首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We highlight a case on a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophilic infiltrate and thrombus consistent with chronic infarction and torsion. Splenogonadal fusion (SGF) is a rather rare entity, with approximately 184 cases reported in the literature. The most comprehensive review was that of 123 cases completed by Carragher in 1990. Since then, an additional 61 cases have been reported in the scientific literature. We have studied these 61 cases in detail and have included a summary of that information here.Key words: Splenogonadal fusion, Acute scrotumA 10-year-old boy presented with worsening left-sided scrotal pain of 12 hours’ duration. The patient reported similar previous episodes occurring intermittently over the past several months. His past medical history was significant for left hip dysplasia, requiring multiple hip surgeries. On examination, he was found to have an edematous left hemiscrotum with a left testicle that was rigid, tender, and noted to be in a transverse lie. The ultrasound revealed possible polyorchism, with two testicles on the left and one on the right (Figure 1), and left epididymitis. One of the left testicles demonstrated a loss of blood flow consistent with testicular torsion (Figure 2).Open in a separate windowFigure 1Ultrasound of the left hemiscrotum reveals two spherical structures; the one on the left is heterogeneous and hyperdense in comparison to the right.Open in a separate windowFigure 2Doppler ultrasound of left hemiscrotum. No evidence of blood flow to left spherical structure.The patient was taken to the operating room for immediate scrotal exploration. A normalappearing left testicle with a normal epididymis was noted. However, two accessory structures were noted, one of which was torsed 720°; (Figure 3). An inguinal incision was then made and a third accessory structure was noted. All three structures were connected with fibrous tissue, giving a “rosary bead” appearance. The left accessory structures were removed, a left testicular biopsy was taken, and bilateral scrotal orchipexies were performed.Open in a separate windowFigure 3Torsed accessory spleen with splenogonadal fusion.Pathology revealed a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophillic infiltrate and thrombus consistent with chronic infarction and torsion (Figure 4).Open in a separate windowFigure 4Splenogonadal fusion, continuous type with three accessory structures.  相似文献   

2.
The 47, XXX karyotype (triple X) has a frequency of 1 in 1000 female newborns. However, this karyotype is not usually suspected at birth or childhood. Female patients with a sex chromosome abnormality may be fertile. In patients with a 47, XXX cell line there appears to be an increased risk of a cytogenetically abnormal child but the extent of this risk cannot yet be determined; it is probably lower in the non-mosaic 47, XXX patient than the mosaic 46, XX/47, XXX one. We describe a new rare case of triple X woman and a Down''s syndrome offspring. The patient is 26 years of age. She is a housewife, her height is 160 cm and weight is 68 kg and her physical features and mentality are normal. She has had one pregnancy at the age of 25 years resulted in a girl with Down''s syndrome. The child had 47 chromosomes with trisomy 21 (47, XX, +21) Figure 1. The patient also has 47 chromosomes with a triple X karyotype (47, XX, +X) Figure 2. The patient''s husband (27 years old) is physically and mentally normal. He has 46 chromosomes with a normal XY karyotype (46, XY). There are neither Consanguinity between her parent''s nor she and her husband.Open in a separate windowFigure 1Karyotype 47, XX + 21 of the daughter of Triple X syndromeOpen in a separate windowFigure 2Karyptype 47, XX + X of the Down syndrome''s mother  相似文献   

3.
A primary function of the spindle apparatus is to segregate chromosomes into two equal sets in a dividing cell. It is unclear whether spindles in different cell types play additional roles in cellular regulation. As a first step in revealing new functions of spindles, we investigated spindle morphology in different cell types in Arabidopsis roots in the wild-type and the cytokinesis defective1 (cyd1) mutant backgrounds. cyd1 provides cells larger than those of the wild type for testing the cell size effect on spindle morphology. Our observations indicate that cell type (shape), not cell size, is likely a factor affecting spindle morphology. At least three spindle types were observed, including small spindles with pointed poles in narrow cells, large barrel-shaped spindles (without pointed poles) in wide cells, and spindles intermediate in pole focus and size in other cells. We hypothesize that the cell-type-associated spindle diversity may be an integral part of the cell differentiation processes.Key words: spindle pole, microtubule, morphogenesis, cell type, metaphaseThe cellular apparatus for chromosome segregation during mitosis is typically described as a spindle composed of microtubules and microtubule-associated proteins. Research on the structure and function of the spindle is usually conducted under the assumption that spindles are structurally the same or alike in different cell types in an organism. If the assumption is true, it would indicate that either the intracellular conditions in different dividing cells are very similar or the assembly and maintenance of the spindle are insensitive to otherwise variable intracellular conditions. But experimental evidence related to this assumption is relatively sparse.The root tip in Arabidopsis, as in other higher plants, contains dividing cells of different shapes and sizes. These cells include both meristem initial and derivative cells, with the former and latter being proximal and distal to the quiescent center, respectively.1 The diversity in dividing cells in the root tip provides an opportunity for testing whether the spindles also exhibit diversity in morphology. To visualize the spindles at the metaphase stage in the root tip cells, we conducted indirect immunofluorescence labeling of the β-tubulin in single cells prepared from wild-type Arabidopsis (in Col-0 background) root tips as previously described in references 2 and 3. The spindles in cells of different morphologies were then observed under a confocal laser scanning microscope.3 Three types of spindle were detected. The first type (Fig. 1A) was the smallest in width and length and had the most-pointed poles among the three types. The second type (Fig. 1B) was wider and longer than the first type but with less-pointed poles than the first type. The third type (Fig. 1C) was similar in height to the second type but lacked the pointed poles. In fact, the third type is shaped more like a barrel than a spindle. The first type was found in cells narrow in the direction parallel to the equatorial plane of the spindle, a situation opposite to that of the third type whose cells were wide in the equatorial direction. The wide cells containing the barrel-shaped spindles likely belonged to the epidermal layer in the root tip.1 The second type was found in cells intermediate in width. Examples of metaphase spindles morphologically resembling the three types of spindles in Arabidopsis root can also be found in a previous report by Xu et al. even although spindle diversity was not the subject of the report.4 In Xu et al.''s report, type 1- or 2-like metaphase spindles can be identified in Figures 2B and 3A, and type 3-like metaphase spindles can be identified in Figures 1A and 3B. These observations indicate that at least three types of spindles exist in the root cells.Open in a separate windowFigure 1Spindles in wild-type root cells. (A) Type-1 spindle. (B) Type-2 spindle. (C) Type-3 spindle. The spots without fluorescence signals in the middle of the spindles are where the chromosomes were located. Scale bar for all the figures = 20 µm.Open in a separate windowFigure 2Spindles in cyd1 root cells. (A) Type-1 spindle. Arrows indicate the upper and lower boundaries of the cell. (B and C) Two type-2 spindles. (D and E) Two type-3 spindles. (F) DAPI-staining image corresponding to (E), showing chromosomes at the equatorial plane. Scale bar for the images = 20 µm.The above observations suggest that either the cell size or the cell type (shape) might be a factor in the type of spindle found in a specific cell. To further investigate the relationship between cell morphology and spindle morphology, we studied metaphase spindles in root cells of the cytokinesis defective1 (cyd1) mutant.5 Because the root cells in cyd1 were larger than corresponding cells in the wild type, presumably due to abnormal polyploidization prior to the collection of the root cells,5,6 this investigation might reveal a relationship between increasing cell size and altered spindle morphology. A pattern of different spindle types in different cell types similar to that in the wild type was observed in cyd1 (Fig. 2). Figures 2A–C show narrow cells that contained spindles with pointed poles even though the spindles differed in size and focus. Figure 2D shows a barrel-shaped spindle in a wide cell, resembling Figure 1C in overall appearance. The large number of chromosomes at metaphase (more than the diploid number of 10) in Figure 2F indicates that the cells in Figure 2 were polyploid. These figures thus demonstrate that the enlargement in cell size did not alter the pattern of types 1 and 2 spindles in narrow cells, as well as type 3 spindles in wide cells. Moreover, the edges of the spindles in Figure 2B and E were similarly distanced to the cell walls in the equatorial plane, and yet they differ greatly in shape with the former being type 2 and the latter being type 3. This finding argues against that the cell width in the equatorial direction dictates the spindle shape. On the other hand, the cells in Figure 2B and E are obviously of different types. Taken together, these observations suggest that the spindle diversity in both wild type and cyd1 is associated with cell-type diversity.It is unclear whether the different spindle types have different functions in their respective cell types, in addition to the usual role for chromosome segregation. One possibility is that, at the ensuing telophase, the pointed spindles result in compact chromosomal congregation at the poles whereas the barrel-shaped spindles result in loose chromosomal congregation at the poles, which in turn may differentially affect the shape of the subsequently formed daughter nuclei and their organization. Different nuclear shape and organization are likely to be integrated into the processes that confer cell differentiation.  相似文献   

4.
