首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recombinant industrial Saccharomyces cerevisiae strain MA-R5 was engineered to express NADP+-dependent xylitol dehydrogenase using the flocculent yeast strain IR-2, which has high xylulose-fermenting ability, and both xylose consumption and ethanol production remarkably increased. Furthermore, the MA-R5 strain produced the highest ethanol yield (0.48 g/g) from nonsulfuric acid hydrolysate of wood chips.Successful fermentation of lignocellulosic biomass to ethanol is dependent on efficient utilization of d-xylose, which is the second most common fermentable sugar in the hydrolysate. Although the well-known fermentative yeast Saccharomyces cerevisiae is one of the most effective ethanol-producing organisms for hexose sugars, it is not able to ferment d-xylose. However, S. cerevisiae can metabolize an isomerization product of d-xylose, d-xylulose, which is phosphorylated to d-xylulose 5-phosphate, channeled through the pentose phosphate pathway and glycolysis.S. cerevisiae transformed with the XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis (referred to as PsXR and PsXDH, respectively) acquires the ability to ferment d-xylose to ethanol (2, 5, 6, 9, 10, 12, 22). Furthermore, overexpression of the XKS1 gene encoding xylulokinase (XK) from S. cerevisiae (ScXK) has been shown to aid d-xylose utilization (4, 7, 11, 16, 23), with xylitol still a major by-product. Kuyper et al. (14) also demonstrated the successful fermentation of d-xylose to ethanol using recombinant S. cerevisiae strains expressing fungal xylose isomerase. However, these approaches are insufficient for industrial bioprocesses, mainly due to the low rate of d-xylose fermentation.Xylitol excretion has been ascribed mainly to the difference in coenzyme specificities between PsXR (with NADPH) and PsXDH (with NAD+), which creates an intracellular redox imbalance (1). Therefore, modifying the coenzyme specificity of XR and/or XDH by protein engineering is an attractive approach for achieving efficient fermentation of ethanol from d-xylose using recombinant S. cerevisiae. Watanabe et al. (24) previously succeeded in generating several PsXDH mutants (e.g., quadruple ARSdR mutant) with a complete reversal of coenzyme specificity toward NADP+ by multiple site-directed mutagenesis on amino acids from the coenzyme-binding domain. The ARSdR mutant (D207A/I208R/F209S/N211R) has more that 4,500-fold-higher catalytic efficiency (kcat/Km) with NADP+ than the wild-type PsXDH. In addition, we recently found that several laboratory recombinant S. cerevisiae strains, in which the ARSdR mutant, along with PsXR and ScXK, is expressed through a strong constitutive promoter, increased ethanol production from d-xylose at the expense of xylitol excretion (17, 18), probably by maintaining the intracellular redox balance. However, commercialization of lignocellulosic hydrolysate fermentation requires industrial strains that are more robust than laboratory strains (5, 19, 21).A potential host for developing d-xylose-fermenting strains requires an active and efficient pentose phosphate pathway linking the d-xylose-to-d-xylulose pathway to glycolysis. In the case of S. cerevisiae, strains have different d-xylulose fermentation abilities (3, 25), indicating inherent differences in the capacities of these strains to ferment pentose sugars. Furthermore, anaerobic d-xylulose fermentation was investigated to identify genetic backgrounds potentially beneficial to anaerobic d-xylose fermentation in strains not exhibiting product formation related to the redox imbalance generated by the first two steps of the eukaryotic d-xylose metabolism (3), although the physiological purpose of the different d-xylulose fermentation abilities of S. cerevisiae is not yet clear. Therefore, we selected an efficient industrial d-xylulose-fermenting S. cerevisiae strain as a host for constructing a recombinant strain through chromosomal integration of the NADP+-dependent XDH gene and the XR and endogenous XK genes. Using this recombinant strain, we characterized the enzyme activity and ability to ferment both d-xylose and lignocellulosic hydrolysate.  相似文献   

2.
3.
Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars would greatly contribute to the efficiency of production processes. One of the main challenges emerging from the use of lignocellulosics for the production of ethanol by the yeast Saccharomyces cerevisiae is efficient fermentation of d-xylose and l-arabinose, as these sugars cannot be used by natural S. cerevisiae strains. In this study, we describe the first engineered S. cerevisiae strain (strain IMS0003) capable of fermenting mixtures of glucose, xylose, and arabinose with a high ethanol yield (0.43 g g−1 of total sugar) without formation of the side products xylitol and arabinitol. The kinetics of anaerobic fermentation of glucose-xylose-arabinose mixtures were greatly improved by using a novel evolutionary engineering strategy. This strategy included a regimen consisting of repeated batch cultivation with repeated cycles of consecutive growth in three media with different compositions (glucose, xylose, and arabinose; xylose and arabinose; and only arabinose) and allowed rapid selection of an evolved strain (IMS0010) exhibiting improved specific rates of consumption of xylose and arabinose. This evolution strategy resulted in a 40% reduction in the time required to completely ferment a mixture containing 30 g liter−1 glucose, 15 g liter−1 xylose, and 15 g liter−1 arabinose.In recent years, the need for biotechnological manufacturing based on lignocellulosic feedstocks has become evident (6, 10). In contrast to the readily fermentable, mainly starch- or sucrose-containing feedstocks used in current biotechnological production processes, lignocellulosic biomass requires intensive pretreatment and hydrolysis, which yield complex mixtures of sugars (3, 7, 14, 27). For cost-effective and efficient industrial processes, complete and fast conversion of all sugars present in lignocellulosic hydrolysates is a prerequisite. The major hurdles encountered in implementing these production processes are the conversion of substrates that cannot be utilized by the organism of choice and, even more importantly, the subsequent improvement of sugar conversion rates and product yields.The use of evolutionary engineering has proven to be very valuable for obtaining phenotypes of (industrial) microorganisms with improved properties, such as an expanded substrate range, increased stress tolerance, and efficient substrate utilization (16, 17). Also, for the yeast Saccharomyces cerevisiae, the preferred organism for large-scale ethanol production for the past few decades, evolutionary engineering has been extensively used to select for industrially relevant phenotypes. For ethanol production from lignocellulose by S. cerevisiae, one of the main challenges is efficient conversion of the pentoses d-xylose and l-arabinose to ethanol. To deal with this challenge, S. cerevisiae strains have been metabolically engineered since the early 1990s for the conversion of xylose into ethanol by the introduction of heterologous xylose utilization pathways (for recent reviews, see references 9 and 20). Arabinose utilization, however, has been addressed only quite recently. The most successful approach for obtaining arabinose consumption in S. cerevisiae has been the introduction of a bacterial arabinose utilization pathway (5, 26). In addition to metabolic engineering, extensive evolutionary engineering (by prolonged cultivation of recombinant S. cerevisiae strains in either anaerobic chemostat or repeated anaerobic batch cultures) was required to obtain S. cerevisiae strains that ferment either xylose (13, 19) or arabinose (5, 26) fast or to improve fermentation performance with mixtures containing glucose and xylose (12). In contrast, (evolutionary) engineering has still not resulted in fast and efficient fermentation of both xylose and arabinose to ethanol by a single recombinant S. cerevisiae strain. At best, simultaneous utilization of xylose and arabinose yielded large amounts of the undesirable side products xylitol and arabinitol (11). Hence, a major remaining challenge is the conversion of both xylose and arabinose with high ethanol production rates and yields.In a previous study, an S. cerevisiae strain was metabolically engineered to obtain both xylose and arabinose utilization. For this, the Piromyces XylA, S. cerevisiae XKS1, and Lactobacillus plantarum araA, araB, and araD genes, as well as the endogenous genes of the pentose phosphate pathway (RPE1, RKI1, TKL1, and TAL1), were overexpressed. Selection by sequential batch cultivation under conditions with arabinose as the sole carbon source resulted in strain IMS0002, which is capable of fermenting arabinose to ethanol under anaerobic conditions (26). Unfortunately, the ability to ferment xylose to ethanol was largely lost during long-term selection for improved l-arabinose fermentation. During anaerobic batch cultivation of strain IMS0002 in a glucose-xylose-arabinose mixture, xylose was not consumed completely and was converted to almost equimolar amounts of xylitol. This loss of xylose metabolism illustrates the limitations of selection in media supplemented with a single carbon and energy source.The goal of the present study was to evaluate and optimize selection strategies for evolutionary optimization of the utilization of substrate mixtures. Fermentation of glucose, xylose, and arabinose mixtures by engineered S. cerevisiae strains was used as the model.  相似文献   

4.
