首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell adhesion molecules and their subgroups in the nervous system.   总被引:6,自引:0,他引:6  
Structural relationships among cell adhesion molecules have been used to classify two large families of these molecules into subgroups. The cell adhesion molecules within each subgroup share several structural features that indicate that they may function in similar or complementary ways either simultaneously or at different times and locations.  相似文献   

2.
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases.  相似文献   

3.
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.  相似文献   

4.
5.
Cell adhesion molecules in myogenesis   总被引:7,自引:0,他引:7  
  相似文献   

6.
In vertebrates, the peripheral nervous system arises from the neural crest by a multistep process involving epithelium-mesenchyme interconversions and cell migrations. These successive events are associated with profound and controlled reorganization of the expression of both cell-cell and cell-substratum adhesion molecules responsible for the direct interaction of neural crest cells with their neighbours or the extracellular matrix. Thus, at the onset of emigration of neural crest cells from the neural tube, the cell-cell adhesion systems mediated by N-cadherin and N-CAM are lost by cells. This is accompanied by the complete reorganization of the extracellular matrix in the immediate environment of neural crest cells and by changes in cell shape. Later, as crest cells undergo migration towards their differentiation sites, they are found associated with fibronectin. Cell adhesion molecules are reaquired by neural crest cells following specific sequences as they coalesce into primordia of the various ganglia. In vitro, fibronectin constitutes the most appropriate substrate for migration of neural crest cells. The migration-promoting effect of fibronectin can be specifically inhibited both in vivo and in vitro by antibodies to fibronectin, integrin receptors, or by peptides containing the Arg-Gly-Asp-Ser sequence. Neural crest cells recognize two major adhesion sites along fibronectin molecules; these are the Arg-Gly-Asp-Ser sequence located in the medial part of the molecule and the CS1 site situated in the alternatively spliced IIICS region. These two sequences are required to permit full motile behavior of cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Fukuda MN  Sugihara K 《生理学报》2012,64(3):247-258
人类胚胎植入过程不仅受到在进化上保守的机制调节,而且也受到人类一种独有的机制调节。有证据显示,细胞黏附分子L-选择蛋白和trophinin在人类胚胎植入过程扮演独特的角色。在本文中,我们描述了L-选择素和trophinin的黏蛋白糖配体的双重作用,也描述了trophinin相关蛋白bystin和tastin的双重作用。我们随后描述了滋养外胚层细胞和子宫内膜上皮细胞中由trophinin调节的信号转导。本综述也涵盖了钙依粘连蛋白和整合素在人类胚胎植入过程中的作用。  相似文献   

9.
The aim of the present study was to investigate the expression pattern of different cell adhesion molecules in corneal stromal dystrophies. Fifteen corneal buttons from patients diagnosed with three different types of stromal corneal dystrophies and healthy corneas were investigated. Paraffin embedded sections were stained immunohistochemically with monoclonal antibodies against human intercellular adhesion molecule-1 (ICAM-1), endothelial selectin (E-selectin) and endothelial cadherin (E-cadherin) using the avidin-biotin-peroxidase-complex technique. The sections were compared to normal eye bank controls. In corneas from granular dystrophy patients ICAM-1 was expressed focally in epithelial cells and in keratocytes, and expressed diffusely in endothelial cells. In corneas from macular dystrophy patients diffuse epithelial staining was observed and the stromal and endothelial expression was found to be similar to that of granular dystrophy. In lattice dystrophy, only the epithelial cells and endothelium were intensively positive for ICAM-1. E-selectin was not present on any layer of the corneal specimens. E-cadherin was observed only in the epithelium of all three types of corneal dystrophies. Normal corneas did not express any of the investigated adhesion molecules. We found different expression patterns of adhesion molecules in corneas from stromal dystrophies. Our results suggest that adhesion molecules may be involved in the pathogenesis of corneal stromal dystrophies.  相似文献   

10.
11.
Cell adhesion molecules, a diverse group of proteins expressed on the cell surface, have been implicated in numerous important cellular functions ranging from controlling morphogenesis to suppressing tumourigenesis. In this article, we discuss evidence supporting the idea that at least some proteins involved in cell adhesion may suppress tumourigenesis through influences on cell growth, differentiation and/or invasion. These studies suggest that some cell adhesion molecules may be encoded by tumour suppressor genes.  相似文献   

12.
The major psychoactive component of cannabis derivatives, delta9-THC, activates two G-protein coupled receptors: CB1 and CB2. Soon after the discovery of these receptors, their endogenous ligands were identified: lipid metabolites of arachidonic acid, named endocannabinoids. The two major main and most studied endocannabinoids are anandamide and 2-arachidonyl-glycerol. The CB1 receptor is massively expressed through-out the central nervous system whereas CB2 expression seems restricted to immune cells. Following endocannabinoid binding, CB1 receptors modulate second messenger cascades (inhibition of adenylate cyclase, activation of mitogen-activated protein kinases and of focal-adhesion kinases) as well as ionic conductances (inhibition of voltage-dependent calcium channels, activation of several potassium channels). Endocannabinoids transiently silence synapses by decreasing neurotransmitter release, play major parts in various forms of synaptic plasticity because of their ability to behave as retrograde messengers and activate non-cannabinoid receptors (such as vanilloid receptor type-1), illustrating the complexity of the endocannabinoid system. The diverse cellular targets of endocannabinoids are at the origin of the promising therapeutic potentials of the endocannabinoid system.  相似文献   

13.
“Emergence” is an idea that has received much attention in consciousness literature, but it is difficult to find characterizations of that concept which are both specific and useful. I will precisely define and characterize a type of epistemic (“weak”) emergence and show that it is a property of some neural circuits throughout the CNS, on micro-, meso- and macroscopic levels. I will argue that possession of this property can result in profoundly altered neural dynamics on multiple levels in cortex and other systems. I will first describe emergent neural entities (ENEs) abstractly. I will then show how ENEs function specifically and concretely, and demonstrate some implications of this type of emergence for the CNS.  相似文献   

14.
Glycogen in the central nervous system   总被引:4,自引:0,他引:4  
  相似文献   

15.
16.
During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues.  相似文献   

17.
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号