首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Background and purposeTo determine the optimum combination of treatment parameters between pitch, field width (FW) and modulation factor (MF) for extremity sarcomas in tomotherapy.Materials and methodsSix patients previously treated for extremity sarcomas (3 arms and 3 legs) with tomotherapy were included in this study. 288 treatment plans were recalculated, corresponding to all combinations between 2 FW (2.5 and 5 cm), 4 MF (1.5, 2, 2.5 and 3) and 6 pitches (0.215, 0.287, 0.43 and 3 off-axis pitches). The treatment parameters (MF, FW or pitch) are modified between each plan, and the calculation is relaunched for 400 iterations, without modifying the optimisation constraints of the plan under which the patient has been treated.ResultsWe suggest eliminating the 0.43 pitch and never combining a 0.215 pitch with an MF ≤ 2. We also do not recommend using an MF = 1.5 unless treatment time is an absolute priority over plan quality. We did not see any advantage in using Chen off-axis pitches, except for targets far from the axis (>15 cm) treated with a high pitch. A combination of MF = 2/FW = 5 cm/pitch = 0.287 gives plans of acceptable quality, combined with reduced treatment times. These conclusions are true only for extremity sarcomas treated in 2 Gy/fraction.ConclusionsWe have shown that the choice of pitch/MF/FW combination is crucial for the treatment of extremity sarcomas in tomotherapy: some produce good dosimetric quality with a reduced irradiation time, while others may increase the time without improving the quality.  相似文献   

2.

Background and aim

This study proposed a method to estimate the beam-on time for prostate cancer patients treated on Tomotherapy when FW (field width), PF (pitch factor), modulation factor (MF) and treatment length (TL) were given.

Material and methods

The study was divided into two parts: building and verifying the model. To build a model, 160 treatment plans were created for 10 patients. The plans differed in combination of FW, PF and MF. For all plans a graph of beam-on time as a function of TL was created and a linear trend function was fitted. Equation for each trend line was determined and used in a correlation model. Finally, 62 plans verified the treatment time computation model – the real execution time was compared with our estimation and irradiation time calculated based on the equation provided by the manufacturer.

Results

A linear trend function was drawn and the coefficient of determination R2 and the Pearson correlation coefficient r were calculated for each of the 8 trend lines corresponding to the adequate treatment plan. An equation to correct the model was determined to estimate more accurately the beam-on time for different MFs. From 62 verification treatment plans, only 5 disagreed by more than 60 s with the real time from the HT software. Whereas, for the equation provided by the manufacturer the discrepancy was observed in 16 cases.

Conclusions

Our study showed that the model can well predict the treatment time for a given TL, MF, FW and it can be used in clinical practice.  相似文献   

3.
PurposeTo assess the potential of cone beam CT (CBCT) derived adaptive RapidArc treatment for esophageal cancers in reducing the dose to organs at risk (OAR).Methods and materialsTen patients with esophageal cancer were CT scanned in free breathing pattern. The PTV is generated by adding a 3D margin of 1 cm to the CTV as per ICRU 62 recommendations. The double arc RapidArc plan (Clin_RA) was generated for the PTV. Patients were setup using kV orthogonal images and kV-CBCT scan was acquired daily during first week of therapy, then weekly. These images were exported to the Eclipse TPS. The adaptive CTV which includes tumor and involved nodes was delineated in each CBCT image set for the length of the PTV. The composite CTV from first week CBCT was generated using Boolean union operator and 5 mm margin was added circumferentially to generate adaptive PTV (PTV1). Adaptive RapidArc plan (Adap_RA) was generated. NTCP and DVH of the OARs of the two plans were compared. Similarly, PTV2 was generated from weekly CBCT. PTV2 was evaluated for the coverage of 95% isodose of Adap_RA plan.ResultsThe PTV1 and PTV2 volumes covered by 95% isodose in adaptive plans were 93.51 ± 1.17% and 94.59 ± 1.43% respectively. The lung V10Gy, V20Gy and mean dose in Adap_RA plan was reduced by 17.43% (p = 0.0012), 34.64% (p = 0.0019) and 16.50% (p = 0.0002) respectively compared to Clin_RA. The Adap_RA plan reduces the heart D35% and mean dose by 17.35% (p = 0.0011) and 17.16% (p = 0.0012). No significant reduction in spinal cord and liver doses were observed. NTCP for the lung (0.42% vs. 0.08%) and heart (1.39% vs. 0.090%) was reduced significantly in adaptive plans.ConclusionThe adaptive re-planning strategy based on the first week CBCT dataset significantly reduces the doses and NTCP to OARs.  相似文献   

