首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.  相似文献   

2.
The aim of this study was to assess the influence of a second guidewire on the diagnostic accuracy of functional parameters of coronary lesion severity. Sixty-five patients with intermediate coronary lesions underwent myocardial perfusion scintigraphy. Fractional flow reserve (FFR), coronary flow velocity reserve (CFVR), and hyperemic stenosis resistance (HSR) index (HSR = stenosis pressure gradient / velocity) were determined in 77 lesions. Distal pressure and velocity were acquired simultaneously (dual wire) and sequentially (single wire) with two sensor-equipped guidewires. Overall, functional parameters deteriorated from single- to dual-wire assessment. In patients without ischemia, the good diagnostic performance of FFR, CFVR, and HSR deteriorated significantly (P < 0.001) when assessed by dual wires, with an increase in the number of false-positive results. This trend was more pronounced for HSR, since the presence of a second wire reduced maximal velocity and increased the pressure gradient. The presence of two guidewires, especially across a myocardial perfusion scintigraphy-induced nonsignificant lesion, is associated with overestimation of the hemodynamically assessed lesion severity and, therefore, is likely to have a major impact on clinical decision making. This underscores the advantage of a dual-sensor-equipped guidewire for the evaluation of stenosis severity by combined pressure and velocity measurements.  相似文献   

3.
Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid–structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information.  相似文献   

4.
Functional severity of coronary stenosis is often assessed using diagnostic parameters. These parameters are evaluated from the combined pressure and/or flow measurements taken at the site of the stenosis. However, when there are functional collaterals operating downstream to the stenosis, the coronary flow-rate increases, and the pressure in the stenosed artery is altered. This effect of downstream collaterals on different diagnostic parameters is studied using a physiological representative in vitro coronary flow-loop.The three diagnostic parameters tested are fractional flow reserve (FFR), lesion flow coefficient (LFC), and pressure drop coefficient (CDP). The latter two were discussed in recent publications by our group (Banerjee et al., 2008, Banerjee et al., 2007, 2009). They are evaluated for three different severities of stenosis and tested for possible misinterpretation in the presence of variable collateral flows. Pressure and flow are measured with and without downstream collaterals. The diagnostic parameters are then calculated from these readings.In the case of intermediate stenosis (80% area blockage), FFR and LFC increased from 0.74 to 0.77 and 0.58 to 0.62, respectively, for no collateral to fully developed collateral flow. Also, CDP decreased from 47 to 42 for no collateral to fully developed collateral flow. These changes in diagnostic parameters might lead to erroneous postponement of coronary intervention. Thus, variability in diagnostic parameters for the same stenosis might lead to misinterpretation of stenosis severity in the presence of operating downstream collaterals.  相似文献   

5.
Myocardial fractional flow reserve (FFR(myo)) and coronary flow reserve (CFR), measured with guidewire, and quantitative angiography (QA) are widely used in combination to distinguish ischemic from non-ischemic coronary stenoses. Recent studies have shown that simultaneous measurements of FFR(myo) and CFR are recommended to dissociate conduit epicardial coronary stenoses from distal resistance microvascular disease. In this study, a more comprehensive diagnostic parameter, named as lesion flow coefficient, c, is proposed. The coefficient, c, which accounts for mean pressure drop, Delta p, mean coronary flow, Q, and percentage area stenosis, can be used to assess the hemodynamic severity of a coronary artery stenoses. Importantly, the contribution of viscous loss and loss due to momentum change for several lesion sizes can be distinguished using c. FFR(myo), CFR and c were calculated for pre-angioplasty, intermediate and post-angioplasty epicardial lesions, without microvascular disease. While hyperemic c decreased from 0.65 for pre-angioplasty to 0.48 for post-angioplasty lesion with guidewire of size 0.35 mm, FFR(myo) increased from 0.52 to 0.87, and CFR increased from 1.72 to 3.45, respectively. Thus, reduced loss produced by momentum change due to lower percentage area stenosis decreased c. For post-angioplasty lesion, c decreased from 0.55 to 0.48 with the insertion of guidewire. Hence, increased viscous loss due to the presence of guidewire decreased c compared with a lesion without guidewire. Further, c showed a linear relationship with FFR(myo), CFR and percentage area stenosis for pre-angioplasty, intermediate and post-angioplasty lesion. These baseline values of c were developed from fluid dynamics fundamentals for focal lesions, and provided a single hemodynamic endpoint to evaluate coronary stenosis severity.  相似文献   

