共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell Adhesion & Migration》2013,7(1):7-10
It is increasingly clear that melanoma cells modify their environment not only through the release of growth factors (GFs) and cytokines that have autocrine or paracrine effects and strongly modulate the immune response, but also by secreting proteins that become structural or transient components of the extracellular matrix (ECM). Melanoma cell secreted proteins play a significant role in cell–ECM interactions, helping tumor cells to invade neighbouring stroma, disseminate and survive in other tissue contexts. CCN3/NOV (nephroblastoma overexpressed) is a matricellular protein that belongs to the CCN family of proteins containing six members in humans. Its structure consists of modules related to functional domains previously identified in major regulatory proteins: insulin-like growth factor-binding protein (IGFBP), von Willebrand factor type C repeats (VWC), thrombospondin type 1 repeats, and secreted regulatory factors containing cysteine knot motifs. Extensive studies have indicated that the biological properties of CCN3 are dependent upon the cellular context, and its role in melanoma seems to recapitulate cell context functions. 相似文献
2.
3.
ICAM-3 regulates lymphocyte morphology and integrin-mediated T cell interaction with endothelial cell and extracellular matrix ligands 总被引:5,自引:4,他引:5
下载免费PDF全文

《The Journal of cell biology》1994,127(3):867-878
Leukocyte activation is a complex process that involves multiple cross- regulated cell adhesion events. In this report, we investigated the role of intercellular adhesion molecule-3 (ICAM-3), the third identified ligand for the beta 2 integrin leukocyte function-associated antigen-1 (LFA-1), in the regulation of leukocyte adhesion to ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), and the 38- and 80-kD fragments of fibronectin (FN40 and FN80). The activating anti-ICAM-3 HP2/19, but not other anti-ICAM-3 mAb, was able to enhance T lymphoblast adhesion to these proteins when combined with very low doses of anti-CD3 mAb, which were unable by themselves to induce this phenomenon. In contrast, anti-ICAM-1 mAb did not enhance T cell attachment to these substrata. T cell adhesion to ICAM-1, VCAM-1, FN40, and FN80 was specifically blocked by anti-LFA-1, anti-VLA alpha 4, and anti-VLA alpha 5 mAb, respectively. The activating anti-ICAM-3 HP2/19 was also able to specifically enhance the VLA-4- and VLA-5-mediated binding of leukemic T Jurkat cells to VCAM-1, FN40, and FN80, even in the absence of cooccupancy of the CD3-TcR complex. We also studied the localization of ICAM-3, LFA-1, and the VLA beta 1 integrin, by immunofluorescence microscopy, on cells interacting with ICAM-1, VCAM-1 and FN80. We found that the anti-ICAM-3 HP2/19 mAb specifically promoted a dramatic change on the morphology of T lymphoblasts when these cells were allowed to interact with those adhesion ligands. Under these conditions, it was observed that a large cell contact area from which an uropod-like structure (heading uropod) was projected toward the outer milieu. However, when T blasts were stimulated with other adhesion promoting agents as the activating anti-VLA beta 1 TS2/16 mAb or phorbol esters, this structure was not detected. The anti-ICAM-3 TP1/24 mAb was also unable to induce this phenomenon. Notably, a striking cell redistribution of ICAM-3 was induced specifically by the HP2/19 mAb, but not by the other anti-ICAM-3 mAb or the other adhesion promoting agents. Thus, ICAM-3 was almost exclusively concentrated in the most distal portion of the heading uropod whereas either LFA-1 or the VLA beta 1 integrin were uniformly distributed all over the large contact area. Moreover, this phenomenon was also observed when T cells were specifically stimulated with the HP2/19 mAb to interact with TNF alpha-activated endothelial cells.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
4.
Cell adhesion and spreading on solid phase fibronectin (FN), coated on plate or presented in extracellular matrix, are mediated by integrin receptors alpha5beta1, alpha4beta1, etc., although binding of "soluble-form FN" to cell surface varies extensively depending on glycosylation status of FN per se. Deposition or incorporation at the cell surface or pericellular matrix of soluble-form FN from body fluids or synthesized de novo takes place through a yet-unknown (perhaps integrin-independent) mechanism. Here we present evidence that the mechanism involves carbohydrate-to-carbohydrate interaction. Binding or incorporation of soluble-form placental or hepatoma FN to cell surface or pericellular matrix is highly dependent on the specific glycosylation status of FN per se and combination with glycosylation status of the cell surface, and is greatly promoted by a certain type of coexisting (shedded) glycosphingolipid. A few lines of study indicate that the process is mediated by interaction of FN carbohydrate with cell surface carbohydrate. The great enhancement of the binding process by glycosphingolipid is based on dual interaction of glycosphingolipid carbohydrate with FN carbohydrate and with cell surface carbohydrate. Here we present an example of promotion of binding of soluble-form FN from placenta or from hepatoma cells, having a specific carbohydrate epitope termed "disialyl-I," to K562 or VA13 cell surface in the presence of glycosphingolipid Gg3, which interacts specifically with disialyl-I. 相似文献
5.