4.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

5.
PurposeImage guided adaptive radiotherapy (IGART) strategies can be used to include the temporal aspects of radiotherapy treatment. A dosimetric evaluation of on- and off-line adaptive strategies are done in this study.MethodsA library of equivalent uniform dose (EUD)-based Intensity Modulated Radiotherapy Treatment plans with incrementally increasing clinical target volume (CTV)-to-planning target volume (PTV) margins were developed for 10 patients. Utilizing daily computed tomography (CT) images an on-line strategy using a margin-of-the-day (MOD) concept that selects the best plan from the library was employed. This was compared to an off-line strategy with full analysis of accumulated dose between fractions where dosimetric deviations from the treatment intent triggered plan adaptation. A fixed margin treatment approach was used as benchmark.ResultsUsing fixed margins of <15 mm lead to under-dosages of more than 5 Gy in total delivered dose. The average CTV EUD for the off-line and on-line strategy was 50.0 ± 5.0 Gy and 50.4 ± 2.0 Gy respectively and OAR doses were comparable.ConclusionA fixed margin treatment approach yields a significant probability of CTV under-dosage. Using EUD dose metrics CTV coverage can be restored in both the off-line and on-line adaptive strategies at acceptable OAR dose levels. Considering the workload and time on the treatment machine, the off-line strategy proves to be sufficient and more practical.  相似文献   

6.
PurposeTo investigate the dosimetric impact between the anisotropic analytical algorithm (AAA) and the Acuros XB (AXB) algorithm in volumetric-modulated arc therapy (VMAT) plans for high-grade glioma (HGG).MethodsWe used a heterogeneous phantom to quantify the agreement between the measured and calculated doses from the AAA and from the AXB. We then analyzed 14 patients with HGG treated by VMAT, using the AAA. We newly created AXB plans for each corresponding AAA plan under the following conditions: (1) re-calculation for the same number of monitor units with an identical beam and leaf setup, and (2) re-optimization under the same conditions of dose constraints. The dose coverage for the planning target volume (PTV) was evaluated by dividing the coverage into the skull, air, and soft-tissue regions.ResultsCompared to the results obtained with the AAA, the AXB results were in good agreement with the measured profiles. The dose differences in the PTV between the AAA and re-calculated AXB plans were large in the skull region contained in the target. The dose difference in the PTV in both types of plan was significantly correlated with the volume of the skull contained in the target (r = 0.71, p = 0.0042). A re-optimized AXB plan's dose difference was lower vs. the re-calculated AXB plan's.ConclusionsWe observed dose differences between the AAA and AXB plans, in particular in the cases in which the skull region of the target was large. Considering the phantom measurement results, the AXB algorithm should be used in VMAT plans for HGG.  相似文献   

