首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PurposeAutomated treatment planning is a new frontier in radiotherapy. The Auto-Planning module of the Pinnacle3 treatment planning system (TPS) was evaluated for liver stereotactic body radiation therapy treatments.MethodsTen cases were included in the study. Six plans were generated for each case by four medical physics experts. The first two planned with Pinnacle TPS, both with manual module (MP) and Auto-Planning one (AP). The other two physicists generated two plans with Monaco TPS (VM). Treatment plan comparisons were then carried on the various dosimetric parameters of target and organs at risk, monitor units, number of segments, plan complexity metrics and human resource planning time. The user dependency of Auto-Planning was also tested and the plans were evaluated by a trained physician.ResultsStatistically significant differences (Anova test) were observed for spinal cord doses, plan average beam irregularity, number of segments, monitor units and human planning time. The Fisher-Hayter test applied to these parameters showed significant statistical differences between AP e MP for spinal cord doses and human planning time; between MP and VM for monitor units, number of segments and plan irregularity; for all those between AP and VM. The two plans created by different planners with AP were similar to each other.ConclusionsThe plans created with Auto-Planning were comparable to the manually generated plans. The time saved in planning enables the planner to commit more resources to more complex cases. The independence of the planner enables to standardize plan quality.  相似文献   

3.
Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25–75 micron-wide microplanar beams separated by wider (100–400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified.SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.  相似文献   

4.
BackgroundA purpose of the study was to investigate the dosimetric impact of contrast media on dose calculation using average 4D contrast-enhanced computed tomography (4D-CECT) and delayed 4D-CT (d4D-CT) images caused by CT simulation contrast agents for stereotactic body radiation therapy (SBRT) of liver cases.Materials and methodsFifteen patients of liver SBRT treated using the volumetric modulated arc therapy (VMAT) technique were selected retrospectively. 4D-CECT, and d4D-CT were acquired with the Anzai gating system and GE CT. For all patients, gross target volume (GTV) was contoured on the ten phases after rigid registration of both the contrast and delayed scans and merged to generate internal target volume (ITV) on average CT images. Region of interest (ROI) was drawn on contrast images and then copied to the delayed images after rigid registration of two average CT datasets. The treatment plans were generated for contrast enhanced average CT, delayed average CT and contrast enhanced average CT with electron density of the heart overridden.ResultsNo significant dosimetric difference was observed in plans parameters (mean HU value of the liver, total monitor units, total control points, degree of modulation and average segment area) except mean HU value of the aorta amongst the three arms. All the OARs were evaluated and resulted in statistically insignificant variation (p > 0.05) using one way ANOVA analysis.ConclusionsContrast enhanced 4D-CT is advantageous in accurate delineation of tumors and assessing accurate ITV. The treatment plans generated on average 4D-CECT and average d4D-CT have a clinically insignificant effect on dosimetric parameters.  相似文献   

5.
6.
AimThis study reports a single-institutional experience treating liver metastases with stereotactic body radiation therapy (SBRT).Materials and methods107 patients with 169 lesions were assessed to determine factors predictive for local control, radiographic response, and overall survival (OS). Machine learning techniques, univariate analysis, and the Kaplan-Meier method were utilized.ResultsPatients were treated with a relatively low median dose of 30 Gy in 3 fractions. Fractions were generally delivered once weekly. Median biologically effective dose (BED) was 60 Gy, and the median gross tumor volume (GTV) was 12.16 cc. Median follow-up was 7.36 months. 1-year local control was 75% via the Kaplan-Meier method. On follow-up imaging, 43%, 40%, and 17% of lesions were decreased, stable, and increased in size, respectively. 1-year OS was 46% and varied by primary tumor, with median OS of 34.3, 25.1, 12.5, and 4.6 months for ovarian, breast, colorectal, and lung primary tumors, respectively. Breast and ovarian primary patients had better OS (p < 0.0001), and lung primary patients had worse OS (p = 0.032). Higher BED values, the number of hepatic lesions, and larger GTV were not predictive of local control, radiographic response, or OS. 21% of patients suffered from treatment toxicity, but no grade ≥3 toxicity was reported.ConclusionRelatively low-dose SBRT for liver metastases demonstrated efficacy and minimal toxicity, even for patients with large tumors or multiple lesions. This approach may be useful for patients in whom higher-dose therapy is contraindicated or associated with high risk for toxicity. OS depends largely on the primary tumor.  相似文献   

