首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecotropic and xenotropic murine leukemia viruses (MuLV's) constitute separate interference groups; within each group there is cross-interference, but between the groups there is no detectable interference. Interference is manifest against pseudotypes in which the vesicular stomatitis virus genome is contained within the coat of one of the murine leukemia viruses. The pseudotypes display the cell specificity of the leukemia viruses: pseudotypes with an ecotropic MuLV coat infect mouse cells but not rabbit or mink cells; pseudotypes with a xenotropic MuLV coat infect rabbit or mink cells well but mouse cells very poorly. Efficient pseudotype formation also occurs between the two MuLV classes, and both the interference patterns and the cell specificity of these pseudotypes are entirely determined by their envelope. Using these pseudotypes, ecotropic MuLV infection could be established in xenogeneic cells, and the resulting progeny could be scored by using a conventional XC cell assay. Also, xenotropic MuLV infection could be established in a mouse cell, showing that no absolute intracellular barrier against xenotropic virus growth exists in murine cells. The major barriers against both xenotropic and ecotropic MuLV therefore are cell surface barriers. Xenogeneic cells probably lack receptors for ecotropic MuLV, but murine cells may either lack receptors for xenotropic MuLV or have receptors that are blocked by endogenous expression of the glycoprotein of endogenous xenotropic MuLV.  相似文献   

2.
The time course of murine leukemia virus production after chemical induction was determined in hamster-mouse somatic cell hybrids containing the xenotropic murine leukemia virus induction locus Bxv-1 or the ecotropic locus Akv-2. By using these hybrids, induction could be studied in the absence of secondary virus spread because xenotropic viruses cannot infect hybrid cells and ecotropic viruses cannot infect hybrids which have lost mouse chromosome 5. After induction, hybrids with Bxv-1 produced only a transient burst of virus, whereas those with Akv-2 continued to produce virus for periods in excess of 3 months. The presence or absence of other mouse chromosomes in the hybrid lines did not alter these induction patterns. Thus, endogenous murine leukemia virus loci differ in their response to induction, and both inducibility and the kinetics of virus expression are controlled at or near these proviral loci.  相似文献   

3.
MOPC-460 mouse plasmacytoma cells produce intracellular A-type particles and extracellular oncornavirus-like particles ("myeloma-associated virus," abbreviated MAV). The genomes of these two particles are closely related. During attempts to establish infections with MOPC-460 extracellular particles, we isolated ecotropic and xenotropic infectious forms of murine leukemia virus. We have investigated the relation of these isolates to A-type particles and to MAV by nucleic acid hybridization. Using complementary DNA probes prepared from the two isolates, we found that these infectious murine leukemia viruses differ from A-type particles and from MAV. Moreover, we found that MAV is the predominant extracellular component: the ecotropic and xenotropic forms of murine leukemia virus were present at only low levels (less than 5%) in MAV preparations. Neither the SC-1 cells infected with ectropic murine leukemia virus nor the mink cells infected with xenotropic murine leukemia virus showed any A-type particles in their cytoplasm when examined by electron microscopy. Our inability to demonstrate infection by the A-type particle-related component, MAV, suggests that these may be defective.  相似文献   

4.
By a biological assay system using phenotypically mixed ecotropic and xenotropic murine leukemia viruses, we investigated whether in the virions of a xenotropic virus there is N- or B-tropic Fv-1 determinant in active form. The existence of N-tropic Fv-1 determinant was demonstrated in SL-XT-1 xenotropic virus isolated from the spleen of a 3-month-old SL mouse, and the N-tropic Fv-1 tropism was confirmed by analysis of the phenotypically mixed viruses harvested from clonal SC-1 cells doubly infected with the SL-XT-1 and B-tropic ecotropic viruses. However, neither N- nor B-tropic Fv-1 determinant was demonstrated in any xenotropic viruses isolated from embryo cells of BALB/c, NZB, or DBA/2 mice, or Cas E #1-IU, and xenotropic-like virus isolated from a wild mouse.  相似文献   

5.
Infection of mink S+L- cells with ecotropic murine leukemia virus, achieved by phenotypic mixing with xenotropic virus, did not result in the induction of transformed foci. Also, clonal line of S+L- mink cells, chronically infected with ecotropic murine leukemia virus, which produce both the ecotropic virus and its murine sarcoma virus pseudotype are morphologically indistinguishable from normal S+L- mink cells. Neutralizing antiserum added to S+L- mink cells inoculated with xenotropic virus 24 h earlier prevented the formation of foci of transformed cells. Together, these observations indicate that focus formation in S+L- cells requires a regional spread of infection, with the insertion of additional murine sarcoma virus genomes and resultant transformation occurring from a gene dosage effect.  相似文献   