5.
6.
Sertoli cell tumors are very rare testicular tumors, representing 0.4% to 1.5% of all testicular malignancies. They are subclassified as classic, large-cell calcifying, and sclerosing Sertoli cell tumors (SSCT) based on distinct clinical features. Only 42 cases of SSCTs have been reported in the literature. We present a case of a 23-year-old man diagnosed with SSCT.Key words: Testicular neoplasm, Sertoli cell tumor, Sclerosing Sertoli cell tumorA 23-year-old man was referred to the Cleveland Clinic Department of Urology (Cleveland, OH) for an incidentally detected right testicular mass. The mass was identified during a work-up for transient left testicular discomfort. His only notable medical history was nephrolithiasis. There was no personal or family history of testicular cancer or cryptorchidism. On physical examination, he was a well-nourished, well-masculinized young man without gynecomastia. Testicular examination revealed normal volume and consistency bilaterally without other relevant findings. Testicular ultrasonography demonstrated an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle with peripheral flow on color Doppler (Figure 1).Open in a separate windowFigure 1Testicular ultrasound demonstrating an 8 mm × 6 mm × 6 mm hypoechoic, solid mass in the posterior right testicle (blue arrows).The remainder of the ultrasound examination yielded normal results. Lactic dehydrogenase, B-human chorionic gonadotropin, and α-fetoprotein levels were all within the normal range. After a thorough review of the options, the patient was then taken to the operating room for inguinal exploration. Intraoperative ultrasound confirmed a superficial 8-mm hypoechoic testis lesion. A whiteyellow, well-demarcated nodule was widely excised and a frozen section was sent to pathology for examination. The frozen section examination revealed the lesion to be a neoplasm with differential diagnosis including sclerosing Sertoli cell tumor (SSCT), adenomatoid tumor, and a variant of Leydig cell tumor. Because the final diagnosis could not be determined from frozen section, the decision was made to perform a right radical orchiectomy. Pathologic examination revealed a grossly unifocal, well-circumscribed, white, firm mass of 0.8 cm. Microscopically the lesion was composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Although the lesion was somewhat well circumscribed, entrapped seminiferous tubules with Sertoli-only cells were present within the tumor (Figure 2). Tumor cells had pale or eosinophilic cytoplasm with small and dark nuclei with inconspicuous nucleoli. The tumor was confined to the testis and margins were negative. A diagnosis of SSCT was reached, supported by positive immunostain results for steroidogenic factor 1, focal inhibin, and calretinin expression, and negative stain results for cytokeratin AE1/AE3 and epithelial membrane antigen in the tumor (Figure 3). The postoperative course was unremarkable. Computed tomography scan of the abdomen and pelvis and chest radiograph were negative for metastatic disease.Open in a separate windowFigure 2Low-power examination revealing a well-circumscribed tumor composed of solid and hollow tubules and occasional anastomosing cords distributed within the hypocellular, densely collagenous stroma. Hematoxylin and eosin stain, original magnification ×40. (B) High-power examination. Note entrapped seminiferous tubules lacking spermatogenesis. Hematoxylin and eosin stain, original magnification ×100.Open in a separate windowFigure 3Nuclear expression of steroidogenic factor 1 in the tumor as well as benign Sertoli cells in entrapped seminiferous tubules (original magnification ×200). (B) Focal calretinin expression in the tumor (inhibin had a similar staining pattern; original magnification ×100).  相似文献   

7.
8.
Plant VAPYRINs are required for the establishment of arbuscular mycorrhiza (AM) and root nodule symbiosis (RNS). In vapyrin mutants, the intracellular accommodation of AM fungi and rhizobia is blocked, and in the case of AM, the fungal endosymbiont cannot develop arbuscules which serve for nutrient exchange. VAPYRINs are plant-specific proteins that consists of a major sperm protein (MSP) domain and an ankyrin domain. Comparison of VAPYRINs of dicots, monocots and the moss Physcomitrella patens reveals a highly conserved domain structure. We focused our attention on the ankyrin domain, which closely resembles the D34 domain of human ankyrin R. Conserved residues within the petunia VAPYRIN cluster to a surface patch on the concave side of the crescent-shaped ankyrin domain, suggesting that this region may represent a conserved binding site involved in the formation of a protein complex with an essential function in intracellular accommodation of microbial endosymbionts.Key words: VAPYRIN, arbuscular mycorrhiza, petunia, symbiosis, glomus, ankyrin, major sperm protein, VAPPlants engage in mutualistic interactions such as root nodule symbiosis (RNS) with rhizobia and arbuscular mycorrhiza (AM) with Glomeromycotan fungi. These associations are referred to as endosymbioses because they involve transcellular passage through the epidermis and intracellular accommodation of the microbial partner within root cortical cells of the host.1,2 Infection by AM fungi and rhizobia is actively promoted by the plant and requires the establishment of infection structures namely the prepenetration apparatus (PPA) in AM and a preinfection thread in RNS, respectively.35 In both symbioses the intracellular microbial accommodation in epidermal and root cortical cells involves rebuilding of the cytoskeleton and of the entire membrane system.68 Recently, intracellular accommodation of rhizobia and AM fungi, and in particular morphogenesis of the AM fungal feeding structures, the arbuscules, was shown to depend on the novel VAPYRIN protein.911VAPYRINs are plant-specific proteins consisting of two protein-protein interaction domains, an N-terminal major sperm protein (MSP) domain and a C-terminal ankyrin (ANK) domain. MSP of C. elegans forms a cytoskeletal network required for the motility of the ameboidal sperm.12 MSP domains also occur in VAP proteins that are involved in membrane fusion processes in various eukaryotes.13 The ANK domain, on the other hand, closely resembles animal ankyrins which serve to connect integral membrane proteins to elements of the spectrin cytoskeleton,14 thereby facilitating the assembly of functional membrane microdomains in diverse animal cells.15 Ankyrin repeats exhibit features of nano-springs, opening the possibility that ankyrin domains may be involved in mechanosensing.16 Based on these structural similarities, VAPYRIN may promote intracellular accommodation of endosymbionts by interacting with membranes and/or with the cytoskeleton. Indeed, VAPYRIN protein associates with small subcellular compartments in petunia and in Medicago truncatula.9,10Ankyrin repeats typically consist of 33 amino acids, of which 30–40% are highly conserved across most taxa. These residues confer to the repeats their basic helix-turn-helix structure.17 Ankyrin domains often consist of arrays of several repeats that form a solenoid with a characteristic crescent shape.17 Besides the ankyrin-specific motiv-associated amino acids there is little conservation between the ankyrin domains of different proteins, or between the individual repeats of a given ankyrin domain,17 a feature that was also observed in petunia VAPYRIN (Fig. 1A).9 However, sequence comparison of VAPYRINs from eight dicots, three monocots and the moss Physcomitrella patens revealed a high degree of sequence conservation beyond the ankyrin-specific residues (Fig. 1B and Sup. Fig. S1). When the degree of conservation was determined for the individual ankyrin repeats among all the 12 species, it appeared that repeats 7, 9 and 10 exhibited particularly high conservation (Fig. 1C).Open in a separate windowFigure 1Sequence analysis and phylogeny of VAPYRIN from diverse plants. (A) Predicted amino acid sequence of the petunia VAPYRIN protein PAM1. The 11 repeats of the ankyrin domain are aligned, and the ankyrin consensus sequence is shown below the eleventh ankyrin repeat (line c). Conserved residues that are characteristic for ankyrin repeats (Mosavi et al. 2004)17 are depicted in bold face. (B) Unrooted phylogenetic tree representing the VAPYRINs of eight dicot species (Petunia hybrida, Solanum lycopersicon, Solanum tuberosum, Vitis vinifera, Populus trichocarpa, Ricinus communis, Medicago truncatula and Glycine max) three monocot species (Sorghum bicolor, Zea mays and Oryza sativa), and the moss Physcomitrella patens. (C) Degree of conservation of the individual ankyrin repeats of VAPYRIN. Schematic representation of the MSP domain as N-terminal barrel-shaped structure, and of the individual ankyrin repeats as pairs of alpha-helices. An additional loop occurring only in monocots (grass-loop) is inserted above repeat 4, and the deletion between repeat 7 and 8 is indicated (gap). This latter feature is common to all VAPYRIN proteins. The percentage of amino acid residues that are identical in at least 11 of the 12 VAPYRINS is given below the MSP domain and the eleven ankyrin repeats. The box highlights repeats 7–10 which contribute to the predicted binding site (compare with Figs. 3 and and44).Sequence comparison of the eleven repeats of all the twelve plant species revealed that the individual repeats clustered according to their position in the domain, rather than according to their origin (plant species) (Fig. 2). This shows that the repeats each are well conserved across species, but show little similarity among each other within a given VAPYRIN protein. The higher conservation of repeats 9 and 10 was reflected by the compact appearance of the respective branches, in which the monocot and moss sequences were nested closely with the dicot sequences, compared to other repeats, where the branches appeared fragmented between monocots and dicots, and where the P. patens sequence fell out of the branch as in the case of repeats 4–6 (Fig. 2). Taken together, this points to an old evolutionary origin of the entire ankyrin domain in lower land plants, with no subsequent rearrangement of ankyrin repeats.Open in a separate windowFigure 2Phylogenetic analysis of the individual ankyrin repeats of VAPYRIN. Phylogenetic representation of an alignment of all the 11 repeats of the 12 VAPYRINs compared in Figure 1B and C. The repeats cluster according to their position within the domain, rather than to their origin (plant species). Numbers indicate the position of the repeats within the domain (compare with Fig. 1C). P. patens repeats are highlighted (small circles) for clarity. The monocot repeat 4 sequences (boxed) are remote from the remaining repeat 4 sequences because of the