of the phages, which use programmed frameshifting to generate C-terminally modified structural proteins required for assembly of the capsid and tail.  相似文献   

20.
Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号