首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomatal closure, relative water content (RWC) and vegetative growth were monitored in Ilex paraguariensis plants grown under well-watered conditions with a photosynthetic photon flux density (PPFD) varying from 100% to 1.5%, and sprayed weekly with either distilled water (control) or 1.89 mM abscisic acid (ABA). ABA treatments caused stomatal closure, ranging from 62% to 73%. These treatments also increased RWC in the early evening from 82% to 92% and 88% to 94% in mature and immature leaves, respectively. Such alleviation of the water stress was correlated with increases in leaf area, leaf dry weight (DW), shoot length and shoot DW. On day 35 from the beginning of the experiment, the increases in DW of both leaves and shoots were 1.5-fold at the 1.5% PPFD and 3-fold (for leaves) and 4.5-fold (for shoots) under 100% PPFD. In water-sprayed control plants grown under 1.5% PPFD shoot length also increased significantly, although these shoots contained more ABA (assessed by capillary gas chromatography–mass spectrometry) than those of plants grown under 100% PPFD. These results show that ABA sprayed on to leaves promotes growth in I. paraguariensis plants by alleviating diurnal water stress.  相似文献   

2.
Three species of fast growing fuel wood yielding plants locally available (Acacia holosericea, Bauhinia variegata and Cassia siamea) were characterized in respect of their responses to water stress. Seedlings (25 days) of these species, exposed to two levels of water stress (−0.5 and −1.0 MPa) induced by PEG-6000 for 24 h, were analysed for relative water content (RWC) and the contents of chlorophyll, protein, soluble sugars and proline in leaves along with activities of catalase, peroxidase and superoxide dismutase (SOD). RWC was lower in stressed compared to the unstressed seedlings. However, stress-induced decline in RWC was lowest in B. variegata. Chlorophyll and protein contents declined with increasing levels of water stress, decline being least in B. variegata. Soluble sugar and proline contents increased under water stress particularly in B. variegata. The enzyme activity of catalase (EC-1.11.1.6), peroxidase (EC-1.11.1.7) and SOD (EC-1.15.1.1) decreased with increased levels of water stress. Such decline in the activity of these enzymes was least in B. variegata. Apparently, B. variegata is potentially the species most tolerant to water stress among these three fuel wood-yielding plants.  相似文献   

3.
4种茶菊对干旱胁迫的形态和生理响应   总被引:4,自引:0,他引:4  
以4种茶菊幼苗为材料,采用盆栽控水法,研究了不同强度干旱胁迫下茶菊形态、生理生化及光合生长的响应特性,并对其进行耐旱性评价。结果显示,随着干旱胁迫程度的增强,各茶菊幼苗叶片数增量、叶面积、生物量、叶片相对含水量、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)降低;根冠比、丙二醛(MDA)含量、脯氨酸(Pro)含量、可溶性蛋白(SPC)含量和叶绿素(Chl)含量增加;胞间CO2(Ci)浓度先降后升;乳荷、黄滁龙株高增量持续降低,而玉人面、繁白露株高增量先升后降;玉人面叶超氧化物歧化酶活性(SOD)呈先升后降趋势,其它3个品种则持续升高。运用隶属函数法对抗旱能力进行综合评定,不同茶菊品种耐旱性由高到低为乳荷黄滁龙繁白露玉人面。  相似文献   

4.
Responses of Cymbopogon martinii and C. winterianus to drought stress and chlormequat chloride and IAA application are compared. These two species are important source of essential oil production in drought regions. For both species and their cultivars relative water content (RWC), herbage yield and oil amount decreased under drought, while oil biosynthesis increased. Oil concentration increased significantly under drought in C. winterianus while peroxidase activity increased in C. martinii. Amount of geraniol increased under drought stress in C. martinii while citronellal and geraniol accumulation decreased in C. winterianus. Ameliorative effects of chlormequat chloride and IAA were observed in drought stressed plants of both species. Herbage yield increased significantly in chlormequat chloride and IAA treated stressed plants of C. winterianus, while oil concentration increased in C. martinii. Ameliorative effect of IAA in increasing oil yield was significant in drought stressed plants of both the species. Changes in various morpho-physiological traits indicated that chlormequat chloride and IAA can partially alleviate the detrimental effect of drought in these aromatic grasses.  相似文献   