6.
Ecotropic murine leukemia virus-induced fusion of murine cells.   总被引:17,自引:15,他引:2       下载免费PDF全文
Extensive fusion occurs upon cocultivation of murine fibroblasts producing ecotropic murine leukemia viruses (MuLVs) with a large variety of murine cell lines in the presence of the polyene antibiotic amphotericin B, the active component of the antifungal agent Fungizone. The resulting polykaryocytes contain nuclei from both infected and uninfected cells, as evidenced by autoradiographic labeling experiments in which one or the other parent cell type was separately labeled with [3H]thymidine and fused with an unlabeled parent. This cell fusion specifically requires the presence of an ecotropic MuLV-producing parent and is not observed for cells producing xenotropic, amphotropic, or dualtropic viruses. Mouse cells infected with nonecotropic viruses retain their sensitivity toward fusion, whereas infection with ecotropic viruses abrogates the fusion of these cells upon cocultivation with other ecotropic MuLV-producing cells. Nonmurine cells lacking the ecotropic gp70 receptor are not fused under similar conditions. Fusion is effectively inhibited by monospecific antisera to gp70, but not by antisera to p15(E), and studies with monoclonal antibodies identify distinct amino- and carboxy-terminal gp70 regions which play a role in the fusion reaction. The enhanced fusion which occurs in the presence of amphotericin B provides a rapid and sensitive assay for the expression of ecotropic MuLVs and should facilitate further mechanistic studies of MuLV-induced fusion of murine cells.  相似文献   

7.
The leukemogenic activity of Gross murine leukemia virus adapted to rats was tested in W/Fu rats and NIH/Swiss mice. All animals infected with this virus developed thymic and nonthymic T-cell leukemia with a short latency period. It was observed that cell-free extracts from thymic lymphoma tissue of mice and rats, induced by either Gross murine leukemia virus or Gross murine leukemia virus adapted to rats, consisted of both small-plaque-forming and large-plaque-forming viruses, as determined by the XC plaque test. MCF-type virus was found in these virus complexes. Transformed cell foci were induced in SC-1 cell layers by double infection of the cloned MCF-type virus and an ecotropic virus. SC-1 cells containing transformed cell foci were shown to be tumorigenic upon inoculation into nude mice. The formation of transformed cell foci in mink lung cells was also observed after double infection with the cloned MCF-type virus and a xenotropic virus. The possible mechanism of leukemogenesis by endogenous viruses is discussed.  相似文献   

8.
Differences have been observed in the kinetics of processing of the env gene polyprotein of ecotropic, xenotropic, and dual-tropic mink cell focus-forming (MCF) murine leukemia virus. In pulse-chase experiments, the env gene polyprotein of the dural-tropic MCF virus exhibits a marked increase in stability relative to that of either ecotropic or xenotropic virus. A comparison of cell surface expression of env gene products of ecotropic, xenotropic, and dual-tropic MCF murine leukemia virus has been made. Only gp70 is accessible to lactoperoxidase-catalyzed radioiodination of fibroblasts infected by ecotropic or xenotropic virus, whereas both gp70 and the env gene polyprotein are expressed on the surface of dual-tropic MCF virus-infected cells.  相似文献   

9.
Oncogenicity of AKR endogenous leukemia viruses.   总被引:11,自引:0,他引:11       下载免费PDF全文
Four biologically distinct groups of endogenous murine leukemia virus (MuLV) have been isolated from AKR mice. These viruses included (i) ecotopic XC+ MuLV that occur in high titer in normal tissues and serum of AKR mice throughout their life span, (ii) ecotropic XC- MuLV that are produced in high titers by leukemia cells, (iii) xenotropic MuLV that are readily demonstrable only in aged mice, and (iv) polytropic MuLV thatarise in the thymuses of aged mice as a consequence of genetic recombination between ecotropic and xenotropic MuLV. Virus of each of these biological classes were assayed in AKR mice for their ability to accelerate the occurrence of spontaneous leukemia. Certain isolates of ecotropic XC- MuLV and polytropic MuLV were found to have high oncogenic activity. These viruses induced 100% leukemias within 90 days of inoculation. In contrast, ecotropic XC+ MuLV that were obtained from AKR embryo fibroblasts and xenotropic MuLV that were obtained from the lymphoid tissues of aged AKR mice did not demonstrate oncogenic activity. These findings demonstrate fundamental differences between XC- and XC+ ecotropic MuLV that are found in leukemic and normal tissues, respectively. Furthermore, these findings point to the role of ecotropic XC- and polytropic MuLV in the spontaneous leukemogenesis of AKR mice.  相似文献   