7.
Purpose/objectiveThe objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis.Material/methodsUsing EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient’s dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC.ResultsValidation of MC model was successful, as <2% difference comparing to measurements for all field’s sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%.ConclusionSBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.  相似文献   

8.
BackgroundMRI-guided radiation therapy can image a target and irradiate it at the same time. Superparamagnetic iron oxide (SPIO) is a liver-specific contrast agent that can selectively visualize liver tumors, even if plain MRI does not depict them. The purpose of this study was to present a proof of concept of SPIO-enhanced MRI-guided radiation therapy for liver tumor.Case presentationMRI-guided stereotactic ablative radiation therapy (SABR) was planned for a patient with impaired renal function who developed liver metastases after nephroureterectomy for ureteral cancer. Because liver metastasis was not visualized on plain MRI, SPIO-enhanced MRI was performed at 0.35 T using true fast imaging with steady-state free precession (true FISP) pulse sequence and SABR was performed. Liver metastasis was clearly visualized by SPIO-enhanced MRI, and MRI-guided SABR was performed without adverse events.ConclusionEven if liver metastasis is not visualized by plain MRI, liver metastasis can be clearly depicted by administering SPIO, and MRI-guided radiation therapy can be performed.  相似文献   

9.
Stereotactic body radiation therapy is an effective and safe treatment modality for bone metastasis which allows clinicians to accurately target lesions to high doses while minimizing dose to organs at risk. The commercially available CyberKnife® Xsight? Spine Tracking System (Accuray, Inc., Sunnyvale, CA) tracks static skeletal structures and eliminates the need for implanted fiducial markers (FMs). However, the Xsight? Spine Tracking system is not appropriate for bone metastases outside the spine, which are moving due to respiration and ,typically, FMs have to be implanted close to the lesion. These FMs will be used to track the dynamic target. For targets close to the surface, non-invasive fixation of the FMs to the patient's skin could be an option.  相似文献   

10.
An intelligence guided approach based on fuzzy inference system (FIS) was proposed to automate beam angle optimization in treatment planning of intensity-modulated radiation therapy (IMRT). The model of FIS is built on inference rules in describing the relationship between dose quality of IMRT plan and irradiated region of anatomical structure. Dose quality of IMRT plan is quantified by the difference between calculated and constraint doses of the anatomical structures in an IMRT plan. Irradiated region of anatomical structure is characterized by the metric, covered region of interest, which is the region of an anatomical structure under radiation field while beam’s eye-view is conform to target volume. Initially, an IMRT plan is created with a single beam. The dose difference is calculated for the input of FIS and the output of FIS is obtained with processing of fuzzy inference. Later, a set of candidate beams is generated for replacing the current beam. This process continues until no candidate beams is found. Then the next beam is added to the IMRT plan and optimized in the same way as the previous beam. The new beam keeps adding to the IMRT plan until the allowed beam number is reached. Two spinal cases were investigated in this study. The preliminary results show that dose quality of IMRT plans achieved by this approach is better than those achieved by the default approach with equally spaced beam setting. It is effective to find the optimal beam combination of IMRT plan with the intelligence-guided approach.  相似文献   