6.
A limitation in the use of invasive coronary diagnostic indexes is that fluctuations in hemodynamic factors such as heart rate (HR), blood pressure, and contractility may alter resting or hyperemic flow measurements and may introduce uncertainties in the interpretation of these indexes. In this study, we focused on the effect of fluctuations in HR and area stenosis (AS) on diagnostic indexes. We hypothesized that the pressure drop coefficient (CDP(e), ratio of transstenotic pressure drop and distal dynamic pressure), lesion flow coefficient (LFC, square root of ratio of limiting value CDP and CDP at site of stenosis) derived from fluid dynamics principles, and fractional flow reserve (FFR, ratio of average distal and proximal pressures) are independent of HR and can significantly differentiate between the severity of stenosis. Cardiac catheterization was performed on 11 Yorkshire pigs. Simultaneous measurements of distal coronary arterial pressure and flow were performed using a dual sensor-tipped guidewire for HR < 120 and HR > 120 beats/min, in the presence of epicardial coronary lesions of <50% AS and >50% AS. The mean values of FFR, CDP(e), and LFC were significantly different (P < 0.05) for lesions of <50% AS and >50% AS (0.88 ± 0.04, 0.76 ± 0.04; 62 ± 30, 151 ± 35, and 0.10 ± 0.02 and 0.16 ± 0.01, respectively). The mean values of FFR and CDP(e) were not significantly different (P > 0.05) for variable HR conditions of HR < 120 and HR > 120 beats/min (FFR, 0.81 ± 0.04 and 0.82 ± 0.04; and CDP(e), 95 ± 33 and 118 ± 36). The mean values of LFC do somewhat vary with HR (0.14 ± 0.01 and 0.12 ± 0.02). In conclusion, fluctuations in HR have no significant influence on the measured values of CDP(e) and FFR but have a marginal influence on the measured values of LFC. However, all three parameters can significantly differentiate between stenosis severities. These results suggest that the diagnostic parameters can be potentially used in a better assessment of coronary stenosis severity under a clinical setting.  相似文献   

7.
Pressure-based fractional flow reserve (FFR) is used clinically to evaluate the functional severity of a coronary stenosis, by predicting relative maximal coronary flow (Q(s)/Q(n)). It is considered to be independent of hemodynamic conditions, which seems unlikely because stenosis resistance is flow dependent. Using a resistive model of an epicardial stenosis (0-80% diameter reduction) in series with the coronary microcirculation at maximal vasodilation, we evaluated FFR for changes in coronary microvascular resistance (R(cor) = 0.2-0.6 mmHg. ml(-1). min), aortic pressure (P(a) = 70-130 mmHg), and coronary outflow pressure (P(b) = 0-15 mmHg). For a given stenosis, FFR increased with decreasing P(a) or increasing R(cor). The sensitivity of FFR to these hemodynamic changes was highest for stenoses of intermediate severity. For P(b) > 0, FFR progressively exceeded Q(s)/Q(n) with increasing stenosis severity unless P(b) was included in the calculation of FFR. Although the P(b)-corrected FFR equaled Q(s)/Q(n) for a given stenosis, both parameters remained equally dependent on hemodynamic conditions, through their direct relationship to both stenosis and coronary resistance.  相似文献   

