首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-energy synchrotron X-ray diffraction was used to study internal stresses in bone under in situ compressive loading. A transverse cross-section of a 12-14 year old beagle fibula was studied with 80.7 keV radiation, and the transmission geometry was used to quantify internal strains and corresponding stresses in the mineral phase, carbonated hydroxyapatite. The diffraction patterns agreed with tabulated patterns, and the distribution of diffracted intensity around 00.2/00.4 and 22.2 diffraction rings was consistent with the imperfect 00.1 fiber texture expected along the axis of a long bone. Residual compressive stress along the bone's longitudinal axis was observed in the specimen prior to testing: for 22.2 this stress equaled -95 MPa and for 00.2/00.4 was between -160 and -240 MPa. Diffraction patterns were collected for applied compressive stresses up to -110 MPa, and, up to about -100 MPa, internal stresses rose proportionally with applied stress but at a higher rate, corresponding to stress concentration in the mineral of 2.8 times the stress applied. The widths of the 00.2 and 00.4 diffraction peaks indicated that crystallite size perpendicular to the 00.1 planes increased from t=41 nm before stress was applied to t=44 nm at -118 MPa applied stress and that rms strain epsilon(rms) rose from 2200 muepsilon before loading to 4600 muepsilon at the maximum applied stress. Small angle X-ray scattering of the unloaded sample, recorded after deformation was complete, showed a collagen D-period of 66.4 nm (along the bone axis).  相似文献   

2.
The creep response phenomena observed on 47 human intervertebral discs subjected to a constant axial compressive stress was analytically studied by two-, three- and four-parameter-solid models employing the Burns- Kaleps 'exact analysis scheme'. The mechanical properties (Young's moduli and viscosity coefficients) associated with each model were calculated for each of the 47 disks, with superior results obtained for the latter two models. Results for the two-parameter-solid model suggest its possible usefulness in simulating creep response that is characteristic of disk degeneration. Results for the three- and four-parameter-solid models were excellent, with an average error for the model predicted strain, epsilon(ti)cal, values from the experimentally measured, epsilon(ti)exp, values of 2.314% for the former model and 4.446% for the latter model on the 47 human spinal segments analyzed. The three-parameter-solid model was most sensitive in its predictability of strain behavior for ti greater than 1 min; whereas the four-parameter-solid model demonstrated greater simulation sensitivity in the 0 less than ti less than or equal to 1 min range.  相似文献   

3.
We have recently demonstrated that the mitral valve anterior leaflet (MVAL) exhibited minimal hysteresis, no strain rate sensitivity, stress relaxation but not creep (Grashow et al., 2006, Ann Biomed Eng., 34(2), pp. 315-325; Grashow et al., 2006, Ann Biomed. Eng., 34(10), pp. 1509-1518). However, the underlying structural basis for this unique quasi-elastic mechanical behavior is presently unknown. As collagen is the major structural component of the MVAL, we investigated the relation between collagen fibril kinematics (rotation and stretch) and tissue-level mechanical properties in the MVAL under biaxial loading using small angle X-ray scattering. A novel device was developed and utilized to perform simultaneous measurements of tissue level forces and strain under a planar biaxial loading state. Collagen fibril D-period strain (epsilonD) and the fibrillar angular distribution were measured under equibiaxial tension, creep, and stress relaxation to a peak tension of 90 N/m. Results indicated that, under equibiaxial tension, collagen fibril straining did not initiate until the end of the nonlinear region of the tissue-level stress-strain curve. At higher tissue tension levels, epsilonD increased linearly with increasing tension. Changes in the angular distribution of the collagen fibrils mainly occurred in the tissue toe region. Using epsilonD, the tangent modulus of collagen fibrils was estimated to be 95.5+/-25.5 MPa, which was approximately 27 times higher than the tissue tensile tangent modulus of 3.58+/-1.83 MPa. In creep tests performed at 90 N/m equibiaxial tension for 60 min, both tissue strain and epsilonD remained constant with no observable changes over the test length. In contrast, in stress relaxation tests performed for 90 min epsilonD was found to rapidly decrease in the first 10 min followed by a slower decay rate for the remainder of the test. Using a single exponential model, the time constant for the reduction in collagen fibril strain was 8.3 min, which was smaller than the tissue-level stress relaxation time constants of 22.0 and 16.9 min in the circumferential and radial directions, respectively. Moreover, there was no change in the fibril angular distribution under both creep and stress relaxation over the test period. Our results suggest that (1) the MVAL collagen fibrils do not exhibit intrinsic viscoelastic behavior, (2) tissue relaxation results from the removal of stress from the fibrils, possibly by a slipping mechanism modulated by noncollagenous components (e.g. proteoglycans), and (3) the lack of creep but the occurrence of stress relaxation suggests a "load-locking" behavior under maintained loading conditions. These unique mechanical characteristics are likely necessary for normal valvular function.  相似文献   