grass loop (compare with Fig. 1C).Ankyrin domains function as protein-protein interaction domains,17 in which the residues on the surface are involved in the binding of their protein partners.14 The fact that repeats 9 and 10 exhibited particularly high levels of conservation across species from moss to angiosperms indicated that this region may contain functionally important residues. Within repeat 10, sixteen amino acid positions were identical in >90% of the analyzed species (Fig. 3A and grey bars). Nine of those represent residues that are characteristic for ankyrin repeats (red letters) and determine their typical 3D shape.17 These residues are considered ankyrin-specific, and are unlikely to be involved in a VAPYRIN-specific function. The remaining seven highly conserved residues in repeat 10, however, are VAPYRIN-specific, since they have been under positive selection, without being essential for the basic structure of the ankyrin repeat. Ankyrin-specific and VAPYRIN-specific residues where identified throughout the entire ankyrin domain (Sup. Fig. 1), and subsequently mapped on a 3-dimensional model of petunia VAPYRIN to reveal their position in the protein (Fig. 3B–G). The ankyrin-specific residues were found to be localized primarily to the interior of the ankyrin domain, with the characteristic glycines (brown) marking the turns between helices and loops (Fig. 3B, D and F, compare with A). In contrast, the VAPYRIN-specific residues were localized primarily on the surface of the ankyrin domain (Fig. 3C, E and G). A prominent clustering of VAPYRIN-specific residues was identified on the concave side of the crescent-shaped ankyrin domain comprising repeats 7–10 close to the gap (Figs. 3G and and44). This highly conserved VAPYRIN-specific region contains several negatively and positively charged residues (D, E and K, R, respectively) and aromatic residues (W, Y, F), which may together form a conserved binding site for an interacting protein.Open in a separate windowFigure 33D-Mapping of conserved positions within the ankyrin domain of VAPYRIN. (A) Conserved amino acid residues were evaluated for ankyrin repeat 10 of petunia VAPYRIN as an example. The degree of conservation between the 12 VAPYRINs analyzed in Figures 1B and and22 is depicted with grey bars. Average conservation between all the 132 ankyrin repeats of the 12 VAPYRIN sequences is shown with black bars. Residues that are conserved in all 132 repeats (red letters) define the ankyrin consensus sequence, which confers to the repeats their characteristic basic structure.17 Residues that are >90% conserved but are not part of the basic ankyrin sequence (highlighted with asterisks) are VAPYRIN-specific and may therefore have been conserved because of their specific function in VAPYRIN. Arrows indicate the characteristic antiparallel helices, the turns are marked by conserved glycine residues (underlined; compare with B, D and F). (B–G) 3D-models of the petunia VAPYRIN PAM1. Conserved amino acid residues were color-coded according to their physico-chemical properties (http://life.nthu.edu.tw/∼fmhsu/rasframe/SHAPELY.HTM) with minor modification (see below). In (B, D and F) the ankyrin-specific residues are highlighted (corresponding to the bold letters in Fig. 1A). In (C, E and G), the VAPYRIN-specific residues are highlighted. Note the patch of high conservation on the concave side of the crescent-shaped ankyrin domain between repeats 7–10 next to the gap. (B–E) represent respective side views of the ankyrin domain, (F and G) exhibit the concave inner side of the domain. Color code: Bright red: aspartic acid (D), glutamic acid (E); Yellow: cysteine (C); Blue: lysine (K), arginine (R); Orange: serine (S), threonine (T); Dark blue: phenylalanine (F), tyrosin (Y); Brown: glycine (G); Green: leucin (L), valine (V), isoleucin (I), alanine (A); Lilac: tryptophane (W); Purple: histidine (H); Pink: proline (P).Open in a separate windowFigure 4The highly conserved surface area in domain 8–10 of the ankyrin domain of petunia VAPYRIN. Close-up of the highly conserved region of petunia PAM1 as shown in Figure 3G. Amino acids were color-coded as in Figure 3 and their position in the amino acid sequence is indicated (compare with Sup. Fig. 1).In this context, it is interesting to note that human ankyrin R also contains a binding surface on the concave side of the D34 domain for the interaction with the CBD3 protein.14 Consistent with an essential function of the C-terminal third of the ankyrin domain, mutations that abolish this relatively short portion of VAPYRIN, have a strong phenotype, indicating that they may represent null alleles.9 Based on this collective evidence, we hypothesize that repeats 7–10 are involved in the formation of a protein complex that is essential for intracellular accommodation of rhizobia and AM fungi. Biochemical and genetic studies are now required to identify the binding partners of VAPYRINs, and to elucidate their role in plant endosymbioses.  相似文献   

9.
Glutathione (GSH) has widely been known to be a multifunctional molecule especially as an antioxidant up until now, but has found a new role in plant defense signaling. Research from the past three decades indicate that GSH is a player in pathogen defense in plants, but the mechanism underlying this has not been elucidated fully. We have recently shown that GSH acts as a signaling molecule and mitigates biotic stress through non-expressor of PR genes 1 (NPR1)-dependent salicylic acid (SA)-mediated pathway. Transgenic tobacco with enhanced level of GSH (NtGB lines) was found to synthesize more SA, was capable of enhanced expression of genes belonging to NPR1-dependent SA-mediated pathway, were resistant to Pseudomonas syringae, the biotrophic pathogen and many SA-related proteins were upregulated. These results gathered experimental evidence on the mechanism through which GSH combats biotic stress. In continuation with our previous investigation we show here that the expression of glutathione S-transferase (GST), the NPR1-independent SA-mediated gene was unchanged in transgenic tobacco with enhanced level of GSH as compared to wild-type plants. Additionally, the transgenic plants were barely resistant to Botrytis cinerea, the necrotrophic pathogen. SA-treatment led to enhanced level of expression of pathogenesis-related protein gene (PR1) and PR4 as against short-chain dehydrogenase/reductase family protein (SDRLP) and allene oxide synthase (AOS). These data provided significant insight into the involvement of GSH in NPR1-dependent SA-mediated pathway in mitigating biotic stress.Key words: GSH, signaling molecule, biotrophic pathogen, NPR-1, PR-1, PR-4, transgenic tobaccoPlant responses to different environmental stresses are achieved through integrating shared signaling networks and mediated by the synergistic or antagonistic interactions with the phytohormones viz. SA, jasmonic acid (JA), ethylene (ET), abscisic acid (ABA) and reactive oxygen species (ROS).1 Previous studies have shown that in response to pathogen attack, plants produce a highly specific blend of SA, JA and ET, resulting in the activation of distinct sets of defense-related genes.2,3 Regulatory functions for ROS in defense, with a focus on the response to pathogen infection occur in conjunction with other plant signaling molecules, particularly with SA and nitric oxide (NO).46 Till date, numerous physiological functions have been attributed to GSH in plants.711 In addition to previous studies, recent study has also shown that GSH acts as a signaling molecule in combating biotic stress through NPR1-dependent SA-mediated pathway.12,13Our recent investigation involved raising of transgenic tobacco overexpressing gamma-glutamylcysteine synthetase (γ-ECS), the rate-limiting enzyme of the GSH biosynthetic pathway.12 The stable integration and enhanced expression of the transgene at the mRNA as well as protein level was confirmed by Southern blot, quantitative RT-PCR and western blot analysis respectively. The transgenic plants of the T2 generation (Fig. 1), the phenotype of which was similar to that of wild-type plants were found to be capable of synthesizing enhanced amount of GSH as confirmed by HPLC analysis.Open in a separate windowFigure 1Transgenic tobacco of T2 generation, (A) three-week-old plant, (B) mature plant.In the present study, the expression profile of GST was analyzed in NtGB lines by quantitative RT-PCR (qRT-PCR) and found that the expression level of this gene is unchanged in NtGB lines as compared to wild-type plants (Fig. 2). GST is known to be a NPR1-independent SA-related gene.14 This suggests that GSH does not follow the NPR1-independent SA-mediated pathway in defense signaling.Open in a separate windowFigure 2Expression pattern of GST in wild-type and NtGB lines.Disease test assay with NtGB lines and wild-type plants was performed using B. cinerea and the NtGB lines showed negligible rate of resistance to this necrotrophic pathogen (Fig. 3). SA signaling has been known to control defense against biotrophic pathogen in contrast, JA/ET signaling controls defense against necrotrophic pathogen.1,15 Thus it has again been proved that GSH is not an active member in the crosstalk of JA-mediated pathway, rather it follows the SA-mediated pathway as has been evidenced earlier.12Open in a separate windowFigure 3Resistance pattern of wild-type and NtGB lines against Botrytis cinerea.Additionally, the leaves of wild-type and NtGB lines were treated with 1 mM SA and the expression of PR1, SDRLP, AOS and PR4 genes were analyzed and compared to untreated plants to simulate pathogen infection. The expression of PR1 increased after exogenous application of SA. In case of PR4, the ET marker, the expression level increased in NtGB lines. On the other hand, the level of SDRLP was nearly the same. However, the expression of AOS was absent in SA-treated leaves (Fig. 4). PR1 has been known to be induced by SA-treatment16 which can be corroborated with our results. In addition, ET is known to enhance SA/NPR1-dependent defense responses,17 which was reflected in our study as well. AOS, the biosynthetic pathway gene of JA, further known to be the antagonist of SA, was downregulated in SA-treated plants.Open in a separate windowFigure 4Gene expression pattern of PR1, SDRLP, PR4 and AOS in untreated and SA-treated wildtype and NtGB lines.Taken together, it can be summarized that this study provided new evidence on the involvement of GSH with SA in NPR1-dependent manner in combating biotic stress. Additionally, it can be claimed that GSH is a signaling molecule which takes an active part in the cross-communication with other established signaling molecules like SA, JA, ET in induced defense responses and has an immense standpoint in plant defense signaling.  相似文献   

10.