7.
PurposeTo demonstrate the strength of an innovative knowledge-based model-building method for radiotherapy planning using hypofractionated, multi-target prostate patients.Material and methodsAn initial RapidPlan model was trained using 48 patients who received 60 Gy to prostate (PTV60) and 44 Gy to pelvic nodes (PTV44) in 20 fractions. To improve the model's goodness-of-fit, an intermediate model was generated using the dose-volume histograms of best-spared organs-at-risk (OARs) of the initial model. Using the intermediate model and manual tweaking, all 48 cases were re-planned. The final model, trained using these re-plans, was validated on 50 additional patients. The validated final model was used to determine any planning advantage of using three arcs instead of two on 16 VMAT cases and tested on 25 additional cases to determine efficacy for single-PTV (PTV60-only) treatment planning.ResultsFor model validation, PTV V95% of 99.9% was obtained by both clinical and knowledge-based planning. D1% was lower for model plans: by 1.23 Gy (PTV60, CI = [1.00, 1.45]), and by 2.44 Gy (PTV44, CI = [1.72, 3.16]). OAR sparing was superior for knowledge-based planning: ΔDmean = 3.70 Gy (bladder, CI = [2.83, 4.57]), and 3.22 Gy (rectum, CI = [2.48, 3.95]); ΔD2% = 1.17 Gy (bowel bag, CI = [0.64, 1.69]), and 4.78 Gy (femoral heads, CI = [3.90, 5.66]). Using three arcs instead of two, improvements in OAR sparing and PTV coverage were statistically significant, but of magnitudes < 1 Gy. The model failed at reliable DVH predictions for single PTV plans.ConclusionsOur knowledge-based model delivers efficient, consistent plans with excellent PTV coverage and improved OAR sparing compared to clinical plans.  相似文献   

8.
IntroductionTo investigate the dosimetric impact of daily on-line repositioning during a full course of IMRT for prostate cancer.Materials and methodsTwenty patients were treated with image-guided IMRT. Each pre-treatment plan (Plan A) was compared with a post-treatment plan sum (Plan B) based on couch shifts measured. The delivered dose to the prostate without a daily repositioning was inferred by considering each daily couch shift during the whole course of image-guided IMRT (i.e. plan B). Dose metrics were compared for prostate CTV (P-CTV) and PTV (P-PTV) and for organs at risk. Ten patients were treated with a 5 mm margin and 10 patients with a 10 mm margin.ResultsFor plan A vs plan B: the average D95, D98, D50, D mean and EUD were: 76.4 Gy vs 73.9 Gy (p = 0.0007), 75.4 Gy vs 72.3 Gy (p = 0.001), 78.9 Gy vs 78.4 Gy (p = 0.014), 78.7 Gy vs 77.8 Gy (p = 0.003) and 78.1 Gy vs 75.9 Gy (p = 0.002), respectively for P-CTV, and 73.2 Gy vs 69.3 Gy (p = 0.0006), 70.7 Gy vs 66.0 Gy (p = 0.0008), 78.3 Gy vs 77.5 Gy (p = 0.001), 77.8 Gy vs 76.4 Gy (p = 0.0002) and 74.4 Gy vs 69.2 Gy (p = 0.003), respectively for P-PTV. Margin comparison showed no differences in dose metrics between the two plans except for D98 of the rectum in plan B which was significantly higher with a 10 mm margin.ConclusionsThe absence of daily image-guided IMRT resulted in a significantly less uniform and less homogeneous dose distribution to the prostate. A reduction in PTV margin showed neither a lower target coverage nor a better spare of OAR with and without daily image-guided IMRT.  相似文献   