4.
The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young’s modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.  相似文献   

5.
Loss of fixation at the cement-bone interface can contribute to clinical loosening of cemented total hip replacements. In this study, the fatigue damage response was determined for cement-bone constructs subjected to shear fatigue loading. A typical three-phase fatigue response was observed with substantial early damage, followed by a long constant damage rate region and a final abrupt increase in damage to fracture. All of the damage resulted from creep (permanent) deformation during fatigue loading and there was no loss in cyclic stiffness. Using a Von Mises equivalent stress/strain concept, a general damage model was developed to describe the fatigue creep response of the cement-bone interface under either shear or tensile fatigue loading. Time to failure was highly correlated (r2=0.971) with equivalent creep strain rate and moderately related (r2=0.428) with equivalent initial strain for the two loading regimes. The equivalent creep strain at failure (0.052+/-0.018) was found to be independent of the applied equivalent stress. A combination of the creep damage model (to describe the damage process) with a constant final equivalent strain (as a failure criteria) could be used to assess the cement-bone failure response of cemented implant systems.  相似文献   

6.
Multiple osteochondral grafts can be used to resurface large joint defects in both humans and horses. In humans, immediate postoperative weight bearing can be prevented, however in the equine, it is unavoidable. Early weight bearing can create detrimental graft micromotion. The aim of this study was to investigate the role of a bioresorbable cement in improving the initial stability of multiple osteochondral graft repairs of large subchondral cystic lesions in the horse. Configurations employed for filling a 20mm diameter cylindrical defect included: (A) twelve 4.5mm diameter grafts with cement, (B) five 6.5mm diameter grafts with cement, (C) four each of 4.5mm and 6.5mm grafts with cement and (D) cement only. Intact bone slices (E) were also tested. Push-out tests were used to quantify construct to host sidewall interface fixation. Configuration (A) proved clinically impractical (n=3). Configurations (B) (n=6), and (C) (n=4) had statistically similar interface stiffnesses and failure stresses (43+/-8 and 30+/-12 MPa and 0.96+/-0.1 and 1.2+/-0.3 Mpa, respectively) suggesting that they are equally susceptible to interface movement in the immediate postoperative period. By way of comparison, defects filled only with cement had an average stiffness of 53+/-7MPa and failure stress of 1.8+/-0.3 MPa (n=6) while the intact femoral condyle demonstrated a stiffness of 108+/-7 MPa and failure stress of 18+/-0.4 MPa (n=6). Cement augmentation improved immediate postoperative stability of multiple osteochondral graft constructs over uncemented constructs, although in all cases the observed moduli of elasticity and yield stress values were lower than those observed for cement only and intact bone test specimens. (all numbers are mean+/-SEM).  相似文献   

7.
8.
Previous work on the growth biophysics of maize (Zea mays L.) primary roots suggested that cell walls in the apical 5 mm of the elongation zone increased their yielding ability as an adaptive response to low turgor and water potential (psi w). To test this hypothesis more directly, we measured the acid-induced extension of isolated walls from roots grown at high (-0.03 MPa) or low (-1.6 MPa) psi w using an extensometer. Acid-induced extension was greatly increased in the apical 5 mm and was largely eliminated in the 5- to 10-mm region of roots grown at low psi w. This pattern is consistent with the maintenance of elongation toward the apex and the shortening of the elongation zone in these roots. Wall proteins extracted from the elongation zone possessed expansin activity, which increased substantially in roots grown at low psi w. Western blots likewise indicated higher expansin abundance in the roots at low psi w. Additionally, the susceptibility of walls to expansin action was higher in the apical 5 mm of roots at low psi w than in roots at high psi w. The basal region of the elongation zone (5-10 mm) did not extend in response to expansins, indicating that loss of susceptibility to expansins was associated with growth cessation in this region. Our results indicate that both the increase in expansin activity and the increase in cell-wall susceptibility to expansins play a role in enhancing cell-wall yielding and, therefore, in maintaining elongation in the apical region of maize primary roots at low psi w.  相似文献   