5.
以一年生钩藤实生苗为试材,通过连续土壤控水12 d盆栽试验,研究持续性土壤自然干旱对钩藤幼苗生长、抗逆生理指标及其主要药用成分含量的影响。结果表明:(1)随着干旱胁迫时间的延长,钩藤根和茎叶生物量以及叶片相对含水量(RWC)显著持续下降(P0.05),而根冠比、叶片丙二醛(MDA)含量及相对电导率(REC)逐渐升高。(2)随着干旱胁迫时间的延长,钩藤叶片叶绿素a、b含量先增高后下降,叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性先上升后下降,且POD活性最先达到峰值,CAT活性增幅最大;叶片中脯氨酸(Pro)、可溶性糖(SS)和可溶性蛋白(SP)含量逐渐升高,且Pro表现出更强的渗透调节能力。(3)钩藤幼苗叶片、主茎和带钩茎枝中钩藤碱与异钩藤碱含量随着干旱胁迫时间的延长而呈先增高后下降的趋势,响应时间先后顺序依次为叶片、主茎、带钩茎枝,生物碱含量由高到低依次为带钩茎枝、叶片、主茎。研究发现,在土壤持续自然干旱条件下,钩藤幼苗生长受到一定影响,但植株能通过提高其抗氧化酶活性和积累渗透调节物质来提高吸水和保水能力,有效抵御干旱逆境;且土壤自然干旱胁迫4~8 d有利于主要药效成分钩藤碱与异钩藤碱的积累;土壤相对含水量在42%~53%时,钩藤幼苗耐旱性较强且钩藤碱与异钩藤碱含量较高。  相似文献   

6.
The responses of two sugar beet genotypes, 24367 (putative droughttolerant) and N6 (putative drought intolerant), to drought and nutrientdeficiency stress were investigated in an attempt to identify reliable andsensitive indicators of stress tolerance. In glasshouse-grown plants of bothgenotypes, relative water content (RWC) of the leaves decreased and leaftemperature increased in response to drought stress. Genotype differences inresponse to drought included leaf RWC, glycine betaine accumulation, alterationof shoot/root ratio and production of fibrous roots. Thus, in comparison to N6,genotype 24367 lost less water from leaves, produced more fibrous roots,produced more glycine betaine in shoots and tap roots and had a much reducedshoot/root ratio in response to withholding water for up to 215 h.The hydraulic conductance and sap flow of sugar beet seedlings grown innutrientculture decreased when subjected to nitrogen deficiency stress. Under nitrogensufficient conditions sap flow was greater in 24367 than in N6. The resultsindicate that genotype 24367 is more tolerant to stresses induced by water andnitrogen deficiency and that increased fibrous root development may be a majorfactor in increasing sap flow via a concomitant enhancement of aquaporinactivity.  相似文献   

7.
We studied the water relations of 6 shrub and 3 tree species typical of the mediterranean climate region of central Spain to identify differential responses to water stress between and within species, and to determine if free proline concentration in leaves could be used as a water stress indicator. Predawn and midday water potentials (w) on a seasonal basis, relative water content (RWC), leaf mass per area, foliar nitrogen and free proline concentrations were measured. The lowest water potentials were observed at the end of the summer, with recovery to higher water potentials in the fall and winter seasons. Species differed regarding the annual w fluctuation. Thymus zygis, Halimium viscosum, Genista hirsuta and Juniperus oxycedrus exhibited the most negative midday and predawn w (both less than -6 MPa) with a large magnitude of response to changing conditions in soil moisture of the upper horizon of the soil. Lavandula pedunculata and Cistus ladanifer showed a moderate response. Quercus rotundifolia, Quercus faginea and Retama sphaerocarpa showed a modest response. The w of different size individuals of Quercus rotundifolia and Cistus ladanifer were compared. The annual w fluctuation was greater in small individuals as compared to large individuals. In every species, there was an increase in proline concentration of bulk leaf tissues when predawn w dropped below -5 MPa. Small plants of Cistus ladanifer reached lower water potentials and also higher concentration of proline than bigger plants. Proline could possibly be used as a drought stress indicator in every species except Q. rotundifolia. It is suggested that in addition to water stress avoidance due to deep root systems, some mechanisms of water stress tolerance may operate among shrub and tree species of central Spain.  相似文献   