The oxidative d-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on d-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g d-xylose−1) and a maximum growth rate of 0.21 h−1. Remarkably, most of the genes of the xylXABCD operon appeared to be dispensable for growth on d-xylose. Only the xylD gene, encoding d-xylonate dehydratase, proved to be essential for establishing an oxidative d-xylose catabolic pathway in P. putida S12. The growth performance on d-xylose was, however, greatly improved by coexpression of xylXA, encoding 2-keto-3-deoxy-d-xylonate dehydratase and α-ketoglutaric semialdehyde dehydrogenase, respectively. The endogenous periplasmic glucose dehydrogenase (Gcd) of P. putida S12 was found to play a key role in efficient oxidative d-xylose utilization. Gcd activity not only contributes to d-xylose oxidation but also prevents the intracellular accumulation of toxic catabolic intermediates which delays or even eliminates growth on d-xylose.The requirement for renewable alternatives to replace oil-based chemicals and fuels necessitates development of novel technologies. Lignocellulose provides a promising alternative feedstock. However, since the pentose sugar fraction may account for up to 25% of lignocellulosic biomass (12), it is essential that this fraction is utilized efficiently to obtain cost-effective biochemical production. In a previous study, the solvent-tolerant bacterium Pseudomonas putida S12, known for its use as a platform host for the production of aromatic compounds (15, 16, 19, 22), was engineered to use d-xylose as a sole carbon source. This was achieved by introducing genes encoding the phosphorylative d-xylose metabolic pathway of Escherichia coli, followed by laboratory evolution (14). Prior to evolutionary improvement, extensive oxidation of d-xylose to d-xylonate occurred, resulting in a very low biomass-for-substrate yield as d-xylonate is a metabolic dead-end product in P. putida. The evolution approach resulted in elimination of the activity of periplasmic glucose dehydrogenase (Gcd), the enzyme responsible for d-xylose oxidation, which turned out to be a critical step in optimizing phosphorylative d-xylose utilization in P. putida S12.Instead of prevention of endogenous oxidation of d-xylose, this oxidation may be used to our advantage when it is combined with an oxidative d-xylose metabolic pathway, such as the pathways described for several Pseudomonas species, Caulobacter crescentus, and Haloarcula marismortui (7, 11, 18, 20). In these pathways, d-xylonate is dehydrated to 2-keto-3-deoxy-d-xylonate. This intermediate either can be cleaved into pyruvate and glycolaldehyde (7) or is further dehydrated to α-ketoglutaric semialdehyde (α-KGSA). In the final step of the latter pathway, α-KGSA is oxidized to the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (18, 20).In addition to Gcd (PP1444), some of the enzymes required for oxidative d-xylose metabolism are expected to be endogenous in P. putida S12. Transport of d-xylonate into the cytoplasm likely occurs through the gluconate transporter (encoded by gntP [PP3417]). The enzyme catalyzing the final step of the pathway, α-KGSA dehydrogenase, is also likely to be present (presumably PP1256 and/or PP3602) because of the requirement for metabolism of 4-hydroxyproline (1), a compound that is efficiently utilized by P. putida S12. In view of these properties, the most obvious approach for constructing d-xylose-utilizing P. putida S12 is reconstruction of a complete oxidative d-xylose metabolic pathway by introducing the parts of such a pathway that complement the endogenous activities. Recently, the genetic information for one such oxidative d-xylose pathway has become available (18), enabling the approach used in the present study, i.e., expression of the oxidative d-xylose metabolic pathway of C. crescentus in P. putida S12 and investigation of the contribution of endogenous enzyme activities.  相似文献   

5.
6.
7.
A lysine racemase (lyr) gene was isolated from a soil metagenome by functional complementation for the first time by using Escherichia coli BCRC 51734 cells as the host and d-lysine as the selection agent. The lyr gene consisted of a 1,182-bp nucleotide sequence encoding a protein of 393 amino acids with a molecular mass of about 42.7 kDa. The enzyme exhibited higher specific activity toward lysine in the l-lysine-to-d-lysine direction than in the reverse reaction.Amino acids are the building blocks of proteins and play an important role in the regulation of the metabolism of living organisms. Among two enantiomers of naturally occurring amino acids, l-amino acids are predominant in living organisms, while d-amino acids are found in both free and bound states in various organisms like bacteria (36), yeasts (35), plants (47), insects (11), mammals (17), bivalves (39), and fish (28). The d-amino acids are mostly endogenous and produced by racemization from their counterparts by the action of a racemase. Thus, the amino acid racemases are involved in d-amino acid metabolism (29, 46). Since the discovery of alanine racemase in 1951 (42), several racemases toward amino acids, such as those for glutamate, threonine, serine, aspartate, methionine, proline, arginine, and phenylalanine, have been reported in bacteria, archaea, and eukaryotes, including mammals (1, 2, 15, 30, 31, 44). They are classified into two groups: pyridoxal 5′-phosphate (PLP)-dependent and PLP-independent enzymes (9, 36).Lysine racemase (Lyr, EC 5.1.1.5) was first reported in Proteus vulgaris ATCC 4669 (19) and proposed to be involved in the lysine degradation of bacterial cells (5, 19). Catabolism of lysine occurs via two parallel pathways. In one of the pathways, δ-aminovalerate is the key metabolite, whereas in the other l-lysine is racemized to d-lysine, and l-pipecolate and α-aminoadipate (AMA) are the key metabolites (5). d-Lysine catabolism proceeds through a series of cyclized intermediates which are necessary to regenerate an α-amino acid and comprise the following metabolites (AMA pathway): d-lysine→α-keto-ɛ-amino caproate→Δ1-piperideine-2-carboxylate→pipecolate→Δ1-piperideine-6-carboxylate→α-amino-δ-formylcaproate→α-AMA→α-ketoadipate (6, 7, 12, 27). The final product is converted to α-ketoglutarate via a series of coenzyme A derivatives and subsequently participates as an intermediate in the Krebs cycle. This pathway suggests that the biological function of d-lysine in the bacteria is that of a carbon or nitrogen source. Racemization of added l-lysine to d-lysine by whole cells of Proteus spp. and Escherichia spp. (19) and by the cell extract of Pseudomonas putida ATCC 15070 (5, 20) has been found. However, the enzyme has not been purified to homogeneity, and thus, its molecular and catalytic characteristics, including its gene structure, have not been elucidated. In this study, we explored a metagenomic library constructed from a garden soil to isolate a novel Lyr enzyme. After expression in Escherichia coli, the purified enzyme was characterized in terms of optimal pH and temperature, thermal stability, and racemization activity.  相似文献   

8.