The thrombospondins (TSPs) are a family of five matricellular proteins that appear to function as adapter molecules to guide extracellular matrix synthesis and tissue remodeling in a variety of normal and disease settings. Various TSPs have been shown to bind to fibronectin, laminin, matrilins, collagens and other extracellular matrix (ECM) proteins. The importance of TSP-1 in this context is underscored by the fact that it is rapidly deposited at the sites of tissue damage by platelets. An association of TSPs with collagens has been known for over 25 years. The observation that the disruption of the TSP-2 gene in mice leads to collagen fibril abnormalities provided important in vivo evidence that these interactions are physiologically important. Recent biochemical studies have shown that TSP-5 promotes collagen fibril assembly and structural studies suggest that TSPs may interact with collagens through a highly conserved potential metal ion dependent adhesion site (MIDAS). These interactions are critical for normal tissue homeostasis, tumor progression and the etiology of skeletal dysplasias. 相似文献
6.
Regulatory role of vitamins E and C on extracellular matrix components of the vascular system 总被引:1,自引:0,他引:1
The protective effect of vitamins E (alpha-tocopherol) and C (L-ascorbic acid) in the prevention of cardiovascular disease (CVD) has been shown in a number of situations but a secure correlation is not universally accepted. Under certain conditions, both, L-ascorbic acid and alpha-tocopherol can exhibit antioxidant properties and thus may reduce the formation of oxidized small molecules, proteins and lipids, which are a possible cause of cellular de-regulation. However, non-antioxidant effects have also been suggested to play a role in the prevention of atherosclerosis. Vitamin E and C can modulate signal transduction and gene expression and thus affect many cellular reactions such as the proliferation of smooth muscle cells, the expression of cell adhesion and extracellular matrix molecules, the production of O(2)(-) by NADPH-oxidase, the aggregation of platelets and the inflammatory response. Vitamins E and C may modulate the extracellular matrix environment by affecting VSMC differentiation and the expression of connective tissue proteins involved in vascular remodeling as well as the maintenance of vascular wall integrity. This review summarizes individually the molecular activities of vitamins E and C on the cells within the connective tissue of the vasculature, which are centrally involved in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development. 相似文献
7.
Prolidase (EC 3.4.13.9) is a ubiquitously distributed imidodipeptidase that catalyzes the hydrolysis of C-terminal proline or hydroxyproline containing dipeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis and cell growth. An increase in enzyme activity is correlated with increased rates of collagen turnover indicative of extracellular matrix (ECM) remodeling, but the mechanism linking prolidase activity and ECM is poorly understood. Thus, the effect of ECM-cell interaction on intracellular prolidase activity is of special interest. In cultured human skin fibroblasts, the interaction with ECM and, more specifically, type I collagen mediated by the β1 integrin receptor regulates cellular prolidase activity. Supporting evidence comes from the following observations: 1) in sparse cells with a low amount of ECM collagen or in confluent cells in which ECM collagen was removed by collagenase (but not by trypsin or elastase) treatment, prolidase activity was decreased; 2) this effect was reversed by the addition of type I collagen or β1 integrin antibody (agonist for β1 integrin receptor); 3) sparse cells (with typically low prolidase activity) showed increased prolidase activity when grown on plates coated with type I collagen or on type IV collagen and laminin, constituents of basement membrane; 4) the relative differences in prolidase activity due to collagenase treatment and subsequent recovery of the activity by β1 integrin antibody or type I collagen treatment were accompanied by parallel differences in the amount of the enzyme protein recovered from these cells, as shown by Western immunoblot analysis. Thus, we conclude that prolidase activity responded to ECM metabolism (tissue remodeling) through signals mediated by the integrin receptor. J. Cell. Biochem. 67:166–175, 1997. Published 1997 Wiley-Liss, Inc. 相似文献
8.