9.
Murphy R  Ortega J 《Plant physiology》1995,107(3):995-1005
A new in vivo method was used to determine an average volumetric elastic modulus ([epsilon]ave) for nongrowing cells in plant tissue. This method requires that both the relative transpiration rate, T, of the tissue and the average turgor pressure decay rate, (dP/dt)ave, of the cells are measured after the water source is removed from the plant tissue. Then [epsilon]ave is calculated from the equation [epsilon]ave = (-dP/dt)ave/T. This method was used to determine [epsilon]ave for cortical cells in stems of pea seedlings (Pisum sativum L.). The results demonstrate that [epsilon]ave increases from virtually zero at low P (approximately 0.01MPa) to approximately 10 MPa at high P (approximately 0.5 MPa). Analyses of the results indicate that the relationship between [epsilon]ave and P can be approximated by a linear function and more accurately approximated by a saturating exponential function: [epsilon]ave = [epsilon][infinity symbol][1 - exp {-k(P - Po)}], where Po is a plateau pressure (approximately 0.01 MPa), k is a rate constant (approximately 7 per MPa), and [epsilon][infinity symbol] (approximately 10 MPa) is the hypothetical maximum value of [epsilon]ave as P -> [infinity symbol]. Solutions for the turgor pressure decay (due to transpiration) as functions of time and symplasmic water mass (after the water source is removed) are derived.  相似文献   

10.
Collagen fibrils type I display a typical banding pattern, so-called D-periodicity, of about 67 nm, when visualized by atomic force or electron microscopy imaging. Herein we report on a significant shortening of the D-period for human corneal collagen fibrils type I (21 ± 4 nm) upon air-drying, whereas no changes in the D-period were observed for human scleral collagen fibrils type I (64 ± 4 nm) measured under the same experimental conditions as the cornea. It was also found that for the corneal stroma fixed with glutaraldehyde and air-dried, the collagen fibrils show the commonly accepted D-period of 61 ± 8 nm. We used the atomic force microscopy method to image collagen fibrils type I present in the middle layers of human cornea and sclera. The water content in the cornea and sclera samples was varying in the range of .066–.085. Calculations of the D-period using the theoretical model of the fibril and the FFT approach allowed to reveal the possible molecular mechanism of the D-period shortening in the corneal collagen fibrils upon drying. It was found that both the decrease in the shift and the simultaneous reduction in the distance between tropocollagen molecules can be responsible for the experimentally observed effect. We also hypothesize that collagen type V, which co-assembles with collagen type I into heterotypic fibrils in cornea, could be involved in the observed shortening of the corneal D-period.  相似文献   

11.
The common demosponge Chondrosia reniformis possesses the capacity to undergo an unusual creep process which results in the formation of long outgrowths from the parent body. These shape changes, which have been interpreted as adaptive strategies related to environmental factors, asexual reproduction or localised locomotor phenomena, are due mainly to the structural and mechanical adaptability of the collagenous mesohyl. This contribution describes the morphological correlates of mesohyl plasticisation in C. reniformis. The microscopic anatomy of the mesohyl was examined when it was in different physiological conditions: (1) standard ”resting” condition, (2) ”stiffened” condition and (3) dynamic ”creep” condition. In this last case four representative regions of the sponge body were analysed: the parent region, the elongation region, the transition region and the propagule region. The results show that the histological modification of the sponge mesohyl during plasticisation is limited and localised. The most significant structural changes involve mainly cytological features of specific cellular components characterised by granule inclusions (i.e. the spherulous cells) and the arrangement and density of the collagenous extracellular framework, though the integrity of the collagen fibrils themselves is not affected. Morphological and functional aspects of mesohyl plasticisation invite comparison with the mutable collagenous tissue of echinoderms. Possible functional analogies between these two tissues are hypothesised. Accepted: 29 June 2001  相似文献   