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.Eucaryotic cells are able to define and maintain a particular cellular organization and thus cellular morphology by executing programs modulated by internal and external signals. For example, signals generated within a cell are required for the selection of the growth zone after cytokinesis in the fission yeast Schizosaccharomyces pombe or the emergence of the bud in Saccharomyces cerevisiae (37, 44, 81). Cellular morphogenesis is also subject to regulation by a wide variety of external signals, such as growth factors, temperature, hormones, nutrient limitation, and cell-cell or cell-substrate contact (13, 34, 66, 75, 81). Both types of signals will lead to the selection of growth zones accompanied by the reorganization of the cytoskeleton.The ability to alter the growth form in response to environmental conditions is an important virulence-associated trait of pathogenic fungi which helps the pathogen to spread in and survive the host''s defense system (7, 32). Alteration of the growth form in response to extrinsic signals is not limited to pathogenic fungi but is also found in the model yeasts S. cerevisiae and S. pombe, in which it appears to represent a foraging response (1, 24).The regulation of polarized growth and the definition of growth zones have been studied extensively with the fission yeast S. pombe. In this cylindrically shaped organism, cell wall biosynthesis is restricted to one or both cell ends in a cell cycle-regulated manner and to the septum during cytokinesis (38). This mode of growth requires the actin cytoskeleton to direct growth and the microtubule cytoskeleton to define the growth sites (60). In interphase cells, microtubules are organized in antiparallel bundles that are aligned along the long axis of the cell and grow from their plus ends toward the cell tips. Upon contact with the cell end, microtubule growth will first pause and then undergo a catastrophic event and microtubule shrinkage (21). This dynamic behavior of the microtubule plus end is regulated by a disparate, conserved, microtubule plus end group of proteins, called the +TIPs. The +TIP complex containing the EB1 family member Mal3 is required for the delivery of the Tea1-Tea4 complex to the cell tip (6, 11, 27, 45, 77). The latter complex docks at the cell end and recruits proteins required for actin nucleation (46, 76). Thus, the intricate cross talk between the actin and the microtubule cytoskeleton at specific intracellular locations is necessary for cell cycle-dependent polarized growth of the fission yeast cell.The intense analysis of polarized growth control in single-celled S. pombe makes this yeast an attractive organism for the identification of key regulatory components of the dimorphic switch. S. pombe multicellular invasive growth has been observed for specific strains under specific conditions, such as nitrogen and ammonium limitation and the presence of excess iron (1, 19, 50, 61).Here, we have identified an evolutionarily conserved key regulator of the S. pombe dimorphic switch, the Asp1 protein. Asp1 belongs to the highly conserved family of Vip1 1/3 inositol polyphosphate kinases, which is one of two families that can generate inositol pyrophosphates (PP) (17, 23, 42, 54). The inositol polyphosphate kinase IP6K family, of which the S. cerevisiae Kcs1 protein is a member, is the “classical” family that can phosphorylate inositol hexakisphosphate (IP6) (70, 71). These enzymes generate a specific PP-IP5 (IP7), which has the pyrophosphate at position 5 of the inositol ring (20, 54). The Vip1 family kinase activity was unmasked in an S. cerevisiae strain with KCS1 and DDP1 deleted (54, 83). The latter gene encodes a nudix hydrolase (14, 68). The mammalian and S. cerevisiae Vip1 proteins phosphorylate the 1/3 position of the inositol ring, generating 1/3 diphosphoinositol pentakisphosphate (42). Both enzyme families collaborate to generate IP8 (17, 23, 42, 54, 57).Two modes of action have been described for the high-energy moiety containing inositol pyrophosphates. First, these molecules can phosphorylate proteins by a nonenzymatic transfer of a phosphate group to specific prephosphorylated serine residues (2, 8, 69). Second, inositol pyrophosphates can regulate protein function by reversible binding to the S. cerevisiae Pho80-Pho85-Pho81 complex (39, 40). This cyclin-cyclin-dependent kinase complex is inactivated by inositol pyrophosphates generated by Vip1 when cells are starved of inorganic phosphate (39, 41, 42).Regulation of phosphate metabolism in S. cerevisiae is one of the few roles specifically attributed to a Vip1 kinase. Further information about the cellular function of this family came from the identification of the S. pombe Vip1 family member Asp1 as a regulator of the actin nucleator Arp2/3 complex (22). The 106-kDa Asp1 cytoplasmic protein, which probably exists as a dimer in vivo, acts as a multicopy suppressor of arp3-c1 mutants (22). Loss of Asp1 results in abnormal cell morphology, defects in polarized growth, and aberrant cortical actin cytoskeleton organization (22).The Vip1 family proteins have a dual domain structure which consists of an N-terminal “rimK”/ATP-grasp superfamily domain found in certain inositol signaling kinases and a C-terminal part with homology to histidine acid phosphatases present in phytase enzymes (28, 53, 54). The N-terminal domain is required and sufficient for Vip1 family kinase activity, and an Asp1 variant with a mutation in a catalytic residue of the kinase domain is unable to suppress mutants of the Arp2/3 complex (17, 23, 54). To date, no function has been described for the C-terminal phosphatase domain, and this domain appears to be catalytically inactive (17, 23, 54).Here we describe a new and conserved role for Vip1 kinases in regulating the dimorphic switch in yeasts. Asp1 kinase activity is essential for cell-cell and cell-substrate adhesion and the ability of S. pombe cells to grow invasively. Interestingly, Asp1 kinase activity is counteracted by the putative phosphatase domain of this protein, a finding that allows us to describe for the first time a function for the C-terminal part of Vip1 proteins.  相似文献   

9.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

10.