9.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

10.
11.
ObjectiveTo investigate the potential of Particle Swarm Optimization (PSO) for fully automatic VMAT radiotherapy (RT) treatment planning.Material and MethodsIn PSO a solution space of planning constraints is searched for the best possible RT plan in an iterative, statistical method, optimizing a population of candidate solutions. To identify the best candidate solution and for final evaluation a plan quality score (PQS), based on dose volume histogram (DVH) parameters, was introduced.Automatic PSO-based RT planning was used for N = 10 postoperative prostate cancer cases, retrospectively taken from our clinical database, with a prescribed dose of EUD = 66 Gy in addition to two constraints for rectum and one for bladder. Resulting PSO-based plans were compared dosimetrically to manually generated VMAT plans.ResultsPSO successfully proposed treatment plans comparable to manually optimized ones in 9/10 cases. The median (range) PTV EUD was 65.4 Gy (64.7–66.0) for manual and 65.3 Gy (62.5–65.5) for PSO plans, respectively. However PSO plans achieved significantly lower doses in rectum D2% 67.0 Gy (66.5–67.5) vs. 66.1 Gy (64.7–66.5, p = 0.016). All other evaluated parameters (PTV D98% and D2%, rectum V40Gy and V60Gy, bladder D2% and V60Gy) were comparable in both plans. Manual plans had lower PQS compared to PSO plans with −0.82 (−16.43–1.08) vs. 0.91 (−5.98–6.25).ConclusionPSO allows for fully automatic generation of VMAT plans with plan quality comparable to manually optimized plans. However, before clinical implementation further research is needed concerning further adaptation of PSO-specific parameters and the refinement of the PQS.  相似文献   

12.
13.
PurposeThe accuracy of gated irradiation may decrease when treatment is performed with short “beam-on” times. Also, the dose is subject to variation between treatment sessions if the respiratory rate is irregular. We therefore evaluated the impact of the differences between gated and non-gated treatment on doses using a new online quality assurance (QA) system for respiratory-gated radiotherapy.MethodsWe generated dose estimation models to associate dose and pulse information using a 0.6 cc Farmer chamber and our QA system. During gated irradiation with each of seven regular and irregular respiratory patterns, with the Farmer chamber readings as references, we evaluated our QA system’s accuracy. We then used the QA system to assess the impact of respiratory patterns on dose distribution for three lung and three liver radiotherapy plans. Gated and non-gated plans were generated and compared.ResultsThere was agreement within 1.7% between the ionization chamber and our system for several regular and irregular motion patterns. For dose distributions with measured errors, there were larger differences between gated and non-gated treatment for high-dose regions within the planned treatment volume (PTV). Compared with a non-gated plan, PTV D95% for a gated plan decreased by −1.5% to −2.6%. Doses to organs at risk were similar with both plans.ConclusionsOur simple system estimated the radiation dose to the patient using only pulse information from the linac, even during irregular respiration. The quality of gated irradiation for each patient can be verified fraction by fraction.  相似文献   

14.
AimTo evaluate the performance of volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.BackgroundRapidArc is a novel technique that has recently been made available for clinical use. Planning study was done for volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.Materials and methodsTen patients with advanced tumors of the nasopharynx, oropharynx, and hypopharynx were selected for the planning comparison study. PTV was delineated for two different dose levels and planning was done by means of simultaneously integrated boost technique. A total dose of 70 Gy was delivered to the boost volume (PTV boost) and 57.7 Gy to the elective PTV (PTV elective) in 35 equal treatment fractions. PTV boost consisted of the gross tumor volume and lymph nodes containing visible macroscopic tumor or biopsy-proven positive lymph nodes, whereas the PTV elective consisted of elective nodal regions. Planning was done for IMRT using 9 fields and RapidArc with single arc, double arc. Beam was equally placed for IMRT plans. Single arc RapidArc plan utilizes full 360° gantry rotation and double arc consists of 2 co-planar arcs of 360° in clockwise and counter clockwise direction. Collimator was rotated from 35 to 45° to cover the entire tumor, which reduced the tongue and groove effect during gantry rotation. All plans were generated with 6 MV X-rays for CLINAC 2100 Linear Accelerator. Calculations were done in the Eclipse treatment planning system (version 8.6) using the AAA algorithm.ResultsDouble arc plans show superior dose homogeneity in PTV compared to a single arc and IMRT 9 field technique. Target coverage was almost similar in all the techniques. The sparing of spinal cord in terms of the maximum dose was better in the double arc technique by 4.5% when compared to the IMRT 9 field and single arc techniques. For healthy tissue, no significant changes were observed between the plans in terms of the mean dose and integral dose. But RapidArc plans showed a reduction in the volume of the healthy tissue irradiated at V15 Gy (5.81% for single arc and 4.69% for double arc) and V20 Gy (7.55% for single arc and 5.89% for double arc) dose levels when compared to the 9-Field IMRT technique. For brain stem, maximum dose was similar in all the techniques. The average MU (±SD) needed to deliver the dose of 200 cGy per fraction was 474 ± 80 MU and 447 ± 45 MU for double arc and single arc as against 948 ± 162 MU for the 9-Field IMRT plan. A considerable reduction in maximum dose to the mandible by 6.05% was observed with double arc plan. Double arc shows a reduction in the parotid mean dose when compared with single arc and IMRT plans.ConclusionRapidArc using double arc provided a significant sparing of OARs and healthy tissue without compromising target coverage compared to IMRT. The main disadvantage with IMRT observed was higher monitor units and longer treatment time.  相似文献   