11.
AimDevelopment of MRI sequences and processing methods for the production of images appropriate for direct use in stereotactic radiosurgery (SRS) treatment planning.BackgroundMRI is useful in SRS treatment planning, especially for patients with brain lesions or anatomical targets that are poorly distinguished by CT, but its use requires further refinement. This methodology seeks to optimize MRI sequences to generate distortion-free and clinically relevant MR images for MRI-only SRS treatment planning.Materials and methodsWe used commercially available SRS MRI-guided radiotherapy phantoms and eight patients to optimize sequences for patient imaging. Workflow involved the choice of correct MRI sequence(s), optimization of the sequence parameters, evaluation of image quality (artifact free and clinically relevant), measurement of geometrical distortion, and evaluation of the accuracy of our offline correction algorithm.ResultsCT images showed a maximum deviation of 1.3 mm and minimum deviation of 0.4 mm from true fiducial position for SRS coordinate definition. Interestingly, uncorrected MR images showed maximum deviation of 1.2 mm and minimum of 0.4 mm, comparable to CT images used for SRS coordinate definition. After geometrical correction, we observed a maximum deviation of 1.1 mm and minimum deviation of only 0.3 mm.ConclusionOur optimized MRI pulse sequences and image correction technique show promising results; MR images produced under these conditions are appropriate for direct use in SRS treatment planning.  相似文献   

12.
Using magnetic resonance imaging (MRI) as the sole imaging modality for patient modeling in radiation therapy (RT) is a challenging task due to the need to derive electron density information from MRI and construct a so-called pseudo-computed tomography (pCT) image. We have previously published a new method to derive pCT images from head T1-weighted (T1-w) MR images using a single-atlas propagation scheme followed by a post hoc correction of the mapped CT numbers using local intensity information. The purpose of this study was to investigate the performance of our method with head zero echo time (ZTE) MR images. To evaluate results, the mean absolute error in bins of 20 HU was calculated with respect to the true planning CT scan of the patient. We demonstrated that applying our method using ZTE MR images instead of T1-w improved the correctness of the pCT in case of bone resection surgery prior to RT (that is, an example of large anatomical difference between the atlas and the patient).  相似文献   

13.
A microversion of a computerized tomograph (CT) is described, in which the object is subjected to a successive series of translations with rotation by a small angle in between. The spatial resolution is determined by collimators and translation step lengths and is today, with clinical X-ray tube, of the order of 100 μm. The use of synchrotron radiation instead of X-ray tubes offers the advantages of much higher fluence rates, which can be used to diminish the exposure times from days to minutes or to increase the spatial resolution from 100 μm to about 1 μm. The possibility to receive monoenergetic photons of selectable energy makes it possible to avoid spectral hardening image artifacts, as well as to optimize the information sampling with regard to average absorbed dose or exposure time. Selectable photon energies are valuable also for tomochemistry applications.  相似文献   

14.
PurposeThe aim was to identify vascular calcification in 4DCT scan of lung cancer patients and establish the association between overall survival (OS) and vascular calcification, as surrogate for vascular health.MethodsVascular calcification within the thoracic cavity were segmented in 334 lung cancer patients treated with stereotactic body radiation therapy (SBRT). This has been done automatically on 4D planning CT and average reconstruction scans. Correlation between cardiac comorbidity and calcification volumes was evaluated for patients with recorded Adult Co-Morbidity Evaluation (n = 303). Associations between the identified calcifications and OS were further investigated.ResultsThe volume of calcification from the average scan was significantly lower than from each phase (p < 0.001). The highest level of correlations between cardiac comorbidity and volume of the calcifications were found for one phase representing inhale and two phases representing exhale with the least motion blurring due to respiration (p < 0.005). The volume of the calcifications was subsequently averaged over these three phases. The average of calcification volumes over the three phases (denoted by inhale-exhale) showed the highest likelihood in univariate analysis and was chosen as vascular calcification measure. Cox-model suggested that tumor volume (Hazard Ratio [HR] = 1.46, p < 0.01) and inhale-exhale volume (HR = 1.05, p < 0.05) are independent factors predicting OS after adjusting for age, sex, and performance status.ConclusionIt was feasible to use. It 4DCT scan for identifying thoracic calcifications in lung cancer patients treated with SBRT. Calcification volumes from inhale-exhale phases had the highest correlation with overall cardiac comorbidity and the average of the calcification volume obtained from these phases was an independent predictive factor for OS.  相似文献   