11.
12.
The HIV gp41 N-trimer pocket region is an ideal viral target because it is extracellular, highly conserved, and essential for viral entry. Here, we report on the design of a pocket-specific d-peptide, PIE12-trimer, that is extraordinarily elusive to resistance and characterize its inhibitory and structural properties. d-Peptides (peptides composed of d-amino acids) are promising therapeutic agents due to their insensitivity to protease degradation. PIE12-trimer was designed using structure-guided mirror-image phage display and linker optimization and is the first d-peptide HIV entry inhibitor with the breadth and potency required for clinical use. PIE12-trimer has an ultrahigh affinity for the gp41 pocket, providing it with a reserve of binding energy (resistance capacitor) that yields a dramatically improved resistance profile compared to those of other fusion inhibitors. These results demonstrate that the gp41 pocket is an ideal drug target and establish PIE12-trimer as a leading anti-HIV antiviral candidate.The HIV envelope protein (Env) mediates viral entry into cells (11). Env is cleaved into surface (gp120) and transmembrane (gp41) subunits that remain noncovalently associated to form trimeric spikes on the virion surface (16). gp120 recognizes target cells by interacting with cellular receptors, while gp41 mediates membrane fusion. Peptides derived from heptad repeats near the N and C termini of the gp41 ectodomain (N and C peptides) interact in solution to form a six-helix bundle, representing the postfusion structure (3, 55, 56). In this structure, N peptides form a central trimeric coiled coil (N trimer), creating grooves into which C peptides bind. This structure, in conjunction with the dominant-negative inhibitory properties of exogenous N and C peptides, suggests a mechanism for Env-mediated entry (10, 22, 58-60).During entry, gp41 forms an extended prehairpin intermediate that leaves the exposed N-trimer region vulnerable to inhibition for several minutes (18, 35). This intermediate ultimately collapses as the C-peptide regions bind to the N-trimer grooves to form a trimer of hairpins (six-helix bundle), juxtaposing viral and cellular membranes and inducing fusion. Enfuvirtide (Fuzeon), the only clinically approved HIV fusion inhibitor, is a C peptide that binds to part of the N-trimer groove and prevents six-helix bundle formation in a dominant-negative manner (61). Enfuvirtide is active in patients with multidrug resistance to other classes of inhibitors and is a life-prolonging option for these patients (30, 31). However, enfuvirtide use is restricted to salvage therapy due to several limitations, including (i) high dosing requirements (90 mg, twice-daily injections), (ii) high cost (∼$30,000/year/patient in the United States), and (iii) the rapid emergence of resistant strains (21, 47).A deep hydrophobic pocket at the base of the N-trimer groove is an especially attractive inhibitory target because of its high degree of conservation (3, 12, 48), poor tolerance to substitution (4, 34), and critical role in membrane fusion (2). Indeed, this region is conserved at both the amino acid level (for gp41 function in membrane fusion) and the nucleotide level (for the structured RNA region of the Rev-responsive element). Enfuvirtide binds to the N-trimer groove just N terminal to the pocket and is significantly more susceptible to resistance mutations than 2nd-generation C-peptide inhibitors, such as T-1249, that also bind to the pocket (8, 13, 29, 44, 46, 47, 58).Peptide design, molecular modeling, and small-molecule screening have produced a diverse set of compounds that interact with the gp41 pocket and inhibit HIV-1 entry with modest potency, but often with significant cytotoxicity (7, 14, 15, 17, 23, 24, 26, 34, 51, 54). The first direct evidence that pocket-specific binders are sufficient to inhibit HIV entry came with the discovery of protease-resistant d-peptides identified using mirror-image phage display (12). In this technique, a phage library is screened against a mirror-image version of the target protein (synthesized using d-amino acids) (50). By symmetry, mirror images (d-peptides) of the discovered sequences will bind to the natural l-peptide target. As the mirror images of naturally occurring l-peptides, d-peptides cannot be digested by natural proteases. Protease resistance provides d-peptides theoretical treatment advantages of extended survival in the body and possible oral bioavailability (41, 42, 49).These 1st-generation d-peptide entry inhibitors possess potency against a laboratory-adapted isolate (HXB2) at low to mid-μM concentrations (12). We previously reported an affinity-matured 2nd-generation d-peptide called PIE7, pocket-specific inhibitor of entry 7 (57). A trimeric version of PIE7 is the first high-affinity pocket-specific HIV-1 inhibitor and has potency against X4-tropic (HXB2) and R5-tropic (BaL) strains at sub-nM concentrations. However, significant further optimization is required to create a robust clinical candidate for two reasons. First, this d-peptide is much less potent (requiring high nM concentrations) against JRFL, a primary R5-tropic strain. Therefore, improved PIE potency is necessary to combat diverse primary strains. Second, by improving the affinity of our inhibitors