15.
PurposeThis study investigated the impact of lung density on the isolated lung tumor dose for volumetric modulated arc therapy (VMAT) in an inline magnetic resonance linear accelerator (MR-Linac) using the Monte Carlo (MC) simulation.MethodsCT images of the thorax phantoms with lung tumors of 1, 2, and 3 cm diameters were converted into voxel-base phantoms with lung densities of 0.1, 0.2, and 0.3 g/cm3, respectively. The dose distributions were calculated for partial-arc VMAT. The dose distributions were compared using dose differences, dose volume histograms, and dose volume indices.ResultsIn all cases, the inline magnetic field significantly enhanced the lung tumor dose compared to that at 0 T. For the 1 cm lung tumor, the inline magnetic field of 1 T increased the minimum dose of 95% of the Planning target volume (PTV D95) by 14.0% in 0.1 g/cm3 lung density as compared to that in 0.3 g/cm3 at 0 T. In contrast, at 0 and 0.5 T, the PTV D95 in 0.3 g/cm3 lung density was larger than that in lung density of 0.1 g/cm3. For the 2 cm lung tumor, a similar tendency to 1 cm was observed, whereas the dose impact of lung density was smaller than that for 1 cm. For the 3 cm lung tumor, the lung tumor dose was independent of lung density at 0.5 T and 1.0 T.ConclusionThe inline MR-Linac with the magnetic field over 1 T can enhance the PTV D95 for VMAT regardless of the lung density.  相似文献   

16.
Hu Z  Zhang J  Xie H  Li S  Wang J  Zhang T 《Bioresource technology》2011,102(9):5486-5491
Laboratory scale anoxic/aerobic sequencing batch reactor (A/O SBR) was operated around 15 °C to evaluate the effect of anoxic/aerobic phase fraction (PF) on N2O emission. The ammonia removal exhibited a decrease trend with the increase of PF, while the highest total nitrogen removal was achieved at PF = 0.5. Almost all the N2O was emitted during the aerobic phase, despite of the PF value. However, the net emission of N2O was affected by PF. Under the premise of completely aerobic nitrification, the lowest N2O emission was achieved at PF = 0.5, with a N2O-N conversion rate of 9.8%. At lower PF (PF = 0.2), N2O emission was stimulated by residual nitrite caused by uncompleted denitrification during the anoxic phase. On the other hand, the exhaustion of the easily degradable carbon was the major cause for the high N2O emission at higher PF (PF = 0.5). The N2O emission increased with the decreasing temperature. The time-weighted N2O emission quantity at 15 °C was 2.9 times higher than that at 25 °C.  相似文献   