12.
Seedling roots of ten plant species were grown in siliceous sand wetted with solutions of polyethylene glycol (PEG) of MW=20,000 with osmotic potentials of 0.0, ? 0.25, ? 0.5 and ? 1.0 MPa. After 48 h growth under controlled lighting, root elongation and root diameter were measured. Root elongation of all species was reduced by increasing levels of external osmotic stress. Dicotyledonous species were affected more than monocotyledons at potentials of ? 0.25 and ? 0.5 MPa but less at ? 1.0 MPa. Root diameters of all the species were thicker than those of the unstressed at potentials of ? 0.25 and ? 0.5 MPa. At a potential of ? 1.0 MPa the dicotyledons were still thicker, though not by as much as they were at ? 0.25 and ? 0.5 MPa. The monocotyledons, in contrast, were thinner at ? 1.0 MPa. There was a significant positive correlation (r=0.81, p <0.01) between root diameter and root elongation at ? 1.0 MPa potential. Species were ranked according to the relative root elongation (RRE) and relative root thickness (RRT) at the highest level of stress (? 1.0 MPa). In both rankings dicotyledonous species were in the top ranks and monocotyledous species were in lower positions. The results are compared with those for the elongation and thickening of roots growing against external mechanical stress obtained in a previous study. There were good correlations between the responses observed for the two types of external stress. The implications of these findings are discussed.  相似文献   

13.
ABSTRACT

Tensile and creep properties of dissimilar cold weld joints (Al (metal)–Cu50Zr50 (metallic glass)) are investigated using molecular dynamics simulations. Embedded atom method potential is used to model the interactions between Al–Cu–Zr atoms. Cold welding is carried out at three different velocities (20, 30 and 40?m/s) and for three interferences (0.4, 1.3 and 2.3?nm). The strength of the welded joints is measured using the tensile test carried out at a strain rate of 1.5 × 109/s. Structure studies by radial distribution function analysis indicate amorphisation of Al in the weld regions. Tensile studies show that the maximum strength is obtained in the sample that is welded for 1.3?nm interference. Creep studies carried out over range of stresses (200–350?MPa) and temperatures (200–500?K) show very short primary creep and significant steady-state creep. The stress exponent n has two values; at lower stress, n?=?1.2, and at higher stress, n?=?4.06, respectively. The deformation mechanisms are observed to be slip by Shockley partial dislocation and by twinning in Al region. The icosahedral cluster population in metallic glass decreases as the temperature increases and contributes to large plastic strain.  相似文献   

14.
The human facet joint capsule is one of the structures in the lumbar spine that constrains motions of vertebrae during global spine loading (e.g., physiological flexion). Computational models of the spine have not been able to include accurate nonlinear and viscoelastic material properties, as they have not previously been measured. Capsules were tested using a uniaxial ramp-hold protocol or a haversine displacement protocol using a commercially available materials testing device. Plane strain was measured optically. Capsules were tested both parallel and perpendicular to the dominant orientation of the collagen fibers in the capsules. Viscoelastic material properties were determined. Parallel to the dominant orientation of the collagen fibers, the complex modulus of elasticity was E*=1.63MPa, with a storage modulus of E'=1.25MPa and a loss modulus of: E" =0.39MPa. The mean stress relaxation rates for static and dynamic loading were best fit with first-order polynomials: B(epsilon) = 0.1110epsilon-0.0733 and B(epsilon)= -0.1249epsilon + 0.0190, respectively. Perpendicular to the collagen fiber orientation, the viscous and elastic secant moduli were 1.81 and 1.00 MPa, respectively. The mean stress relaxation rate for static loading was best fit with a first-order polynomial: B (epsilon) = -0.04epsilon - 0.06. Capsule strength parallel and perpendicular to collagen fiber orientation was 1.90 and 0.95 MPa, respectively, and extensibility was 0.65 and 0.60, respectively. Poisson's ratio parallel and perpendicular to fiber orientation was 0.299 and 0.488, respectively. The elasticity moduli were nonlinear and anisotropic, and capsule strength was larger aligned parallel to the collagen fibers. The phase lag between stress and strain increased with haversine frequency, but the storage modulus remained large relative to the complex modulus. The stress relaxation rate was strain dependent parallel to the collagen fibers, but was strain independent perpendicularly.  相似文献   