Recently we have studied the secretion pattern of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2) in tobacco protoplast using the protein fusions, secGFP-PMEI1 and PGIP2-GFP. Both chimeras reach the cell wall by passing through the endomembrane system but using distinct mechanisms and through a pathway distinguishable from the default sorting of a secreted GFP. After reaching the apoplast, sec-GFP-PMEI1 is stably accumulated in the cell wall, while PGIP2-GFP undergoes endocytic trafficking. Here we describe the final localization of PGIP2-GFP in the vacuole, evidenced by co-localization with the marker Aleu-RFP, and show a graphic elaboration of its sorting pattern. A working model taking into consideration the presence of a regulated apoplast-targeted secretion pathway is proposed.Key words: cell wall trafficking, endocytosis, GPI-anchor, PGIP2, PMEI1, secretion pathway, vacuole fluorescent markerCell wall biogenesis, growth, differentiation and remodeling, as well as wall-related signaling and defense responses depend on the functionality of the secretory pathway. Matrix polysaccharides, synthesized in the Golgi stacks, and cell wall proteins, synthesized in the ER, are packaged into secretory vesicles that fuse with the plasma membrane (PM) releasing their cargo into the cell wall. Also the synthesis and deposition of cellulose itself are driven by the endomembrane system which controls the assembly, within the Golgi, and the export to the plasma membrane of rosette complexes of cellulose synthase.1 Secretion to the cell wall has always been considered a default pathway2 but recent studies have evidenced a complex regulation of wall component trafficking that does not seem to follow the default secretion model. Recent evidence that several cell wall proteins are retained in the Golgi stacks until specific signals at the N-terminal domain are proteolitically removed is a case in point.35 Moreover, it has previously been reported that secretion of exogenous marker proteins (secGFP and secRGUS) and cell wall polysaccharides reach the PM through different pathways.6 More recently, we have reported that cell wall protein trafficking also occurs through mechanisms distinguishable from that of a secreted GFP suggesting that more complex events than the mechanisms of bulk flow control cell wall growth and differentiation.7 To follow cell wall protein trafficking we used a Phaseolus vulgaris polygalacturonase inhibitor protein (PGIP2) and an Arabidopsis pectin methylesterase inhibitor protein (PMEI1) fused to GFP (PGIP2-GFP and secGFP-PMEI1). Both apoplastic proteins are involved in the remodeling of pectin network with different mechanisms. PGIP2 specifically inhibits exogenous fungal polygalacturonases (PGs) and is involved in the plant defense mechanisms against pathogenic fungi.8,9 PMEI1 counteracts endogenous PME and takes part in the physiological synthesis and remodeling of the cell wall during growth and differentiation.10,11 The specific functions of the two apoplastic proteins seem to be strictly related to the distinct mechanisms that control their secretion and stability in the cell wall. In fact, while secGFP-PMEI1 moves through ER and Golgi stacks linked to a glycosyl phosphatidylinositol (GPI)-anchor, PGIP2-GFP moves as a cargo soluble protein. Furthermore, secGFP-PMEI1 is stably accumulated in the cell wall, while PGIP2-GFP, over the time, is internalized into endosomes and targeted to vacuole, likely for degradation. After reaching the cell wall, the different fate of the two proteins seems to be strictly related to the presence/absence of their physiological counteractors. PMEI regulates the demethylesterification of homogalacturonan by inhibiting pectin methyl esterase (PME) activity through the formation of a reversible 1:1 complex which is stable in the acidic cell wall environment.12 Stable wall localization of PMEI1 is likely related to its interaction with endogenous PME, always present in the wall. Unlike PMEs, fungal polygalacturonases (PGs), the physiological interactors of PGIP2, are present in the cell wall only during a pathogen attack. The absence of PGs may determine PGIP2 internalization. Internalization events have been already reported for PM proteins,1316 while cell wall protein internalization is surely a less well-known event. To date, only internalization of an Arabidopsis pollen-specific PME4,5,17 and PGIP2 7 has been reported.To further confirm the internalization of PGIP2-GFP and its final localization into the vacuole, we constructed a red fluorescent variant (RFP) of the green fluorescent marker protein that accumulates in lytic or acidic vacuole because of the barley aleurain sorting determinants (Aleu-RFP).18 The localization of PGIP2-GFP was compared to that of Aleu-RFP by confocal microscopy in tobacco protoplasts transiently expressing both fusions. Sixty hours after transformation, PGIP2-GFP labeled the central vacuole as indicated by complete co-localization with the vacuolar marker (Fig. 1A–D). Instead, at the same time point, secGFP-PMEI1 still labeled the cell wall (Fig. 1E–H) and never reached the vacuolar compartment. To summarize PGIP2-GFP secretion pattern, a graphic elaboration of confocal images is reported describing the sorting of PGIP2GFP in tobacco protoplast (Fig. 1I). The protein transits through the endomembrane system (green) and reaches the cell wall which is rapidly regenerating as evidenced by immunostaining with the red monoclonal antibody JIM7 that binds to methylesterified pectins.19 PGIP2-GFP is then internalized in endosomes, labeled in yellow because of the co-localization with the styryl dye FM4-64, a red marker of the endocytic pathway.Open in a separate windowFigure 1PGIP2-GFP, but not secGFP-PMEI1, is internalized and reaches the vacuole in tobacco leaf protoplasts. (A) Approximately 60 h after transformation, PGIP2-GFP labeled the central vacuole as indicated by co-localization with the vacuole marker Aleu-RFP (B). (C) Merged image of (A and B). (D) Differential interference contrast (DIC) image of (A–C). On the contrary, secGFP-PMEI1 still labeled cell wall (E). (F) No co-localization is present in the vacuole labeled by Aleu-RFP. (G) Merged image of (E and F). (H) DIC image of (E–G). (I) Graphic elaboration of confocal images describing the sorting of PGIP2. The protein is sorted by the endomembrane system (green) to the cell wall (red) that is regenerated by the protoplast. Lacking the specific ligand, it is then internalized in endosome (yellow). Details are reported in the text.In Figure 2 we propose a model of the mechanism of secGFP-PMEI1 and PGIP2-GFP secretion derived from the different lines of evidence previously reported in reference 7. SecGFPPMEI1 (Fig. 2-1), but not PGIP2-GFP (Fig. 2-2), carries a GPI-anchor, required for its secretion to the cell wall. When the anchorage of GPI is inhibited by mannosamine (Fig. 2-a) or by the fusion of GFP to the C-terminus of PMEI1 (Fig. 2-b), the two non-anchored proteins accumulate in the Golgi stacks. Evidence of retention in Golgi stacks has already been reported for other two cell wall proteins.35 Unlike secGFP-PMEI1, PGIP2-GFP is not stably accumulated in the cell wall and undergoes endocytic trafficking (Fig. 2-3). PGIP2-GFP internalization, likely due to the absence of PGs, might also be related with its ability to interact with homogalacturonan and oligogalacturonides,20 which have been reported to internalize21,22 (Fig. 2-4). Since SYP 121, a Qa-SNARE, is involved in the default secretion of secGFP,23 but not in secretion of PGIP2-GFP and secGFP-PMEI1, trafficking mechanisms underlying secretion into the apoplast are likely different from those underlying the default route (Figs. 2-5). Taken as a whole, evidence suggests the existence of currently undefined signals that control apoplast-targeted secretion.Open in a separate windowFigure 2Schematic illustration for secGFP-PMEI1 and PGIP2-GFP trafficking. See text for details.  相似文献   

11.