8.
Hemodynamic endpoints such as flow and pressure drop are often measured during angioplasty procedures to determine the functional severity of a coronary artery stenosis. There is a lack of knowledge regarding the influence of compliance of the arterial wall-stenosis on the pressure drop under hyperemic flows across coronary lesions. This study evaluates the influence in flow and pressure drop caused by variation in arterial-stenosis compliance for a wide range of stenosis severities. The flow and pressure drop were evaluated for three different severities of stenosis and tested for limiting scenarios of compliant models. The Mooney-Rivlin model defined the non-linear material properties of the arterial wall and the plaque regions. The non-Newtonian Carreau model was used to model the blood flow viscosity. The fluid (blood)-structure (arterial wall) interaction equations were solved numerically using the finite element method. Irrespective of the stenosis severity, the compliant models produced a lower pressure drop than the rigid artery due to compliance of the plaque region. A wide variation in the pressure drop was observed between different compliant models for significant (90% area occlusion) stenosis with 41.0, 32.1, and 29.8 mmHg for the rigid artery, compliant artery with calcified plaque, and compliant artery with smooth muscle cell proliferation, respectively. When compared with the rigid artery for significant stenosis the pressure drop decreased by 27.7% and 37.6% for the calcified plaque and for the smooth muscle cell proliferation case, respectively. These significant variations in pressure drop for the higher stenosis may lead to misinterpretation and misdiagnosis of the stenosis severity.  相似文献   

9.
The association between the levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) and the severity of coronary artery disease (CAD) diagnosed by coronary angiography and other approaches has been investigated. The clinical application of NT-proBNP is restricted by the drawbacks of these techniques now available in screening out patients who need intensive or conservative treatment. Fractional flow reserve (FFR) is superior to coronary angiography and other functional indicators. Accordingly, we designed to investigate the association between NT-proBNP and myocardial ischemia from the perspective of anatomy and physiology in patients with unstable angina and preserved left ventricular function. Plasma samples were collected from 110 patients and NT-proBNP levels were measured by radioimmunoassay. The severity of coronary artery stenosis in patients was measured by coronary angiography and FFR. Stenosis ≥50% in the left main artery or stenosis of 70%, and fractional flow reserve (FFR) ≤0.80 in one or more coronary branches with diameter ≥2 mm were defined as “positive”, which require revascularization. NT-proBNP levels increased progressively between patients with negative and positive angiographic results (p < 0.05), and between FFR-negative and FFR-positive patients (p < 0.05). A significant correlation was observed between log NT-proBNP and log GS (GS = Gensini score, p < 0.001). NT-proBNP level serves as a predictor of positive results of angiographic stenosis and FFR, with the area under the receiver operating characteristic curve being 0.697 and 0.787, respectively. NT-proBNP levels are correlated with the severity of anatomic coronary obstruction and inducible myocardial ischemia, but NT-proBNP per se is insufficient to identify clinically significant angiographic and physiological stenoses.  相似文献   

10.

Background  

The pressure drop - flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse.  相似文献   

11.
Coronary flow reserve (CFR) and fractional flow reserve (FFR) are important physiological indexes for coronary disease. The purpose of this study was to validate the CFR and FFR measurement techniques using only angiographic image data. Fifteen swine were instrumented with an ultrasound flow probe on the left anterior descending artery (LAD). Microspheres were gradually injected into the LAD to create microvascular disruption. An occluder was used to produce stenosis. Contrast material injections were made into the left coronary artery during image acquisition. Volumetric blood flow from the flow probe (Q(q)) was continuously recorded. Angiography-based blood flow (Q(a)) was calculated by using a time-density curve based on the first-pass analysis technique. Flow probe-based CFR (CFR(q)) and angiography-based CFR (CFR(a)) were calculated as the ratio of hyperemic to baseline flow using Q(q) and Q(a), respectively. Relative angiographic FFR (relative FFR(a)) was calculated as the ratio of the normalized Q(a) in LAD to the left circumflex artery (LC(X)) during hyperemia. Flow probe-based FFR (FFR(q)) was measured from the ratio of hyperemic flow with and without disease. CFR(a) showed a strong correlation with the gold standard CFR(q) (CFR(a) = 0.91 CFR(q) + 0.30; r = 0.90; P < 0.0001). Relative FFR(a) correlated linearly with FFR(q) (relative FFR(a) = 0.86 FFR(q) + 0.05; r = 0.90; P < 0.0001). The quantification of CFR and relative FFR(a) using angiographic image data was validated in a swine model. This angiographic technique can potentially be used for coronary physiological assessment during routine cardiac catheterization.  相似文献   