15.
Salinity is a major environmental factor that strongly influences cellular and organismal function. We have used the euryhaline fish Oreochromis mossambicus to identify and annotate immediate hyperosmotic stress responsive molecular mechanisms and biological processes in gill epithelial cells. Using a suppression subtractive hybridization (SSH) approach, we have identified and cloned 20 novel immediate early genes whose mRNAs are induced in gill epithelial cells 4 h after transfer of fish from freshwater (FW) to seawater (SW). Full-length or partial sequences of open reading frames (ORFs) were obtained using the rapid amplification of cDNA ends (RACE) technique. Kinetics of induction was analyzed for all hyperosmotic stress-induced genes. Most genes show a robust transient increase in mRNA abundance characteristic of immediate early stress response genes with peak levels observed between 2 and 8 h after seawater transfer. The newly identified genes were classified according to their sequence similarity with other vertebrate homologs and based on their predicted functions. Pathway analysis revealed that more than half of the identified immediate hyperosmotic stress genes interact closely within a cellular stress response signaling network. Moreover, the 20 genes cluster together in six molecular processes that are rapidly activated in tilapia gills upon salinity transfer. These processes are (1) stress response signal transduction, (2) compatible organic osmolyte accumulation, (3) energy metabolism, (4) lipid transport and cell membrane protection, (5) actin-based cytoskeleton dynamics, and (6) protein and mRNA stability. Our identification and analysis of a set of novel osmo-responsive tilapia genes provides insight into critical physiological processes and pathways constituting the hyperosmotic stress adaptation program in gill epithelial cells of euryhaline fishes.  相似文献   

16.
Zonia L  Munnik T 《Plant physiology》2004,134(2):813-823
Pollen tube cell volume changes rapidly in response to perturbation of the extracellular osmotic potential. This report shows that specific phospholipid signals are differentially stimulated or attenuated during osmotic perturbations. Hypo-osmotic stress induces rapid increases in phosphatidic acid (PA). This response occurs starting at the addition of 25% (v/v) water to the pollen tube cultures and peaks at 100% (v/v) water. Increased levels of PA were detected within 30 s and reached maximum by 15 to 30 min after treatment. The pollen tube apical region undergoes a 46% increase in cell volume after addition of 100% water (v/v), and there is an average 7-fold increase in PA. This PA increase appears to be generated by phospholipase D because concurrent transphosphatidylation of n-butanol results in an average 8-fold increase in phosphatidylbutanol. Hypo-osmotic stress also induces an average 2-fold decrease in phosphatidylinositol phosphate; however, there are no detectable changes in the levels of phosphatidylinositol bisphosphates. In contrast, salt-induced hyperosmotic stress from 50 to 400 mm NaCl inhibits phospholipase D activity, reduces the levels of PA, and induces increases in the levels of phosphatidylinositol bisphosphate isomers. The pollen tube apical region undergoes a 41% decrease in cell volume at 400 mm NaCl, and there is an average 2-fold increase in phosphatidylinositol 3,5-bisphosphate and 1.4-fold increase in phosphatidylinositol 4,5-bisphosphate. The phosphatidylinositol 3,5-bisphosphate increase is detected within 30 s and reaches maximum by 15 to 30 min after treatment. In summary, these results demonstrate that hypo-osmotic versus hyperosmotic perturbation and the resultant cell swelling or shrinking differentially activate specific phospholipid signaling pathways in tobacco (Nicotiana tabacum) pollen tubes.  相似文献   