Ghinea N Baratti-Elbaz C De Jesus-Lucas A Milgrom E 《Molecular endocrinology (Baltimore, Md.)》2002,16(5):912-923
Using immunocytochemistry, we have observed that the TSH receptor (TSHR) is concentrated at the leading edge of lamellipodia in both cultured human thyroid cells and in various transfected cells. This segregation of the receptor is due to its interaction with extracellular matrix (ECM) and specially with fibronectin. The TSHR, which interacts with the ECM, is known to undergo cleavage by a matrix metalloprotease. The homologous LH receptor, which does not interact with ECM, is not cleaved. The attachment to the ECM modifies the functional properties of the receptor: it increases adenylate cyclase stimulation by hormone, whereas PLC stimulation is not modified. Furthermore, the constitutive activity of the TSHR is only observed in attached cells, suggesting that it is dependent on TSHR interaction with the ECM. Thus, aside from its classical properties of hormone binding and signalization through G proteins, the TSHR is also involved in cell-matrix interactions, which modulate its functional properties. 相似文献
9.
Nancy M. Mozingo Victor D. Vacquier Douglas E. Chandler 《Molecular reproduction and development》1995,41(4):493-502
Abalone eggs are surrounded by a complex extracellular coat that contains three distinct elements: the jelly layer, the vitelline envelope, and the egg surface coat. In this study we used light and electron microscopy to describe these three elements in the red abalone (Haliotis rufescens) and ascribe function to each based on their interactions with sperm. The jelly coat is a spongy matrix that lies at the outermost margin of the egg and consists of variably sized fibers. Sperm pass through this layer with their acrosomes intact and then go on to bind to the vitelline envelope. The vitelline envelope is a multilamellar fibrous layer that appears to trigger the acrosome reaction after sperm binding. Next, sperm release lysin from their acrosomal granules, a nonenzymatic protein that dissolves a hole in the vitelline envelope through which the sperm swims. Sperm then contact the egg surface coat, a network of uniformly sized filaments lying directly above the egg plasma membrane. This layer mediates attachment of sperm, via their acrosomal process, to the egg surface. © 1995 Wiley-Liss, Inc. 相似文献
10.
Modelling cell migration strategies in the extracellular matrix 总被引:1,自引:0,他引:1
Painter KJ 《Journal of mathematical biology》2009,58(4-5):511-543
The extracellular matrix (ECM) is a highly organised structure with the capacity to direct cell migration through their tendency to follow matrix fibres, a process known as contact guidance. Amoeboid cell populations migrate in the ECM by making frequent shape changes and have minimal impact on its structure. Mesenchymal cells actively remodel the matrix to generate the space in which they can move. In this paper, these different types of movement are studied through simulation of a continuous transport model. It is shown that the process of contact guidance in a structured ECM can spatially organise cell populations. Furthermore, when combined with ECM remodelling, it can give rise to cellular pattern formation in the form of "cell-chains" or networks without additional environmental cues such as chemoattractants. These results are applied to a simple model for tumour invasion where it is shown that the interactions between invading cells and the ECM structure surrounding the tumour can have a profound impact on the pattern and rate of cell infiltration, including the formation of characteristic "fingering" patterns. The results are further discussed in the context of a variety of relevant processes during embryonic and adult stages. 相似文献
11.
Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two‐dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three‐dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three‐dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three‐dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic–biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism. Biotechnol. Bioeng. 2009;103: 655–663. © 2009 Wiley Periodicals, Inc. 相似文献
12.
Amy D. Bradshaw 《Journal of cell communication and signaling》2009,3(3-4):239-246
SPARC is a collagen-binding matricellular protein. Expression of SPARC in adult tissues is frequently associated with excessive deposition of collagen and SPARC-null mice fail to generate a robust fibrotic response to a variety of stimuli. This review summarizes recent advancements in the characterization of the binding of SPARC to collagens and describes the results of studies that implicate a function for SPARC in the regulation of the assembly of basal lamina and fibrillar collagen in the ECM. Potential cellular mechanisms that underlie SPARC activity in ECM deposition are also explored. 相似文献
13.
14.
Chondroitin sulfate proteoglycans are the principal inhibitory component of glial scars, which form after damage to the adult central nervous system and act as a barrier to regenerating axons. Recent findings have furthered our understanding of the mechanisms that result in a failure of regeneration after spinal cord injury and suggest that a multipartite approach will be required to facilitate long-distance regeneration and functional recovery. 相似文献
15.
Alexandrova AY 《Biochemistry. Biokhimii?a》2008,73(7):733-741
Interaction of cells with extracellular matrix (ECM) largely defines migration capacity of cells and ways of their dissemination in normal tissue processes and during tumor progression. We review current knowledge about structure of cell adhesions with ECM and their alterations during carcinogenesis. We analyze how changes in structure of cell-matrix adhesions and ECM itself lead to acquisition of neoplastic properties by cells. Modern concepts of tumor cell motility and changes in the relationships of cells with ECM during tumor development are presented. Contemporary approaches for influencing the cell-ECM adhesion structures for inhibition of invasion and metastasis are briefly discussed. 相似文献
16.