12.
The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data of having healthy and coronary artery disease was chosen for the reconstruction of 3D coronary artery models. The diseased 3D models of coronary artery shows a narrowing of >50% lumen area. Computational fluid dynamics was performed to simulate the hyperemic flow condition. The results showed that the recirculation zone was observed immediate to the stenosis and highest wall shear stress was observed across the stenosis. The decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding of hyperemic flow effect under both conditions.  相似文献   

13.

Background and Aims

The degree of coronary artery stenosis should be assessed both anatomically and functionally. We observed that the intensity of blood speckle (IBS) on intravascular ultrasound (IVUS) is low proximal to a coronary artery stenosis, and high distal to the stenosis. We defined step-up IBS as the distal minus the proximal IBS, and speculated that this new parameter could be used for the functional evaluation of stenosis on IVUS. The aims of this study were to assess the relationships between step-up IBS and factors that affect coronary blood flow, and between step-up IBS and fractional flow reserve (FFR).

Methods and Results

This study enrolled 36 consecutive patients with angina who had a single moderate stenosis in the left anterior descending artery. All patients were evaluated by integrated backscatter IVUS and intracoronary pressure measurements. FFR was calculated from measurements using a coronary pressure wire during hyperemia. Conventional gray-scale IVUS images were recorded, and integrated backscatter was measured in three cross-sectional slices proximal and distal to the stenosis. Step-up IBS was calculated as (mean distal integrated backscatter value) − (mean proximal integrated backscatter value). Stepwise multiple linear regression analysis showed that the heart rate (r = 0.45, P = 0.005), ejection fraction (r = −0.39, P = 0.01), and hemoglobin level (r = −0.32, P = 0.04) were independently correlated with step-up IBS, whereas proximal and distal IBS were not associated with these factors. There was a strong inverse correlation between step-up IBS and FFR (r = −0.84, P < 0.001), which remained significant on stepwise multiple linear regression analysis.

Conclusions

The newly defined parameter of step-up IBS is potentially useful for the functional assessment of coronary artery stenosis.  相似文献   

14.
Functional diagnostic parameters such as Fractional Flow Reserve (FFR), which is calculated from pressure measurements across stenosed arteries, are often used to determine the functional severity of coronary artery stenosis. This study evaluated the effect of arterial wall-stenosis compliance, with limiting scenarios of stenosis severity, on the diagnostic parameters. The diagnostic parameters considered in this study include an established index, FFR and two recently developed parameters: Pressure Drop Coefficient (CDP) and Lesion Flow Coefficient (LFC). The parameters were assessed for rigid artery (RR; signifying high plaque elasticity), compliant artery with calcified plaque (CC; intermediate plaque elasticity) and compliant artery with smooth muscle cell proliferation (CS; low plaque elasticity), with varying degrees of epicardial stenosis. A hyperelastic Mooney-Rivlin model was used to model the arterial wall and plaque materials. Blood was modeled as a shear thinning, non-Newtonian fluid using the Carreau model. The arterial wall compliance was evaluated using the finite element method. The present study found that, with an increase in stenosis severity, FFR decreased whereas CDP and LFC increased. The cutoff value of 0.75 for FFR was observed at 78.7% area stenosis for RR, whereas for CC and CS the cutoff values were obtained at higher stenosis severities of 81.3% and 82.7%, respectively. For a fixed stenosis, CDP value decreased and LFC value increased with a decrease in plaque elasticity (RR to CS). We conclude that the differences in diagnostic parameters with compliance at intermediate stenosis (78.7-82.7% area blockage) could lead to misinterpretation of the stenosis severity.  相似文献   