17.
PurposeThe purpose of this work was to present a new single-arc mixed photon (6&18MV) VMAT (SAMP) optimization framework that concurrently optimizes for two photon energies with corresponding partial arc lengths.Methods and materialsOwing to simultaneous optimization of energy dependent intensity maps and corresponding arc locations, the proposed model poses nonlinearity. Unique relaxation constraints based on McCormick approximations were introduced for linearization. Energy dependent intensity maps were then decomposed to generate apertures. Feasibility of the proposed framework was tested on a sample of ten prostate cancer cases with lateral separation ranging from 34 cm (case no.1) to 52 cm (case no.6). The SAMP plans were compared against single energy (6MV) VMAT (SE) plans through dose volume histograms (DVHs) and radiobiological parameters including normal tissue complication probability (NTCP) and equivalent uniform dose (EUD).ResultsThe contribution of higher energy photon beam optimized by the algorithm demonstrated an increase for cases with a lateral separation >40 cm. SAMP–VMAT notably improved bladder and rectum sparing in large size cases. Compared to single energy, SAMP–VMAT plans reduced bladder and rectum NTCP in cases with large lateral separation. With the exception of one case, SAMP–VMAT either improved or maintained femoral heads compared to SE–VMAT. SAMP–VMAT reduced the nontarget tissue integral dose in all ten cases.ConclusionsA single-arc VMAT optimization framework comprising mixed photon energy partial arcs was presented. Overall results underline the feasibility and potential of the proposed approach for improving OAR sparing in large size patients without compromising the target homogeneity and coverage.  相似文献   

18.
19.
PurposeTo evaluate the dosimetric impact of uncorrected rotations on the planning target volume (PTV) coverage for early stage non-small cell lung cancer patients treated with stereotactic body radiotherapy using Brainlab ExacTrac image guidance.MethodsTwenty-two patients were retrospectively selected. Two scenarios of uncorrected rotations were simulated with magnitude of 1°, 2°, 3° and 5°: (1) rotation around the treatment isocenter; and (2) roll and yaw rotations around a setup isocenter. The D95 of PTV from recalculated dose on the rotated CT was compared to that from the clinical plan. A logistic regression model was used to predict the probability of dose differences between recalculated and original plans that are less than 2% based on the rotation angle, PTV volume, and distance between the treatment and setup isocenter.ResultsLogistic regression model showed the uncorrected isocentric rotations of up to 2.5° in all directions have negligible dosimetric impact. For non-isocentric rotations, a rotational error of 2° may cause significant under-dose of the PTV. Statistically significant (p < 0.05) parameters in the logistic regression model were angle for isocentric rotations, angle and distance for non-isocentric roll rotations, and angle, distance and the PTV volume for non-isocentric yaw rotations.ConclusionsThe severity of the dose deviations due to uncorrected rotations depends on the type and magnitude of the rotation, the volume of the PTV, and the distance between the treatment and setup isocenter, which should be taken into consideration when making clinical judgment of whether the rotational error could be ignored.  相似文献   

20.
AimThe objective of this study is to explore the use of volumetric arc therapy (VMAT) to perform total marrow irradiation (TMI) and compare its results to the standard TBI technique in the Mexican public health system.BackgroundThe standard total body irradiation (TBI) technique is used with chemotherapy as a method of a pre-transplant conditioning of the bone marrow. In this technique, the whole body of the patient is considered to be PTV and irradiated generating toxicities and raising concerns about possible development of radio-induced tumors.Materials and methodsThrough the use of simulation tomography of 12 patients previously treated with TBI, twelve different treatment plans were created with the proposed TMI technique and compared with the conventional protocol, the treatment plans were evaluated with a dose volume histogram analysis and quality assurance was evaluated with a portal dosimetry system using the gamma index criteria 3%/3 mm.ResultsExperimental results show an increasing dose to 99% of PTV of up to 41.1% by using TMI with the VMAT technique. The mean average dose to PTV was increased up to 19.3%. The use of the new TMI technique caused an improvement in the mean average dose to 99% of the PTV as well the homogeneity of the dose distribution prescribed at the PTV while leading to a better reproducibility of the treatment. The Qa of all the plans met the criterion of gamma index 3 mm-3%.ConclusionThe results analysis shows that the proposed TMI technique is feasible and applicable in the Mexican public health system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号