Wierzbicka-Patynowski I Schwarzbauer JE 《The Journal of biological chemistry》2002,277(22):19703-19708
Fibronectin (FN) matrix assembly is a tightly regulated stepwise process that is initiated by interactions between FN and cell surface integrin receptors. These interactions activate many intracellular signaling pathways that regulate processes such as cell adhesion, migration, and survival. Here we demonstrate that cells lacking Src family kinases showed reduced ability to assemble FN fibrils as detected by immunofluorescence and by analysis of detergent extracts. The amount of FN matrix was further reduced by treatment with the phosphatidylinositol 3 (PI 3-kinase) inhibitor, wortmannin. CHOalpha5 cells, which are dependent on exogenous FN to initiate fibril formation, also showed significant reductions in matrix when treated with inhibitors of Src and PI 3-kinase. Combination of both inhibitors showed an additive inhibitory effect on assembly, which was concomitant with a loss of focal adhesion kinase phosphorylation. Decreased binding of the 70-kDa amino-terminal FN fragment at matrix assembly sites further supports a role for these kinases early during the process. We propose that these two signaling molecules, which lie downstream of integrins and focal adhesion kinase, are essential for efficient initiation of FN matrix assembly. 相似文献
17.
Mitsi M Forsten-Williams K Gopalakrishnan M Nugent MA 《The Journal of biological chemistry》2008,283(50):34796-34807
We investigated the mechanism by which heparin enhances the binding of vascular endothelial growth factor (VEGF) to the extracellular matrix protein fibronectin. In contrast to other systems, where heparin acts as a protein scaffold, we found that heparin functions catalytically to modulate VEGF binding site availability on fibronectin. By measuring the binding of VEGF and heparin to surface-immobilized fibronectin, we show that substoichiometric amounts of heparin exposed cryptic VEGF binding sites within fibronectin that remain available after heparin removal. Measurement of association and dissociation kinetics for heparin binding to fibronectin indicated that the interaction is rapid and transient. We localized the heparin-responsive element to the C-terminal 40-kDa Hep2 domain of fibronectin. A mathematical model of this catalytic process was constructed that supports a mechanism whereby the heparin-induced conformational change in fibronectin is accompanied by release of heparin. Experiments with endothelial extracellular matrix suggest that this process may also occur within biological matrices. These results indicate a novel mechanism whereby heparin catalyzes the conversion of fibronectin to an open conformation by transiently interacting with fibronectin and progressively hopping from molecule to molecule. Catalytic activation of the extracellular matrix might be an important mechanism for heparin to regulate function during normal and disease states. 相似文献
18.
19.
Mouse mutants provide new insights into the role of extracellular matrix in cell migration and differentiation 总被引:7,自引:0,他引:7
Migratory cell populations in the developing embryo disperse, localize and eventually differentiate in environments rich in extracellular matrix material. The extracellular matrix provides both a substratum for migration and a source of differentiative cues for the developing cells. Mutations in mice and other animals that alter embryonic interstitial environments are now providing information about the role of the extracellular matrix in these early developmental processes. 相似文献
20.
Integrin subunits present on human bladder cells displayed heterogeneous functional specificity in adhesion to extracellular matrix proteins (ECM). The non-malignant cell line (HCV29) showed significantly higher adhesion efficiency to collagen IV, laminin (LN) and fibronectin (FN) than cancer (T24, Hu456) and v-raf transfected (BC3726) cell lines. Specific antibodies to the alpha(2), alpha(5) and beta(1) integrin subunits inhibited adhesion of the non-malignant cells, indicating these integrin participation in the adhesion to ECM proteins. In contrast, adhesion of cancer cells was not inhibited by specific antibodies to the beta(1) integrin subunit. Antibodies to alpha(3) integrin increased adhesion of cancer cells to collagen, LN and FN, but also of the HCV29 line with collagen. It seems that alpha(3) subunit plays a major role in modulation of other integrin receptors especially in cancer cells. Differences in adhesion to ECM proteins between the non-malignant and cancer cell lines in response to Gal and Fuc were not evident, except for the v-raf transfected cell line which showed a distinct about 6-fold increased adhesion to LN on addition of both saccharides. N-Acetylneuraminic acid inhibited adhesion of all cell lines to LN and FN irrespective of their malignancy. 相似文献