Some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The specific labelling of the synergid cells and its filiform apparatus, which are the cells responsible for pollen tube attraction, and also the specific labelling of the micropyle and micropylar nucellus, which constitutes the pollen tube entryway into the embryo sac, are quite indicative of this role. We also discuss the possibility that AGPs in the sperm cells are probably involved in the double fertilization process.Key words: Arabidopsis, arabinogalactan proteins, AGP 6, gametic cells, pollen tube guidanceThe selective labelling obtained by us with monoclonal antibodies directed to the glycosidic parts of AGPs, in Arabidopsis and in other plant species, namely Amaranthus hypochondriacus,1 Actinidia deliciosa2 and Catharanthus roseus, shows that some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The evaluation of the selective labelling obtained with AGP-specific monoclonal antibodies (Mabs) JIM 8, JIM 13, MAC 207 and LM 2, during Arabidopsis pollen development, led us to postulate that some AGPs, in particular those with sugar epitopes identified by JIM 8 and JIM 13, can be classified as molecular markers for generative cell differentiation and development into male gametes.Likewise, we also postulated that the AGP epitopes recognized by Mabs JIM 8 and JIM 13 are also molecular markers for the development of the embryo sac in Arabidopsis thaliana. Moreover, these AGP epitopes are also present along the pollen tube pathway, predominantly in its last stage, the micropyle, which constitutes the region of the ovule in the immediate vicinity of the pollen tube target, the embryo sac.3We have recently shown the expression of AGP genes in Arabidopsis pollen grains and pollen tubes and also the presence of AGPs along Arabidopsis pollen tube cell surface and tip region, as opposed to what had been reported earlier. We have also shown that only a subset of AGP genes is expressed in pollen grain and pollen tubes, with prevalence for Agp6 and Agp11, suggesting a specific and defined role for some AGPs in Arabidopsis sexual reproduction (Pereira et al., 2006).4Therefore we continued by using an Arabidopsis line expressing GFP under the command of the Agp6 gene promoter sequence. These plants were studied under a low-power binocular fluorescence microscope. GFP labelling was only observed in haploid cells, pollen grains (Fig. 1) and pollen tubes (Fig. 2); all other tissues clearly showed no labelling. These observations confirmed the specific expression of Agp6 in pollen grains and pollen tubes. As shown in the Figures 1 and and2,2, the labelling with GFP is present in all pollen tube extension, so probably, AGP 6 is not one of the AGPs identified by JIM 8 and JIM 13, otherwise GFP light emission would localize more specifically in the sperm cells.5 So we think that MAC 207 which labels the entire pollen tube wall (Fig. 3) may indeed be recognizing AGP6, which seems to be expressed in the vegetative cell. In other words, the specific labelling obtained for the generative cell and for the two male gametes, is probably given by AGPs that are present in very low quantities, apparently not the case for AGP 6 or AGP 11.Open in a separate windowFigure 1Low-power binocular fluorescence microscope image of an Arabidopsis flower with the AGP 6 promoter:GFP construct. The labelling is evident in pollen grains that are being released and in others that are already in the stigma papillae.Open in a separate windowFigure 2Low-power binocular fluorescence microscope image of an Arabidopsis ovary with the AGP6 promoter:GFP construct. The ovary was partially opened to show the pollen tubes growing in the septum, and into the ovules. The pollen tubes are also labelled by GFP.Open in a separate windowFigure 3Imunofluorescence image of a pollen tube growing in vitro, and labeled by MAC 207 monoclonal antibody. The labelling is evident all over the pollen tube wall.After targeting an ovule, the pollen tube growth arrests inside a synergid cell and bursts, releasing the two sperm cells. It has recently been shown that sperm cells, for long considered to be passive cargo, are involved in directing the pollen tube to its target. In Arabidopsis, HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to the ovules.6 The same could be happening with the AGPs identified in the sperm cells by JIM 8 and JIM 13. We are now working on tagging these AGPs and using transgenic plants aiming to answer to such questions.Pollen tube guidance in the ovary has been shown to be in the control of signals produced by the embryo sac. When pollen tubes enter ovules bearing feronia or sirene mutations (the embryo sac is mutated), they do not stop growing and do not burst. In Zea mays a pollen tube attractant was recently identified in the egg apparatus and synergids.7 Chimeric ZmEA1 fused to green fluorescent protein (ZmEA1:GFP) was first visible within the filiform apparatus and later was localized to nucellar cell walls below the micropylar opening of the ovule. This is the same type of labelling that we have shown in Arabidopsis ovules, using Mabs JIM 8 and JIM 13. We are now involved in the identification of the specific AGPs associated with the labellings that we have been showing.  相似文献   

12.
The activation of the phenylpropanoid pathway in plants by environmental stimuli is one of the most universal biochemical stress responses known. In tomato plant, rubbing applied to a young internode inhibit elongation of the rubbed internode and his neighboring one. These morphological changes were correlated with an increase in lignification enzyme activities, phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidases (POD), 24 hours after rubbing of the forth internode. Furthermore, a decrease in indole-3-acetic acid (IAA) content was detected in the rubbed internode and the upper one. Taken together, our results suggest that decrease in rubbed internode length is a consequence of IAA oxidation, increases in enzyme activities (PAL, CAD and POD), and cell wall rigidification associated with induction of lignification process.Key words: Mechanical stimulation, PAL, CAD, POD, IAAIn their environment, plants are constantly submitted to several stimuli such as wind, rain and wounding. The growth response of plants to such stimuli was termed thigmomorphogenesis and was observed in a wide range of plants.13 The most common thigmomorphogenetic response is a retardation of tissue elongation accompanied by an increase in thickness.4 The plant response to mechanical perturbation is mainly restricted to the young developing internode, since no influence can be detected when the internode has reached its final length.5,6 These plant growth modifications, which characterize thigmomorphogenesis, are related to biochemical events associated with lignification process7 and ethylene production.8,9In tomato plant the length of internodes 4 (N4) and 5 (N5) was measured 14 days after rubbing of the fourth internode. Results reported in Figure 1 show that rubbing led to a significant reduction of elongation of the stressed internode (N4) (decrease of N4 length from 4.3 cm in the control plant to 2.9 in the rubbed one). This effect was not limited to the rubbed area but affected also the elongation of the neighboring internodes (N5) that were shorter in rubbed plants than in control ones.Open in a separate windowFigure 1Internode lengths of control and rubbed plants measured 14 day after mechanical stress applied to the fourth internode. Standard errors are indicated by vertical bars.Results reported in Figure 2 show an increase in PAL activity in both internodes N4 and N5, 24 hours after mechanical stress application as compared with corresponding controls. CAD activity was also investigated in N4 and N5, 24 h after rubbing of the fourth internode. Results presented in Figure 3 show that mechanical stress application induces a strong increase of CAD activity in the rubbed internode N4 (5.3 nkatal μg-1 protein) with an approximately two-fold increase when compared to control tomato internodes (2.3 nkatal μg-1 protein). Further, CAD activity in N5 was also increased in the rubbed internode (5.538 nkatal μg-1 protein) as compared with the control one (3.256 nkatal μg-1 protein).Open in a separate windowFigure 2PAL activity of internode 4, and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.Open in a separate windowFigure 3CAD activity of internode 4, and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.Syringaldazine (S-POD) and gaïacol (G-POD) peroxidase activities were measured in tomato N4 and N5. Results reported in Figure 4 show an increase in soluble peroxidase activity with both substrates in the rubbed internode N4 as compared with control plant. Enhancement in peroxidase activities in N4 was more pronounced with gaïacol (80.7 U) as an electron donor than syringaldazine (33.8 U). Similar results were observed in internode 5 as compared with control one (Fig. 4).Open in a separate windowFigure 4(A) Syringaldazine-POD (Syr-POD) activity of internode 4 and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars. (B) Gaiacol-POD (G-POD) activity of internode 4 and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.IAA was quantified in control and rubbed plant internodes 24 h after rubbing of the fourth internode. Results reported in figure 5 show that in control sample and as expected, the content of IAA was found to be higher in the younger internode (N5) as compared to the older one (N4). Rubbing led to a significant decrease in IAA levels in N4 (5.06 nmol g−1 MF−1) as compared with corresponding controls (7.27 nmol g−1 MF−1). Similar results were observed in internode 5, where IAA content was reduced from 16.52 nmol g−1 MF−1 in control internode to 12.35 nmol g−1 MF−1 in the rubbed internode (Fig. 5).Open in a separate windowFigure 5IAA Level of internode 4 and 5 in control and rubbed plants 24 h after rubbing of the fourth internode. Standard errors are indicated by vertical bars.The results reported here establish an evident correlation between growth limitation of the rubbed internode and their degree of lignification, the increase in lignification enzymes activities and auxin degradation after mechanical stress application.Auxin seems to be involved in thigmomorphogenesis.10 It was proposed that MIS (Mechanically-induced stress) has opposite effects on auxin levels in the two species studied to date, Phaseolus vulgaris10 and Bryonia dioica.11,12 Auxin level as measured by bioassay, increased in Phaseolus vulgaris following rubbing of the stem.10 It was proposed that a build up of auxin may result from the reduced polar transport of IAA at the rubbed internode, causing a build up of IAA in the stem tissue. Exogenous IAA did not