8.
Accumulation of various osmolytes was examined in plants of sugar beet cv. Janus grown under two soil water treatments: control (60% of the field water capacity; FWC) and drought (30–35% FWC). The water shortage started on the 61st day after emergence (DAE), at the stage of the beginning of tap-roots development and was imposed for 35 days. Osmotic potential of sugar beet plant organs, particularly tap-roots, was decreased significantly as a consequence of a long-term drought. Water shortage reduced univalent (K+, Na+) cations concentrations in the petioles and divalent (Ca2+, Mg2+) ions level in the mature and old leaves. Cation concentrations in the tap-roots were not affected by water shortage. The ratio of univalent to divalent cations was significantly increased in young leaves and petioles as a consequence of drought. Long-term water deficit caused a significant reduction of inorganic phosphorus (Pi) concentration in young and old leaves. Under the water stress condition, the concentration of proline was increased in all individual plant organs, except proline concentration in the youngest leaves. Drought treatment caused a significant increase of glycine betaine content in shoot without any change in tap-roots. Glucose concentrations were significantly increased only in tap-roots as the effect of drought. In response to water shortage the accumulation of sucrose was observed in all the examined leaves and tap-roots. Overall, a long-term drought activated an effective mechanism for osmotic adjustment both in the shoot and in the root tissues which may be critical to survival rather than to maintain plant growth but sugar beet organs accumulate different solutes as a response to water cessation.  相似文献   

9.
Two-year-old potted plants of six Camellia sinensis cultivars (TV-18, TV-26, UPASI-3, UPASI-26, T-78 and HV-39) were subjected to water stress for 4, 8 and 12 d. Relative water content (RWC) of leaves of all cultivars declined with water stress, but in the two drought tolerant cultivars (UPASI-3 and UPASI-26), higher RWC were maintained in comparison to the others. Phenol content and activities of phenylalanineammonialyase, polyphenoloxidase and peroxidase initially increased, but decreased during extended drought. Chlorophyll contents decreased, whereas proline contents increased during water stress. SDS-PAGE analysis of proteins revealed increased accumulation of proteins of intermediate molecular masses (42 – 44 kDa) and low molecular masses (14 – 26 kDa). After 12 d of water stress, most of these proteins disappeared in T-78 and HV-39, but in the other cultivars they were still detectable.  相似文献   

10.
Summary Free-proline accumulation was measured in leaves of intact wheat (Triticum vulgare L. cv. Kalyan Sona), plantago (Plantago ovata Forsk-Isabgool), papavar (Papaver somnifera L. Opium poppy) and mustard (Brassica juncea L. var. Varuna) grown in the field with low to high field water content and thus they were subjected to water stress. Leaf water deficit in percentage was used to determine the degree of stress at the time of proline anlysis.Free proline content was higher in mustard leaves as compared to wheat, plantago and papavar leaves. Water stress enhances the proline content but at same water deficit level the content differ in the leaves of the plants studied.  相似文献   

11.
Water-withholding for 5 to 7 weeks and subsequent re-watering were made on potted plants of two epiphytic (E) and two terrestrial (T) fern species, which were collected from a seasonal tropical rainforest and had been grown in a screenhouse with 5 % irradiance for 4 months. During the water stress, the two E species completely closed stomata when frond relative water content (RWC) reached about 70 % with fairly constant maximum photochemistry efficiency (Fv/Fm), while the two T species kept partial stomata opening until RWC reached 45 % and reduction in Fv/Fm at the late stage. Also, chlorophyll content as indicated by a spectral reflectance index was gradually reduced in three species. Physiological recovery was completed after 3-d re-watering for the E species, which was more rapid than for the T species. The gas exchange measurements and regression analyses indicated higher photosynthetic water use efficiency in the E species than in the T species.  相似文献   

12.
该试验以荒漠区主要建群种红砂幼苗为研究对象,设置适宜水分(CK)、轻度干旱(MD)、中度干旱(SD)和重度干旱(VSD)4个胁迫处理(即田间持水量的80%、60%、40%和20%),采用盆栽控水试验,分别测定干旱胁迫15、30、45和60 d时红砂幼苗的叶、茎、粗根和细根中非结构碳水化合物(NSC)及其组分的含量,分析不同胁迫强度下不同干旱持续时间红砂幼苗NSC的动态变化及各组分差异,以揭示红砂NSC对干旱胁迫的响应机制。结果表明:(1)干旱胁迫强度和胁迫持续时间对红砂幼苗不同器官NSC及其组分均有显著影响,其中胁迫持续时间对NSC动态变化的影响尤为显著。(2)干旱胁迫初期,红砂叶中的NSC含量呈下降趋势,而茎中的NSC含量呈上升趋势,粗根和细根中NSC含量在各胁迫处理下基本保持稳定。(3)干旱胁迫后期,红砂叶和茎中的可溶性糖、淀粉和NSC含量逐渐增加,而粗根和细根中的淀粉和NSC含量呈下降趋势(中度干旱除外),且这一时期重度干旱处理下各器官可溶性糖和NSC的含量明显高于CK。研究发现,重度干旱胁迫能显著诱导提高红砂幼苗不同器官中的NSC含量,并通过分解根中淀粉和增加叶片中可溶性糖含量的方式来调节细胞渗透势平衡,以维持细胞活力,进而保持红砂在干旱胁迫后期的存活。  相似文献   