for the pocket target, we hope to provide a reserve of binding energy that will delay the emergence of drug resistance, as described below.We and others have reported a potency plateau for some gp41-based fusion inhibitors that is likely imposed by the transient exposure of the prehairpin intermediate (9, 27, 53, 57). For very high-affinity inhibitors, association kinetics (rather than affinity) limits potency so that two inhibitors with significantly different affinities for the prehairpin intermediate can have similar antiviral potencies. We proposed that overengineering our d-peptides with substantial affinity beyond this potency plateau would provide a reserve of binding energy that would combat affinity-disrupting resistance mutations (57). Such a resistance capacitor should also prevent the stepwise accumulation of subtle resistance mutations in Env by eliminating the selective advantage that such mutants would otherwise confer.Here, we report on the design and characterization of a 3rd-generation pocket-specific d-peptide, PIE12-trimer, with ∼100,000-fold improved target binding compared to that of the best previous d-peptide, significantly broadened inhibitory potency, and an enhanced resistance capacitor that provides a strong barrier to viral resistance. We achieved this increased potency via structure-guided phage display and crosslinker optimization. PIE12-trimer has a dramatically improved resistance profile compared to the profiles of earlier d-peptides, as well as those of enfuvirtide and T-1249. These results validate the resistance capacitor hypothesis and establish PIE12-trimer as a leading anti-HIV therapeutic candidate.  相似文献   

13.
Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.The transporters and enzymes in many sugar metabolic pathways are conditionally expressed in response to their cognate sugar or a downstream pathway intermediate. While the induction of these pathways in response to a single sugar has been studied extensively (28), far less is known about how these pathways are induced in response to multiple sugars. One notable exception is the phenomenon observed when bacteria are grown in the presence of glucose and another sugar (10, 15). In such mixtures, the bacteria will often consume glucose first before consuming the other sugar, a process known as carbon catabolite repression (27). The classic example of carbon catabolite repression is the diauxic shift seen in the growth of Escherichia coli on mixtures of glucose and lactose, where the cells first consume glucose before consuming lactose. When the cells are consuming glucose, the genes in the lactose metabolic pathway are not induced, thus preventing the sugar from being consumed. A number of molecules participate in this regulation, including the cyclic AMP receptor protein (CRP), adenylate cyclase, cyclic AMP (cAMP), and EIIA from the phosphoenolpyruvate:glucose phosphotransferase system (PTS) (33). In addition to lactose, the metabolic genes for many other sugars are subject to catabolite repression by glucose in E. coli (27). While the preferential utilization of glucose is well known, it is an open question whether additional hierarchies exist among other sugars.Recently, substantial effort has been directed toward developing microorganisms capable of producing chemicals and biofuels from plant biomass (1, 34, 42). After glucose, l-arabinose and d-xylose are the next most abundant sugars found in plant biomass. Therefore, a key step in producing various chemicals and fuels from plant biomass will be the engineering of strains capable of efficiently fermenting these three sugars. However, one challenge concerns catabolite repression, which prevents microorganisms from fermenting these three sugars simultaneously and, as a consequence, may decrease the efficiency of the fermentation process. E. coli cells will first consume glucose before consuming either arabinose or xylose. As in the case of lactose, the genes in the arabinose and xylose metabolic pathways are not expressed when glucose is being consumed. In addition to glucose catabolite repression, a second hierarchy, between arabinose and xylose, appears to exist. Kang and coworkers have observed that the genes in the xylose metabolic pathway were repressed when cells were grown in a mixture of arabinose and xylose (21). Hernandez-Montalvo and coworkers also observed that E. coli utilizes arabinose before xylose (19). While a number of strategies exist for breaking the glucose-mediated repression of arabinose and xylose metabolism (8, 16, 19, 31), none exist for breaking the arabinose-mediated repression of xylose metabolism. Moreover, little is known about this repression beyond the observations made by these researchers.In this work, we investigate how the arabinose and xylose metabolic pathways are jointly regulated. We demonstrate that E. coli will consume arabinose before consuming xylose when it is grown in a mixture of the two sugars. Consistent with a mechanism involving catabolite repression, the genes in the xylose metabolic pathway are repressed in the presence of arabinose. We found that this repression is AraC dependent and is most likely due to binding by arabinose-bound AraC to the xylose promoters, with consequent inhibition of gene expression.  相似文献   

14.