reverse the MIS inhibition of growth in Phaseolus vulgaris and high levels of IAA retarded growth in non-stressed plants.10 Thus, retardation of extension growth in Phaseolus vulgaris may have been caused by high levels of endogenous auxin and the increase in stem diameter by increased ethylene production.4 However, ethylene increases radial growth only if auxin is present.13Boyer11 reported a decrease in auxinlike activity in Bryonia dioica following MIS and this was confirmed in the same species by Hofinger et al.12 who reported a decrease in IAA using gas chromatography-mass spectrometry. Auxin catabolism was accompanied with changes in both soluble and ionically bound cell wall basic peroxidases14 and the appearance of an additional peroxidase. This can suggest that in Bryonia, auxin catabolism is hastened by mechanical stimulated peroxidase. In addition, Boyer et al.15 reported that lithium pre-treatment prevents both thigmomorphogenesis and appearance of specific cathodic isoperoxidase in Bryonia plants subjected to MIS. This is give further credence to the possibility that the peroxidase-auxin system is involved in Bryonia thigmomorphogenesis. In addition, ethylene increases peroxidase activity which reduces the auxin content in the tissue to a level low enough not to support normal growth. We have evidence that decrease of auxin level contribute to mechanism leading to tomato internode inhibition subjected to mechanical stress.Growth inhibition has been suggested to be the result of tissues lignification.6 As the initial enzyme in the monolignol biosynthesis pathway, PAL has a direct influence on lignin accumulation.16 The characteristics of lignin differ among cell wall tissues and plant organs.17 It comprises polyphenolic polymers derived from the oxidative polymerization of different monolignols, including p-coumaryl, coniferyl and sinapyl alcohols via a side pathway of phenylalanine metabolism leading to lignin synthesis.18 The increase in lignin content in the rubbed tomato internode could be a response mechanism to mechanical damage caused by rubbing.3 It is known that plants create a natural barrier that includes lignin and suberin synthesis, components directly linked to support systems.19,20The increase in lignin content of rubbed tomato internode3 is paralleled by a rise in CAD activity and whilst such direct proportionality between CAD activity and lignin accumulation does not always agree with the results in the literature, it clearly is responding in ways similar to those of the other enzymes in the pathway.21Mechanical stress-induced membrane depolarization would generate different species of free radicals and peroxides, which in turn initiate lipid peroxidation.22 The degradation of cell membranes is suggested to bring about rapid changes in ionic flux, especially release of K+ which would result in an enhanced endogenous Ca/K ratio and in leakage of solutes, among them electron donors such as ascorbic acid and phenolic substances. The increased intracellular relative calcium level activated secretion of basic peroxidases23 into the free space where, in association with the electron donors and may be with the circulating IAA, they eliminate the peroxides, and facilitated binding of basic peroxidases to membrane structures allowing a role as 1-aminocyclopropane-1-carboxylic acid (ACC)-oxidases. The resulting IAA and ACC oxidase-mediated changes in ethylene production24 would further induce (this time through the protein synthesis machinery) an increase in activity of phenylalanine ammonia-lyase and peroxidases. The resulting lignification and cell wall rigidification determines the growth response of tomato internode to the mechanical stress.  相似文献   

13.
Cryptochrome 2 (CRY2) is a blue/UV-A light receptor that regulates light inhibition of cell elongation and photoperiodic promotion of floral initiation in Arabidopsis. We and others have previously shown that CRY2 is a nuclear protein that regulates gene expression to affect plant development. We also showed that CRY2 is phosphorylated in response to blue light and the phosphorylated CRY2 is most likely active and degraded in blue light. Given that protein translation (and probably chromophore attachment) takes place in the cytosol and that a photoreceptor would absorb photon instantaneously, it would be interesting to know where those inter-connected events occur in the cell. Our results showed that freshly synthesized CRY2 photoreceptor is inactive in the cytosol although it may be photon-excited, it is imported into the nucleus where the photoreceptor is phosphorylated, performs its function, becomes ubiquitinated, and eventually gets degraded (Fig. 1).1 To our knowledge, this is the first example in any organism that a photoreceptor is shown to complete its post-translational life cycle in a single subcellular compartment.Open in a separate windowFigure 1A model depicting the post-translational life cycle of CRY2. Pi, phosphate group; Ubq, ubiquitin.Key words: blue light, cryptochrome, ubiquitination, phosphorylation, Arabidopsis  相似文献   

14.
The LIM domain is defined as a protein-protein interaction module involved in the regulation of diverse cellular processes including gene expression and cytoskeleton organization. We have recently shown that the tobacco WLIM1, a two LIM domain-containing protein, is able to bind to, stabilize and bundle actin filaments, suggesting that it participates to the regulation of actin cytoskeleton structure and dynamics. In the December issue of the Journal of Biological Chemistry we report a domain analysis that specifically ascribes the actin-related activities of WLIM1 to its two LIM domains. Results suggest that LIM domains function synergistically in the full-length protein to achieve optimal activities. Here we briefly summarize relevant data regarding the actin-related properties/functions of two LIM domain-containing proteins in plants and animals. In addition, we provide further evidence of cooperative effects between LIM domains by transiently expressing a chimeric multicopy WLIM1 protein in BY2 cells.Key words: Actin-binding proteins, actin-bundling, cysteine-rich proteins, cytoskeleton, LIM domainThe LIM domain is a ≈55 amino acid peptide domain that was first identified in 1990 as a common cystein-rich sequence found in the three homeodomain proteins LIN-11, Isl1 and MEC-3. It has since been found in a wide variety of eukaryotic proteins of diverse functions. Animals possess several families of LIM proteins, with members containing 1–5 LIM domains occasionally linked to other catalytic or protein-binding domains such as homeodomain, kinase and SH3 domains. In contrast, plants only possess two distinct sets of LIM proteins. One is plant-specific and has not been functionally characterized yet. The other one comprises proteins that exhibit the same overall structure as the animal cystein rich proteins (CRPs), i.e., two very similar LIM domains separated by a ≈50 amino acid-long interLIM domain and a relatively short and variable C-terminal domain (Fig. 1A). The mouse CRP2 protein was the first CRP reported to interact directly with actin filaments (AF) and to stabilize the latter.1 Identical observations were subsequently described for the chicken CRP1 and tobacco WLIM1 proteins.2,3 In addition, these two proteins were shown to arrange AF into cables both in vitro and in vivo and thus join the list of actin bundlers.Open in a separate windowFigure 1Domain maps for wild-type WLIM1 (A) and GFP-fused chimeric 3xWLIM1 (B). A. WLIM1 basically comprises a short N-terminal domain (Nt), two LIM domains (LIM1 and LIM2), an interLIM spacer (IL) and a C-terminal domain (Ct). B. 3xWLIM1 consists of three tandem WLIM1 copies. This chimeric protein has been fused in C-terminus to GFP and transiently expressed in tobacco BY2 cells.To identify the peptide domains of WLIM1 responsible for its actin-related properties/activities, we generated domain-deleted and single domain variants and submitted them to a series of in vivo and in vitro assays.4 Localization experiments established that both LIM domains are required to efficiently target the actin cytoskeleton in tobacco BY2 cells. High-speed (200,000 g) cosedimentation data confirmed that the actin-binding activity of WLIM1 relies on its LIM domains. Indeed, the deletion of either the first or the second LIM domain respectively resulted in a 5-fold and 10-fold decrease of the protein affinity for AF. Importantly, each single LIM domain was found able to interact with AF in an autonomous manner, although with a reduced affinity compared to the wild-type WLIM1. Low-speed (12,500 g) cosedimentation data and electron microscopy observations revealed that the actin bundling activity of WLIM1 is also triggered by its LIM domains. Surprisingly each single LIM domain was able to bundle AF in an autonomous manner, suggesting that WLIM1 has two discrete actin-bundling sites. However, the bundles induced by the variants containing only one LIM domain, i.e., LIM domain-deleted mutants and single LIM domains, differed from those induced by the full-length WLIM1. They appeared more wavy and loosely packed and formed only at relatively high protein:actin ratios. Together these data suggest that LIM domains are autonomous actin-binding and -bundling modules that function in synergy in wild-type WLIM1 to achieve optimal activities.To further assess the mechanism of cooperation between the LIM domains of plant CRP-related proteins, we generated a chimeric protein composed of three WLIM1 copies in tandem (3 × WLIM1, Fig. 1B), and transiently expressed it as a GFP-fusion in tobacco BY2 cells. We anticipated that such a six LIM domain-containing protein displays an even higher actin-bundling activity. (Fig. 2A) shows the typical actin cytoskeleton pattern in an expanding BY2 cell as visualized using the actin marker GFP-fABD2.5 As previously reported by Sheahan et al.,5 GFP-fABD2 decorated dense, transversely oriented, cortical networks as well as transvacuolar strands connecting the subcortical-perinuclear region to the cortex. Ectopic expression of WLIM1-GFP (BY2 cells normally do not express the WLIM1 gene) induced moderate but perceptible modifications of the actin cytoskeleton structure (Fig. 2B). Most AF are arranged in bundles thicker than those observed in GFP-fABD2 expressing cells and fine AF arrays are less frequently observed. As expected, this phenotype was significantly enhanced in cells transformed with the 3xWLIM1-GFP protein (Fig. 2C). Indeed, cells were almost devoided of fine AF arrays and exhibited very thick actin cables (Fig. 2C) that, at times (≈30 %), form atypical long looped structures (Fig. 2D). The appearance of such structures may result from the increase of cable stability