17.
Frensch J  Hsiao TC 《Plant physiology》1994,104(1):247-254
Transient responses of cell turgor (P) and root elongation to changes in water potential were measured in maize (Zea mays L.) to evaluate mechanisms of adaptation to water stress. Changes of water potential were induced by exposing roots to solutions of KCl and mannitol (osmotic pressure about 0.3 MPa). Prior to a treatment, root elongation was about 1.2 mm h-1 and P was about 0.67 MPa across the cortex of the expansion zone (3-10 mm behind the root tip). Upon addition of an osmoticum, P decreased rapidly and growth stopped completely at pressure below approximately 0.6 MPa, which indicated that the yield threshold (Ytrans,1) was just below the initial turgor. Turgor recovered partly within the next 30 min and reached a new steady value at about 0.53 MPa. The root continued to elongate as soon as P rose above a new threshold (Ytrans,2) of about 0.45 MPa. The time between Ytrans,1 and Ytrans,2 was about 10 min. During this transition turgor gradients of as much as 0.15 MPa were measured across the cortex. They resulted from a faster rate of turgor recovery of cells deeper inside the tissue compared with cells near the root periphery. Presumably, the phloem was the source of the compounds for the osmotic adjustment. Turgor recovery was restricted to the expansion zone, as was confirmed by measurements of pressure kinetics in mature root tissue. Withdrawal of the osmoticum caused an enormous transient increase of elongation, which was related to only a small initial increase of P. Throughout the experiment, the relationship between root elongation rate and turgor was nonlinear. Consequently, when Y were calculated from steady-state conditions of P and root elongation before and after the osmotic treatment, Yss was only 0.21 MPa and significantly smaller compared with the values obtained from direct measurements (0.42-0.64 MPa). Thus, we strongly emphasize the need for measurements of short-term responses of elongation and turgor to determine cell wall mechanics appropriately. Our results indicate that the rate of solute flow into the growth zone could become rate-limiting for cell expansion under conditions of mild water stress.  相似文献   

18.
Low oxygen (O(2)) tension and mechanical deformation are stimuli for ATP release from erythrocytes. It has been shown previously that rabbit erythrocytes made less deformable with diamide, a thiol cross-linking agent, release less ATP in response to low O(2) tension, suggesting a link between these two stimuli. In nonerythroid cells, activation of the Rho/Rho kinase signaling pathway has been reported to decrease cell deformability by altering Rho kinase-dependent cytoskeleton-protein interactions. We investigated the hypothesis that the Rho kinase inhibitor Y-27632 would increase erythrocyte deformability and thereby increase low O(2) tension-induced ATP release from erythrocytes. Here we show that Y-27632 (1 μM) increases erythrocyte deformability (5%) and increases low O(2) tension-induced ATP release (203%) from healthy human erythrocytes. In addition, we found that, when erythrocytes were made less deformable by incubation with diamide (100 μM), Y-27632 restored both deformability and low O(2) tension-induced ATP release to levels similar to those measured in the absence of diamide. These findings suggest that the Rho kinase inhibitor Y-27632 is able to reverse the diamide-induced decrease in erythrocyte deformability and rescue low O(2) tension-induced ATP release. These results further support a link between erythrocyte deformability and ATP release in response to low O(2) tension.  相似文献   

19.
In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of <0, 2, 8, 5>, <0, 2, 8, 2 >, and <0, 1, 10, 2 > distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.  相似文献   

20.
The idea that water deficit strengthening induces concerted changes of plant physiological parameters is rather widespread. However, such changes are often difficult to identify due to challenges in establishments and maintenance of required water stress intensities using solid substrates. Therefore, we exposed Scots pine (Pinus sylvestris L.) seedlings to the range of water potentials from–0.15 to–1.5 MPa in PEG-water culture to identify the series of physiological parameters differently sensitive to water stress. We observed that even mild water stress (–0.15 MPa) inhibited root elongation, which could be one of the main pine seedlings vulnerabilities under drought. Active accumulation of osmolytes was already induced by mild water deficit and further increased with water stress severity. Plant fresh biomass growth sensitivity was more related to changes of relative water content (RWC) than to changes in tissue water content or dry weight accumulation. Plants were able to grow and accumulate dry weight down to–0.5 MPa, but lower medium water potentials (–1.0 and–1.5 MPa) suppressed growth and heavily damaged root cells, as judged from many-fold increase of Ca2+ content in roots. Chlorophyll a content was surprisingly sensitive to water stress, while carotenoids level was increased under severe stress conditions. In conclusion, the experimental system with stepwise water potential values allowed us to analyze the sensitivity scale of a range of P. sylvestris physiological processes to water stress. It was largely similar to those described earlier for other plant species, but its peculiarities were high sensitivity of root elongation, marked resistance of biomass growth to water deficit and well-developed ability to osmotic adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号