15.
Depending on stenosis severity, collateral flow can be a confounding factor in the determination of coronary hyperemic microvascular resistance (HMR). Under certain assumptions, the calculation of HMR can be corrected for collateral flow by incorporating the wedge pressure (P(w)) in the calculation. However, although P(w) > 25 mmHg is indicative of collateral flow, P(w) does in part also reflect myocardial wall stress neglected in the assumptions. Therefore, the aim of this study was to establish whether adjusting HMR by P(w) is pertinent for a diagnostically relevant range of stenosis severities as expressed by fractional flow reserve (FFR). Accordingly, intracoronary pressure and Doppler flow velocity were measured a total of 95 times in 29 patients distal to a coronary stenosis before and after stepwise percutaneous coronary intervention. HMR was calculated without (HMR) and with P(w)-based adjustment for collateral flow (HMR(C)). FFR ranged from 0.3 to 1. HMR varied between 1 and 5 and HMR(C) between 0.5 and 4.2 mmHg·cm(-1)·s. HMR was about 37% higher than HMR(C) for stenoses with FFR < 0.6, but for FFR > 0.8, the relative difference was reduced to 4.4 ± 3.4%. In the diagnostically relevant range of FFR between 0.6 and 0.8, this difference was 16.5 ± 10.4%. In conclusion, P(w)-based adjustment likely overestimates the effect of potential collateral flow and is not needed for the assessment of coronary HMR in the presence of a flow-limiting stenosis characterized by FFR between 0.6 and 0.8 or for nonsignificant lesions.  相似文献   

16.
Fractional flow reserve (FFR) is an important diagnostic tool to guide decision-making in the cardiac catheterisation laboratory and for evaluation of percutaneous coronary interventions (PCI). Especially the pressure pullback curve at maximal hyperaemia is convincing in demonstrating the exact location and severity of a coronary stenosis. This pressure pullback curve can also demonstrate the presence of diffuse disease. We present a case in which FFR with pressure pullback curve seven days after a PCI, which did not result in complete symptom relief, indicates the presence of diffuse disease. Based on this result the patient was treated medically.  相似文献   

17.

Studies performed in the last two decades demonstrate that after successful percutaneous coronary intervention (PCI) of a chronically occluded coronary artery, the physiology of the chronic total occlusion (CTO) vessel and dependent microvasculature does not normalise immediately but improves significantly over time. Generally, there is an increase in fractional flow reserve (FFR) in the CTO artery, a decrease in collateral blood supply and an increase in FFR in the donor artery accompanied by an increase in blood flow and decrease in microvascular resistance in the myocardium supplied by the CTO vessel. Analogous to these physiological changes, positive remodelling of the distal CTO artery also occurs over time, and intravascular imaging can be helpful for analysing distal vessel parameters. Follow-up coronary angiography with physiological measurements after several weeks to months can be helpful and informative in a subset of patients in order to decide upon the necessity for treatment of residual coronary artery stenosis in the vessel distal to the CTO or in the contralateral donor artery, as well as in deciding whether stent optimisation is indicated. We suggest that such physiological guidance of CTO procedures avoids unnecessary overtreatment during the initial procedure, guides interventions at follow-up, and improves our understanding of what PCI in CTO means.