15.
A 56-year-old man with BRAFV600E melanoma and spinal metastases treated with vemurafenib and stereotactic radiation showed a partial response without neurological, skin or mucosal toxicity, 8 months after completion of this combination. This case suggests that stereotactic radiation spares normal tissues and might be safer than conventional fractionated radiation with vemurafenib.  相似文献   

16.
Functional imaging and its application to radiotherapy (RT) is a rapidly expanding field with new modalities and techniques constantly developing and evolving. As technologies improve, it will be important to pay attention to their implementation. This review describes the main achievements in the field of head and neck cancer (HNC) with particular remarks on the unsolved problems.  相似文献   

17.
Microbeam Radiation Therapy (MRT) exploits tumour selectivity and normal tissue sparing with spatially fractionated kilovoltage X-ray microbeams through the dose volume effect. Experimental measurements with Ta2O5 nanoparticles (NPs) in 9L gliosarcoma treated with MRT at the Australian Synchrotron, increased the treatment efficiency. Ta2O5 NPs were observed to form shells around cell nuclei which may be the reason for their efficiency in MRT. In this article, our experimental observation of NP shell formation is the basis of a Geant4 radiation transport study to characterise dose enhancement by Ta2O5 NPs in MRT. Our study showed that NP shells enhance the physical dose depending microbeam energy and their location relative to a single microbeam. For monochromatic microbeam energies below ∼70 keV, NP shells show highly localised dose enhancement due to the short range of associated secondary electrons. Low microbeam energies indicate better targeted treatment by allowing higher microbeam doses to be administered to tumours and better exploit the spatial fractionation related selectivity observed with MRT. For microbeam energies above ∼100 keV, NP shells extend the physical dose enhancement due to longer-range secondary electrons. Again, with NPs selectively internalised, the local effectiveness of MRT is expected to increase in the tumour. Dose enhancement produced by the shell aggregate varied more significantly in the cell population, depending on its location, when compared to a homogeneous NP distribution. These combined simulation and experimental data provide first evidence for optimising MRT through the incorporation of newly observed Ta2O5 NP distributions within 9L cancer cells.  相似文献   

18.
PurposeTo develop a deep learning-based metal artifact reduction (DL-MAR) method using unpaired data and to evaluate its dosimetric impact in head and neck intensity-modulated radiation therapy (IMRT) compared with the water density override method.MethodsThe data set comprised the data of 107 patients who underwent radiotherapy. Fifteen patients with dental fillings were used as the test data set. The computed tomography (CT) images of the remaining 92 patients were divided into two domains: the metal artifact and artifact-free domains. CycleGAN was used for domain translation. The artifact index of the DL-MAR images was compared with that of the original uncorrected (UC) CT images. The dose distributions of the DL-MAR and UC plans were created by comparing the reference clinical plan with the water density override method (water plan) in each dataset. Dosimetric deviation in the oral cavity from the water plan was evaluated.ResultsThe artifact index of the DL-MAR images was significantly smaller than that of the UC images in all patients (13.2 ± 4.3 vs. 267.3 ± 113.7). Compared with the reference water plan, dose differences of the UC plans were greater than those of the DL-MAR plans. DL-MAR images provided dosimetric results that were more similar to those of the water plan than the UC plan.ConclusionsWe developed a fast DL-MAR method using CycleGAN for head and neck IMRT. The proposed method could provide consistent dose calculation against metal artifact and improve the efficiency of the planning process by eliminating manual delineation.  相似文献   

19.
A stereotactic system has been designed to address the problem of achieving symmetry in complex and extensive craniofacial defects. Preliminary testing suggests that such a system, which allows for the intraoperative application of preoperative CT planning, will be useful in guiding the reconstruction of congenital or acquired bony time, is being used to investigate the correlation of intraoperative globe position following enophthalmos correction with long-term outcome, particularly as it relates to the size and location of the orbital defect, and the timing of the procedure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号