15.
16.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

17.
18.
Saccharomyces cerevisiae produces extracellular glycerophosphoinositol through phospholipase-mediated turnover of phosphatidylinositol and transports glycerophosphoinositol into the cell upon nutrient limitation. A screening identified the RAS GTPase-activating proteins Ira1 and Ira2 as required for utilization of glycerophosphoinositol as the sole phosphate source, but the RAS/cyclic AMP pathway does not appear to be involved in the growth phenotype. Ira1 and Ira2 affect both the production and transport of glycerophosphoinositol.Membrane phospholipids are continually synthesized and degraded as cells grow and respond to environmental conditions. A major pathway of phosphatidylinositol (PI) turnover in Saccharomyces cerevisiae is its deacylation to produce extracellular glycerophosphoinositol (GroPIns) (3). Plb3, an enzyme with phospholipase B (PLB)/lysophospholipase activity, is thought to be primarily responsible for the production of extracellular GroPIns, with Plb1 playing a lesser role (11, 12, 13). GroPIns is transported into the cell by the Git1 permease (17). GIT1 expression is upregulated by phosphate limitation and inositol limitation. In fact, GroPIns can act as the cell''s sole source of both inositol (17) and phosphate (1).A screening for gene products involved in the process by which GroPIns enters the cellular metabolism identified Ira1 and Ira2, yeast homologs of the mammalian protein neurofibromin. Alterations in NF1, the gene encoding neurofibromin, are associated with the pathogenesis of neurofibromatosis type 1, an autosomal dominant genetic disease (4, 5, 25). Ira1 and Ira2 and neurofibromin function as RAS GTPase-activating proteins (RAS GAPs). S. cerevisiae Ras1 and Ras2 activate adenylate cyclase to modulate cyclic AMP (cAMP) levels. The binding of cAMP to the regulatory subunits of protein kinase A (Bcy1) results in dissociation and activation of the catalytic subunits (Tpk1 to Tpk3). Ira1 and Ira2 inactivate RAS and thereby downregulate the pathway (18, 19). Hydrolysis of cAMP by the phosphodiesterases encoded by PDE1 and PDE2 also downregulate the pathway (7, 20, 23). The RAS/cAMP pathway responds to nutrient signals to modulate fundamental cellular processes, including stress resistance, metabolism, and cell proliferation (7, 20, 21).  相似文献   

19.
Clostridium sordellii is a spore-forming, obligately anaerobic, Gram-positive bacterium that can cause toxic shock syndrome after gynecological procedures. Although the incidence of C. sordellii infection is low, it is fatal in most cases. Since spore germination is believed to be the first step in the establishment of Bacilli and Clostridia infections, we analyzed the requirements for C. sordellii spore germination in vitro. Our data showed that C. sordellii spores require three structurally different amino acids and bicarbonate for maximum germination. Unlike the case for Bacilli species, d-alanine had no effect on C. sordellii spore germination. C. sordellii spores germinated only in a narrow pH range between 5.7 and 6.5. In contrast, C. sordellii spore germination was significantly less sensitive to temperature changes than that of the Bacilli. The analysis of the kinetics of C. sordellii spore germination showed strong allosteric behavior in the binding of l-phenylalanine and l-alanine but not in that of bicarbonate or l-arginine. By comparing germinant apparent binding affinities to their known in vivo concentrations, we postulated a mechanism for differential C. sordellii spore activation in the female reproductive tract.Clostridium sordellii is an anaerobic, Gram-positive, spore-forming bacterium that is commonly found in soil and in the intestines of animals (4). Many C. sordellii strains are nonpathogenic; however, virulent strains cause lethal infections in several animal species, such as hemorrhagic enteritis in foals, sheep, and cattle (5, 10, 16, 28), omphalitis in foals (43), and wound infection in humans (4, 35).C. sordellii also can cause life-threatening necrotizing infections after gynecological procedures (4). In addition, fatal cases of C. sordellii endometritis following medical abortion with a mifepristone-misoprostol combination have been reported recently (13, 19, 56). The increased use of mifepristone-misoprostol for medical abortion may result in larger numbers of C. sordellii infections (38, 40).Although C. sordellii rarely has been identified in the genital tract, a correlation between gynecological procedures and C. sordellii-mediated toxic shock syndrome is apparent (19). Pregnancy, childbirth, or abortion may predispose some women to acquire C. sordellii in the vaginal tract (19). Under these conditions, C. sordellii infections result in an almost 100% mortality rate.Since there is no national system for tracking and reporting complications associated with gynecological procedures, the identification of the true rates of reproductive tract infections in women is not readily available (8). Therefore, the number of known C. sordellii-associated infections, although low, may be underreported (19, 29). Furthermore, unsafe abortion practices in developing countries cause large mortality rates due to complicating infections (24, 34). In many cases, however, the causative agent of the abortion-associated sepsis have not been characterized (24). Thus, the worldwide morbidity and mortality associated with C. sordellii infections is not currently