and thickness induced by the 3xWLIM1-GFP protein, as these parameters are likely to determine, at least partially, the maximal length of actin bundles. Together the present observations support earlier data showing that LIM domains work in concert in LIM proteins to regulate actin bundling in plant cells. Strikingly, vertebrate and plant CRPs invariably contain two LIM domains. The lack, in these organisms, of CRP-related proteins combining more than two LIM domains may be explained by the fact that very thick cables, such as those induced by the artificial 3xWLIM1, may be too stable structures incompatible with the necessary high degree of actin cytoskeleton plasticity. As an exception, a muscle CRP-related protein with five LIM domains (Mlp84B) has been identified in Drosophila.6 However, rather than decorating actin filaments in an homogenous manner, this protein has been found to concentrate in a specialized region of the Z-discs where it stabilizes, in concert with D-titin, muscle sarcomeres.7Open in a separate windowFigure 2Typical actin cytoskeleton patterns in tobacco BY2 cells that have been transiently transformed, using a particle gun, with GFP-fABD2 (A), WLIM1-GFP (B), and 3xWLIM1-GFP (C and D). For each construct, more than 60 cells were analyzed by confocal microscopy. In the case of 3xWLIM1-GFP, two prevalent patterns have been observed (C and D). Bars = 20 µm.The relatively well conserved spacer length (≈50 amino acids) that separates the two LIM domains in vertebrate CRPs and related plant LIM proteins remains an intriguing feature the importance of which in actin cable organization remains to be established. Using electron microscopy we are currently evaluating the effects of the modification of the interLIM domain length on the structural properties of actin cables.  相似文献   

15.
BackgroundPhysicians with a large number of reviews and a high rating may be employing reputation management strategies. Specialists may be more likely than non-specialists to employ such strategies. This should be apparent in a study of online physician reviews on physician rating websites (PRW).MethodsUsing one physician rating website, we gathered orthopedic surgeon and family physician reviews. We measured Spearman correlations between the number of reviews and average numerical rating and used chi-squared to test threshold relationships.ResultsThere were very small negative Spear-man correlations between the number of online reviews and the average numerical rating for orthopedic surgeons (p= -0.097, p-value=<0.001) family medicine physicians (p= -0.170, p-value=<0.001; Figure 2). Physicians with more than 100 reviews had a greater average numerical rating than physicians with fewer than 50 reviews. Orthopedic surgeons are more likely than family medicine physicians to have a large number of reviews and average numerical rating greater than 3.Open in a separate windowFigure 2.Family medicine physicians average rating plotted against number of reviews.ConclusionThe small fraction of physician with a high number of reviews may be utilizing reputation management strategies, and this seems relatively specific to specialists rather than non-specialists. Level of Evidence: III  相似文献   

16.
17.
Exogenous polyamines [cadaverine (Cad), putrescine (Put), spermidine (Spd) and spermine (Spm)] elicit the production of volatiles in Lima bean (Phaseolus lunatus). Among the tested PAs, Spm induces the production of some volatile terpenoids that are known to be induced by the spider mite Tetranychus urticae. Spm treatment elicits the biosynthesis of Jasmonic acid (JA), a phytohormone known to regulate the production of the volatile terpenoids. The treatment with JA together with Spm resulted in the increased volatile emission, and predatory mites Phytoseiulus persimilis preferred JA and Spm-treated leaves over those treated with JA alone.5 JA and Spm treatment has no effects on polyamine oxidase (PAO) and Cu-amine oxidase (CuAO) but has a significant induction of calcium influx, ROS production, enzyme activities for NADPH-oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase, and gene expressions except for NADPH-oxidase complex.5 Here, we report that a plasma membrane potential (Vm) depolarization was observed after polyamine perfusion with an increasing trend: Spm, Cad, Put and Spd. JA perfusion did not alter Vm but the perfusion of JA and the polyamines significantly increased Cad and Put Vm depolarization. When JA was perfused with polyamines, a negative correlation was found between Vm depolarization and the number of amino group of the polyamines tested.Key words: polyamines, lima bean, herbivore-induced volatile organic compounds, calcium and ROS signalling, jasmonic acid, quantitative gene expression, transmembrane potentialPolyamines are involved in plants’ stress responses and growth. By activating biosynthesis of nucleic acids, polyamines concern the plant growth and differentiation.13 Furthermore, it has been reported that polyamines are involved in the response against environmental stress and plant disease.14 We recently reported that exogenously applied polyamines ∼diamines [cadaverine (Cad), putrescine (Put)], triamine [spermidine (Spd)] and tetraamine ]spermine (Spm)]∽ induce volatile emission in Lima bean leaves.5 Membrane potentials (Vm) and intracellular calcium variations were also studied in Lima bean leaves after perfusion with the polyamines and with these addition of JA and here we report on these additional results.The primary candidate for intercellular signaling in higher plants is the stimulus-induced change in Vm.6 The plasma membrane potential (Vm), which lies in the range of −50 to −200 mV in Lima bean leaves,7 may be shifted either to more negative (hyperpolarization) or to more positive values (depolarization) in response to various biotic or abiotic stresses.Measurement of Vm were performed and data statistically treated as previously described (ANOVA and Tukey-Kramer’s HSD test).7 Perfusion with the polyamines (Fig. 1 single arrow) shows a specific response of the leaf tissues with a different Vm depolarization, depending on the polyamine. In general, a Vm depolarization was observed after polyamine perfusion with an increasing trend: Spm, Cad, Put and Spd (Fig. 1). Spm and Spd Vm depolarization values were significantly different (p < 0.05) from all other polyamines, whereas no significant difference was found between Put and Cad Vm depolarization (p = 0.435). In all cases, Vm depolarization was reversed by washing polyamine-treated leaves with a fresh buffer solution (Fig. 1 double arrow); however, a full recovery of the Vm was observed only for Put (Fig. 1). The linearization of the data from Figure 1 allowed to calculate the rate of Vm depolarization after perfusion of the polyamines which was higher for Spd (6.0 mV min−1; R = 0.96), equal for Put and Cad (4.8 mV min−1; Put R = 0.95; Cad R = 0.97) and lower for Spm (3.0 mV min−1; R = 0.96).Open in a separate windowFigure 1Effect of 1 mM polyamines (arrow) on the Vm of Lima bean palisade cells. Spermine (Spm) caused the lowest Vm depolarization, whereas spermidine (Spd) showed the highest values of Vm depolarization. intermediate values were found when putrescine (Put) and cadaverine (cad) were perfused. after washing the tissues with fresh buffer (double arrow) Vm was always hyperpolarized, however the initial potential was recovered only for Put, while for all other polyamines the Vm never reached the initial values. Metric bars indicate standard deviation.Perfusion with JA caused a slight and not significant (p = 0.332) Vm depolarization (Fig. 2) with respect to control. The addition of JA caused a significant increase (p < 0.01) in Vm depolarization when perfused with Cad, with respect to the sole perfusion with Cad (Fig. 1). The same was observed when JA was perfused with Put, whereas not significant differences were observed when Spm (p = 0.513) and Spd (p = 0.107) were perfused with JA (Fig. 2), with respect to the sole perfusion with Spm and Spd (Fig. 1). The linearization of the data from Figure 2 allowed to calculate the rate of Vm depolarization after perfusion of the polyamines + JA, which was higher for Cad (24.40 mV min−1; R = 0.99), almost equal for Put and Spd (Put: 14.21 mV min−1, R = 0.99; Spd: 13.49 mV min−1, R = 0.99) and lower for Spm (1.34 mV min−1; R = 0.93). For JA the rate of Vm depolarization was 0.19 mV min−1 (R = 0.96). With the addition of JA, a negative correlation was found between Vm depolarization and the number of amino group of the polyamines tested.Open in a separate windowFigure 2Effect of 1 mM polyamines + 0.1 mMJA (arrow) on the Vm of Lima bean palisade cells. the perfusion with Ja did not cause any variation in the Vm. addition of JA to Spm and Spd caused the same Vm depolarization observed in the absence of JA, whereas when JA was added to Put and Cad a stronger and significantly different Vm depolarization was observed. even in this case washing the tissues with fresh buffer (double arrow) caused a Vm hyperpolarized, however in this case Spd reached Vm values significantly more negative that the initial Vm. Metric bars indicate standard deviation. For abbreviations see Figure 1.Since ion fluxes through channels directly influence Vm, it seems reasonable to assume that molecules able to act on channel activity might be considered as important factors inducing electrical signals. Among the various channels, calcium and potassium channels are predominantly involved in cell signaling.8 In the present study, rapid and reversible Vm depolarization observed upon perfusion of Lima bean mesophyll cells with polyamines was found to be significantly increased when JA was added to Cad and Put. The reversibility of the Vm may be linked to the overall physico-chemical amphiphilic properties of polyamines, probably depending on non covalent interaction with plasma membrane molecules, as polyamines occur in plants in free form, bound electrostatically to negatively charged molecules, and conjugated to small molecules and proteins.9 Liu et al.10 showed that Spm, Spd, Cad and Put strongly inhibited opening and closing of stomata in Vicia faba, suggesting that polyamines target inward potassium channels in guard cells and modulate stomatal movements, so providing a link between abiotic stress, polyamine levels and stomatal regulation. Moreover, the transport of polyamines across the plasma membrane of plant cells is energy-dependent and calcium is involved in the uptake mechanism.1,11 Both mechanisms can be correlated to the observed Vm depolarization, and the positive correlation between intracellular Ca2+ concentration5 and Vm depolarizing activity of polyamines confirms the involvement of Ca2+ during polyamine uptake.11  相似文献   

18.