  相似文献   

18.
Coronary arterial stenoses, particularly serial stenoses in a single branch, are responsible for complex hemodynamic properties of the coronary arterial trees, and the uncertain prognosis of invasive intervention. Critical information of the blood flow redistribution in the stenotic arterial segments is required for the adequate treatment planning. Therefore, in this study, an image based non-invasive functional assessment is performed to investigate the hemodynamic significances of serial stenoses. Twenty patient-specific coronary arterial trees with different combinations of stenoses were reconstructed from the computer tomography angiography for the evaluation of the hemodynamics. Our results showed that the computed FFR based on CTA images (FFRCT) pullback curves with wall shear stress (WSS) distribution could provide more effectively examine the physiological significance of the locations of the segmental narrowing and the curvature of the coronary arterial segments. The paper thus provides the diagnostic efficacy of FFRCT pullback curve for noninvasive quantification of the hemodynamics of stenotic coronary arteries with serial lesions, compared to the gold standard invasive FFR, to provide a reliable physiological assessment of significant amount of coronary artery stenosis. Further, we were also able to demonstrate the potential of carrying out virtual revascularization, to enable more precise PCI procedures and improve their outcomes.  相似文献   

19.
The decision to perform intervention on a patient with coronary stenosis is often based on functional diagnostic parameters obtained from pressure and flow measurements using sensor-tipped guidewire at maximal vasodilation (hyperemia). Recently, a rapid exchange Monorail Pressure Sensor catheter of 0.022″ diameter (MPS22), with pressure sensor at distal end has been developed for improved assessment of stenosis severity. The hollow shaft of the MPS22 is designed to slide over any standard 0.014″ guidewire (G14). Hence, influence of MPS22 diameter on coronary diagnostic parameters needs investigation. An in vitro experiment was conducted to replicate physiologic flows in three representative area stenosis (AS): mild (64% AS), intermediate (80% AS), and severe (90% AS), for two arterial diameters, 3 mm (N2; more common) and 2.5 mm (N1). Influence of MPS22 on diagnostic parameters: fractional flow reserve (FFR) and pressure drop coefficient (CDP) was evaluated both at hyperemic and basal conditions, while comparing it with G14. The FFR values decreased for the MPS22 in comparison to G14, (Mild: 0.87 vs 0.88, Intermediate: 0.68 vs 0.73, Severe: 0.48 vs 0.56) and CDP values increased (Mild: 16 vs 14, Intermediate: 75 vs 56, Severe: 370 vs 182) for N2. Similar trend was observed in the case of N1. The FFR values were found to be well above (mild) and below (intermediate and severe) the diagnostic cut-off of 0.75. Therefore, MPS22 catheter can be used as a possible alternative to G14. Further, irrespective of the MPS22 or G14, basal FFR (FFRb) had overlapping ranges in close proximity for clinically relevant mild and intermediate stenoses that will lead to diagnostic uncertainty under both N1 and N2. However, CDPb had distinct ranges for different stenosis severities and could be a potential diagnostic parameter under basal conditions.  相似文献   

20.
Purpose

Invasive fractional flow reserve (FFR), the reference standard for identifying significant coronary artery disease (CAD), can be estimated non-invasively by computed tomography-derived fractional flow reserve (CT-FFR). Commercially available off-site CT-FFR showed improved diagnostic accuracy compared to coronary computed tomography angiography (CCTA) alone. However, the diagnostic performance of this lumped-parameter on-site method is unknown. The aim of this cross-sectional study was to determine the diagnostic accuracy of on-site CT-FFR in patients with suspected CAD.

Methods

A total of 61 patients underwent CCTA and invasive coronary angiography with FFR measured in 88 vessels. Significant CAD was defined as FFR and CT-FFR below 0.80. CCTA with stenosis above 50% was regarded as significant CAD. The diagnostic performance of both CT-FFR and CCTA was assessed using invasive FFR as the reference standard.

Results

Of the 88 vessels included in the analysis, 34 had an FFR of ≤?0.80. On a per-vessel basis, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 91.2%, 81.4%, 93.6%, 75.6% and 85.2% for CT-FFR and were 94.1%, 68.5%, 94.9%, 65.3% and 78.4% for CCTA. The area under the receiver operating characteristic curve was 0.91 and 0.85 for CT-FFR and CCTA, respectively, on a per-vessel basis.

Conclusion

On-site non-invasive FFR derived from CCTA improves diagnostic accuracy compared to CCTA without additional testing and has the potential to be integrated in the current clinical work-up for diagnosing stable CAD.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号