10.
F/St mice are unique in producing high levels of both ecotropic and xenotropic murine leukemia virus. The high ecotropic virus phenotype is determined by three or more V (virus-inducing) loci. A single locus for inducibility of xenotropic murine leukemia virus was mapped to chromosome 1 close to, but possibly not allelic to, Bxv-1. Although the high ecotropic virus phenotype is phenotypically dominant, the high xenotropic virus phenotype was recessive in all crosses tested. Suppression of xenotropic murine leukemia virus is governed by a single gene which is not linked to the xenotropic V locus.  相似文献   

11.
We have compared the glycopeptides obtained after extensive pronase digestion of the env precursors (PrENV proteins) of ecotropic, xenotropic, and dual-tropic murine leukemia viruses. Two glycopeptide size classes, having molecular weights of approximately 2,200 and 1,500, were shown to be associated with the PrENV proteins of all murine leukemia viruses studied. Glycopeptides associated with the env precursors were totally susceptible to endo-beta-N-acetyglucosaminidase H. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partial endo-beta-N-acetylglucosaminidase H digestion products of the env precursor of dual-tropic mink cell focus-forming virus (MCF 247) revealed the presence of seven bands, suggesting that six glycosylation sites were present on the precursor molecule. The MCF 247 PrENV protein had been previously shown to be accessible to lactoperoxidase-catalyzed radioiodination on the surface of infected cells. The cell surface PrENV molecules had the same electrophoretic mobility as pulse-labeled PrENV protein, and after endo-beta-N-acetylglucosaminidase H treatment a similar shift in electrophoretic mobility was observed for the cell surface PrENV protein and the pulse-labeled precursors, a finding which indicated that the PrENV protein located on the cell surface also possessed only mannose-rich oligosaccharides. These results indicated that the env precursor glycoproteins of dual-tropic viruses had the unusual property of migrating to the cell surface without undergoing the normal oligosaccharide processing and proteolytic cleavage events that had been observed for ecotropic and xenotropic murine leukemia virus glycoproteins.  相似文献   

12.
Fischer rat embryo cells chronically infected with Rauscher murine leukemia virus, and known to be sensitive to transformation by potent chemical carcinogens, were transformed by the weak carcinogen 4-nitropyridine-1-oxide. Transformed cells grew in semi-solid agar and produced tumors in newborn Fischer rats. Transformation was inhibited by antisera specific for the ecotropic Rauscher murine leukemia virus, but not by antisera of equal toxicity specific for xenotropic Swiss mouse AT-124 virus.  相似文献   

13.
Seven murine leukemia virus field isolates (uncloned) from wild mice (Musmusculus) of four widely separated areas in southern California show an unusually wide in vitro host range. They replicate well in human, feline, canine, guinea pig, rabbit, rat, and mouse cells, whereas bovine, hamster, and avian cells are resistant. Since this host range includes that of both mouse tropic (ecotropic) and xenotropic murine leukemia viruses, they are designated as "amphotropic". No purely xenotropic virus component is detectable in these field isolates. They may represent the "wild" or ancestral viruses from which the ecotropic and xenotrophic murine leukemia virus strains of laboratory mice have been derived.  相似文献   

14.
From purified linear and superhelical DNAs, the restriction endonuclease maps of four xenotropic murine leukemia virus DNAs from NFS, NZB, BALB/c, and AKR mice were determined with ten restriction endonucleases. Each xenotropic proviral DNA was found to be a unique restriction endonuclease map, with differences in the gag, pol, env, and terminal repeated sequence regions. However, type-specific SacI and EcoRI sites in the env region were identical in all four xenotropic murine leukemia virus DNAs and were not found in ecotropic murine leukemia virus DNA. Comparison of the xenotropic murine leukemia virus DNA maps with maps of ecotropic murine leukemia virus DNA showed that the pol and terminal repeated sequence regions were highly conserved. Other similarities in ecotropic and some xenotropic viral DNAs suggest common origins.  相似文献   