19.
20.
Exo- and endocytotic membrane trafficking is an essential process for transport of secretory proteins, extracellular glycans, transporters and lipids in plant cells. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco BY-2 cells as a model system, we recently demonstrated that SCAMP2 positive structures containing secretory materials are transported from the Golgi apparatus to the plasma membrane (PM) and/or cell plate. This structure is consisted with clustered vesicles and was thus named the secretory vesicle cluster (SVC). Here, we have utilized the reversible photoswitching fluorescent protein Dronpa1 to trace the movement of SCAMP2 on the PM and cell plate. Activated SCAMP2-Dronpa fluorescence on the PM and cell plate moved into the BY-2 cells within several minutes, but did not spread around PM. This is consistent with recycling of SCAMP2 among endomembrane compartments such as the TGN, PM and cell plate. The relationship between SVC-mediated trafficking and exo- and endocytosis of plant cells is discussed taking into account this new data and knowledge provided by recent reports.Key words: SVC, secretory vesicle cluster, secretory carrier membrane protein 2, SCAMP2, exocytosis, endocytosis, dronpa, trans-Golgi network, Golgi apparatus, pectin, secretory protein, plasma menbrane, endosome, endomembrane systemExo- and endocytosis are essential events for cellular division and expansion. During exocytosis, lipids, proteins and polysaccharides are synthesized and/or modified in the Golgi apparatus and sorted into secretory vesicles at the trans-Golgi network (TGN) for transport to the PM2 or extracellular space. Secretory carrier membrane proteins (SCAMPs) are a group of transmembrane proteins that plays vesicle trafficking between Golgi apparatus and PM in higher eukaryotic cells.3 Recently it was reported that in BY-2 cells, the rice SCAMP1 is localized to the PM and clathrin-coated tubularvesicular structures that were likely the early endosomal compartment.4 The same protein is also targeted to the cell plate in dividing cells.5 We have recently reported that another member of the SCAMP family, SCAMP2 from tobacco, is localized to the TGN, PM, cell plate and previously uncharacterized SVC organelles, which are an intermediate organelle between the TGN and PM.6Both SCAMP1 and SCAMP2 appear to be recycled between the PM and intracellular compartments. This was suggested by data using stelyl dye FM4-64 as an endocytotic marker, fluorescent-tagged SCAMP proteins and protein trafficking inhibitors such as brefeldin A and 2,3-butanedione monoxime. We reported that SCAMP2 is exported to the PM from dotted structures in the cells, and back from the PM via the acto-myosin pathway but do not transport FM4-64 positive early endosome.6 As SCAMP2 did not localize on multivesicular bodies, endocytic vesicles may be directly transported to TGN or Golgi.6 However, this data was obtained using inhibitors that disrupt the trafficking system, and thus we have now investigated the endocytotic transport in the absence of inhibitors.Dronpa is a reversible photo-switching fluorescent protein. Using 488 and 405 nm laser light this protein can be converted between fluorescent and non-fluorescent forms within milliseconds.1 In order to test whether SCAMP2 returned to internal compartments from the PM, and to characterize the initial compartment of endocytosis, we expressed Dronpatagged SCAMP2 (SCAMP2-Dronpa) in tobacco BY-2 cells. The fluorescence of SCAMP2-Dronpa was similar to that for SCAMP2-YFP and -mRFP fusions6 (Fig. 1A, upper part). To visualize the endocytic transport of SCAMP2-Dronpa, we first erased the majority of Dronpa fluorescence by illumination with 488 nm laser and then activated the protein at a part of the PM by 405 nm illumination using confocal laser scanning microscope (LSM) (Fig. 1A, upper right part). The fluorescence was then traced by 30 minutes interval up to 90 minutes (Fig. 1A, lower pictures). SCAMP2 signals at the PM did not spread laterally in the PM and decreased over the time. In parallel, signals were detected in the cytosol and some of them appeared as puncta (Fig. 1A, arrowheads). This observation is consistent with our proposal that SCAMP2 is recycled back into the intracellular compartment from the PM, possibly through the TGN without passing through the early endosome.6Open in a separate windowFigure 1Time-lapse images of BY-2 cells expressing ScamP2-Dronpa. Fluorescence of Dronpa (mBL) tagged ScamP2 in the cells was erased by 488 nm laser and then a spot of Pm (a) or cell plate (B) was activated by 405 nm diode laser. these data were obtained by LSm510 meta, 63x oil lens, Argon laser with 488-nm excitation and a 505 nm LP filter (Zeiss). Arrowheads indicate dotted structures. Bar = 20 μm.During cytokinesis, cell wall materials and membrane proteins accumulate in the cell plate.79 It has been shown that clathrin-coated vesicles (CCVs) and their constituents such as adapter proteins and dynamins are associated with cell plate membrane.10 However, it is not clear whether these molecules on the cell plate are re-used in daughter cells or are degraded at the cell plate. We thus investigated the movement of SCAMP2-Dronpa fluorescence on the cell plate during cytokinesis. Fluorescence of SCAMP2-Dronpa within late metaphase cells was first erased, followed by activation of SCAMP2-Dronpa specifically on the cell plate (Fig. 1B). Following a 15 min of incubation, SCAMP2-Dronpa associated fluorescence on the cell plate moved into intracellular structures within daughter cells. This confirmed our previous observation that SCAMP2 was transported to the trans-Golgi/TGN or intracellular structures from the cell plate during the cytokinesis.6Transmission electron microscope and LSM studies have revealed that CCVs are present in cell plates.10 Recent tomographic observation suggested that early- and late TGNs having CCVs exist not only in the cell plate region but also other places of the plant cell.11 We found that immature SVCs, which might be identical to late TGN, are converted to mature SVCs by budding CCVs.6 Therefore, transport from the Golgi apparatus located inside of the cells to the PM or cell plate is mediated by SVCs, which are generated as immature SVCs from the TGN and converted to mature SVCs by budding CCVs during transport. Eventually, the mature SVC fuses with the PM and/or expanding cell plate (Fig. 2, left), after which CCVs are generated from the expanded cell plate to recycle SCAMPs and other molecules back to the daughter cells.Open in a separate windowFigure 2A model of the exocytotic pathway and SCAMP2 trafficking in plant cells. From the Golgi apparatus or tGn, at least two distinct compartments, such as maSc and SVc are generated for secretion. ScamP2 locates in the SVc and is transported to the Pm or cell plate. thereafter, SCAMP2 is recycled back to the TGN via clathrin-mediated endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号