known.C. sordellii produces several virulence factors. The two major toxins are the lethal toxin (TcsL) and the hemorrhagic toxin (37, 46). The lethal toxin produced by C. sordellii is causally involved in enteritis of domestic animals and in systemic toxicity following infections of humans (46). Furthermore, TcsL is associated with rapid mortality in C. sordellii endometritis rodent models (26). Interestingly, TcsL cytopathic effects are increased at low pH, a characteristic found in the vaginal tract (48). The hemorrhagic toxin is not well characterized, but it has been reported to cause dermal and intestinal necrosis in guinea pigs (6, 52).C. sordellii, like other Bacilli and Clostridia species, has the ability to form metabolically dormant spores that are extremely resistant to environmental stresses, such as heat, radiation, and toxic chemicals (42, 55). Upon encountering a suitable environment, spores germinate into vegetative cells, the form that is responsible for toxin production and disease onset (39, 54).In most cases, the germination process initially is triggered by the detection of low-molecular-weight germinants by a sensitive biosensor (39, 54). This sensor consists of a proteinaceous germination (Ger) receptor encoded, in general, by a tricistronic operon. Spore germination requirements have been studied most extensively for Bacilli and can be initiated by a variety of factors, including amino acids, sugars, and nucleosides (20, 30).Spore germination in the Clostridia generally requires combinations of multiple germinants. The germination of spores of proteolytic Clostridium botulinum types A and B was triggered by a defined three-component mixture comprised of l-alanine (or l-cysteine), l-lactate (or sodium thioglycolate), and sodium bicarbonate (3). In contrast, the optimum germination of spores of nonproteolytic C. botulinum types B, E, and F required binary combinations of l-alanine-l-lactate, l-cysteine-l-lactate, and l-serine-l-lactate (45).Clostridium difficile is a human pathogen that can cause fulminant colitis (11). Interestingly, C. difficile does not encode any known Ger receptors (53). However, it is likely that germination receptors exist, because C. difficile spores must germinate in order to complete their life cycle. While C. difficile germination receptors remain elusive, the spores of C. difficile germinate in rich medium supplemented with bile salts (62). More recently, taurocholate (a bile salt) and glycine (an amino acid) were shown to act as cogerminants for C. difficile spore germination (57, 61).Clostridium bifermentans is a close relative of C. sordellii (14). The minimum requirement for C. bifermentans spore germination was the presence of l-alanine, l-phenylalanine, and l-lactate (59). In addition, an unknown factor present in yeast extract was suggested to enhance germination (59). However, the Ger receptors involved in C. bifermentans spore germination are not known.Even though many Bacilli and Clostridia species use similar metabolites as germinants, the mechanisms of germinant recognition remain to be elucidated. Unfortunately, the multimeric interactions of Ger receptor complexes and the hydrophobic nature of the Ger receptor subunits have hindered our understanding of the mechanism of germinant recognition.To understand the molecular determinants of germinant recognition, we recently applied kinetic methods to study bacterial spore germination (1, 2, 18). Spore germination can be analyzed quantitatively by fitting optical density (OD) decreases to the Michaelis-Menten equation (2). The kinetic parameters obtained allow the determination of the apparent binding affinity (Km) of spores for the different cogerminants and the maximum rate of spore germination (Vmax). In these instances, Km refers to the concentration of substrate required to reach half of the maximal germination rate. These parameters can, in turn, be used to determine the mechanism of germination and potential interactions between germination receptors. Furthermore, by comparing apparent Km values to germinant concentrations in vivo, models for spore-germinant complex distribution can be proposed, and rate-limiting steps for the germination process can be derived. Thus, kinetic analysis can yield information on spore activation even if the identities of the germination receptors are not known.Using this procedure, we were able to determine the mechanism for Bacillus anthracis germination with inosine and l-alanine. In turn, this information was used to design nucleoside analogs that inhibit B. anthracis spore germination in vitro and protect macrophages from anthrax cytotoxicity (2).Since C. sordellii germination receptors have not been identified, we used chemical probes and kinetic methods to investigate the conditions necessary for spore germination. We found that C. sordellii spores germinate better at slightly acidic pH. Furthermore, germination rates varied slightly from 25 to 40°C. We also found that C. sordellii spores have an absolute requirement for a small amino acid, a basic amino acid, an aromatic amino acid, and bicarbonate (NaHCO3) for efficient germination. Kinetic analysis showed allosteric interaction for the putative l-phenylalanine and l-alanine germination receptors. In contrast, l-arginine or bicarbonate recognition followed typical Michaelis-Menten kinetics. The implication of germinant recognition and host environment is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号