15.
The sequence of 863 contiguous nucleotides encompassing portions of the pol and env genes of NFS-Th-1 xenotropic proviral DNA was determined. This region of the xenotropic murine leukemia virus genome contains and env-specific segment that hybridizes exclusively to xenotropic and mink cell focus-forming but not to ecotropic proviral DNAs (C. E. Buckler et al., J. Virol. 41:228-236, 1982). The unique xenotropic env segment contained several characteristic deletions and insertions relative to the analogous region in AKR and Moloney ecotropic murine leukemia viruses. Portions of an endogenous env segment cloned from a BALB/c mouse embryo gene library that had a restriction map and hybridization properties typical of xenotropic viruses (A. S. Khan et al., J. Virol. 44:625-636, 1982) were also sequenced. The sequence of the endogenous env gene was very similar to the comparable region of the NFS-Th-1 xenotropic virus containing the characteristic deletions and insertions previously observed and could represent a segment of an endogenous xenotropic provirus.  相似文献   

16.
The Gross cell surface antigen (GCSA) is produced by cells that are either exogenously infected with murine leukemia virus (MuLV) or are expressing endogenous MuLV genomes. In immune precipitation assays, GCSA was resolved into two serologically distinct 85,000- and 95,000-dalton viral proteins. These antigenic components are glycosylated forms of the polyprotein precursors of the MuLV internal structural proteins.  相似文献   

17.
The specificity of CTL generated against tumors induced by murine leukemia viruses (MuLV) has been reported to parallel the expression of two serologically defined tumor cell surface antigens--the cross-reactive FMR antigen expressed on the surface of tumors induced by Friend, Moloney, and Rauscher MuLV, and the Gross cell surface antigen (GCSA) expressed on tumors induced by AKV/Gross MuLV. We examined the specificity of CTL generated against MuLV-induced tumors and identified two distinct patterns of reactivity. The first follows the traditional pattern of FMR vs GCSA reactivity as assessed on a panel of established MuLV-induced lymphomas. However, CTL exhibiting this pattern of reactivity are incapable of lysing MuLV-infected fibroblasts. CTL exhibiting the second pattern of reactivity are capable of lysing MuLV-induced lymphomas as well as MuLV-infected fibroblasts. In addition, these CTL exhibit extensive cross-reactivity between lymphomas and fibroblasts infected by both groups of MuLV. Our results suggest that CTL exhibiting the traditional FMR vs GCSA pattern of reactivity are directed against a tumor-associated antigen and not against virus-encoded antigens, and that CTL directed against MuLV-encoded antigens demonstrate extensive cross-reactivity, including the ability to lyse AKV-infected cells.  相似文献   

18.
A Mus dunni cell line has been developed that is permissive for all four classes of murine leukemia viruses (MuLV): ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses. The M. dunni cells contain fewer MuLV-related sequences than do feral or domestic mouse, rat, or mink cells. Infection of the line by ecotropic MuLV induces a distinct cytopathic effect, and the cells can be readily transfected by MuLV DNA. The M. dunni line has been used to isolate an endogenous MuLV from the SC-1 feral mouse cell line.  相似文献   

19.
Summary Fischer rat embryo cells chronically infected with Rauscher murine leukemia virus, and known to be sensitive to transformation by potent chemical carcinogens, were transformed by the weak carcinogen 4-nitropyridine-1-oxide. Transformed cells grew in semi-solid agar and produced tumors in newborn Fischer rats. Transformation was inhibited by antisera specific for the ecotropic Rauscher murine leukemia virus, but not by antisera of equal toxicity specific for xenotropic Swiss mouse AT-124 virus. This work was supported by contract NO1-CP-43240 within the Virus Cancer Program of the National Cancer Institute.  相似文献   

20.
We have analyzed large RNase T1-resistant oligonucleotides derived from the genomes of 16 recombinants between N- and B-tropic murine leukemia viruses of BALB/c. The parental viruses, designated SP-N and LP-B, differ in several phenotypic or biochemically defined properties: N- or B-tropism; XC plaque morphology, electrophoretic mobility of three virion proteins (p15, p30, and gp70); ability to induce GIX antigen on infected cells; presence of 6 to 8 (out of 36 to 38 analyzable) large T1 oligonucleotides. One SP-N-specific T1 oligonucleotide was inherited by all 16 N-tropic recombinants and, thus, appears to be linked to N-tropism. This oligonucleotide lies in the 5' third of the oligonucleotide map of SP-N. One LP-B-specific T1 oligonucleotide was inherited by all 11 recombinants whose gp70 has an electrophoretic mobility like that of LP-B gp70 and that, like LP-B, fail to induce GIX antigen. This oligonucleotide lies in the 3' third of the oligonucleotide map of LP-B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号