13.
Effects of zinc [0 and 5.0 mg Zn kg−1 (soil)] on photosynthetic rate (PN), and chlorophyll fluorescence in leaves of maize (Zea mays L.) cv. Zhongdan 9409 seedlings grown under different soil moisture regimes (40–45 % and 70–75 % of soil saturated water content) were studied. Zn application did not enhance maize plant adaptation to drought stress. The relative water content and the water potential of leaves were not affected by Zn treatment. Moreover, The PN of drought-stressed plants was not improved by Zn supply. The increases of plant biomass, stomatal conductance and quantum yield of photosystem 2 due to Zn addition were notable in well-watered plants.  相似文献   

14.
Drought response of a native and introduced Hawaiian grass   总被引:6,自引:0,他引:6  
The alien grass, Pennisetum setaceum, dominates many of the lowland arid regions that once supported native Heteropogon contortus grassland on the island of Hawaii. Response to drought in a glasshouse was compared between these C4 grasses to test if success as an invader is related to drought tolerance or plasticity for traits that confer drought tolerance. Pennisetum produced 51% more total biomass, allocated 49% more biomass to leaves, and had higher net photosynthetic rates (P n) on a leaf area basis than Heteropogon. Plants of both species under drought produced less total biomass and increased their allocation to roots compared to well-watered plants, but there was no difference between the two species in the magnitude of these responses. The decline in P n with decreasing leaf water potential (1) was greater for Pennisetum compared to Heteropogon. Plasticity in the response of P n to 1, osmotic potentials, and the water potentials at turgor loss in response to drought were not different between the two species. Stomata were more responsive to w in Heteropogon than in Pennisetum and for well-watered plants compared to droughted plants. Plasticity for the stomatal response to w, however, was not different between the species. There was no evidence that the alien, Pennisetum, had greater plasticity for traits related to drought tolerance compared to the native, Heteropogon. Higher P n and greater biomass allocation to leaves resulted in greater growth for Pennisetum compared to Heteropogon and may explain the success of Pennisetum as an invader of lowland arid zones on Hawaii.  相似文献   

15.
The identification of molecular markers and marker-aided selection are essential to the efficient breeding of drought-tolerant plants. However, because that characteristic is controlled by many quantitative trait loci, such markers that can screen and trace desirable barley genotypes in a segregating population or germplasm have not yet been determined. Relative water content has been used to estimate drought tolerance in plants because it is highly correlated with the drought index of yield. To develop reliable gene-specific markers for identifying tolerant versus susceptible genotypes, we performed suppression subtractive hybridization to identify candidate genes. We used two domestic barley cultivars, one having the highest RWC (drought-tolerant ‘Chalbori’) and the other having the lowest (drought-susceptible ‘Daebaekbori’). In response to dehydration at the early seedling stage, rapid upregulation ofDehydrin3 (Dhn3) andDhn4 occurred in the drought-tolerant genotypes, but not in the susceptible ones. Similar results were obtained with mature plants growing under frequent drought stress in the greenhouse. In addition,Dhn3 andDhn4 conferred higher drought tolerance when they were over-expressed in transgenicArabidopsis. Thus, in addition to using assessments of RWC, we propose thatDhn3 andDhn4 expressions can serve as drought-induced gene-specific markers to determine drought-tolerant barley genotypes at the seedling stage.  相似文献   

16.
珍稀濒危植物堇叶紫金牛对持续干旱的生理响应   总被引:1,自引:0,他引:1  
采用盆栽控水法,研究了珍稀濒危植物堇叶紫金牛(Ardisia violacea)在持续干旱条件下的生理响应。随着持续干旱时间的延长,堇叶紫金牛应对持续干旱的阶段可分为适应期、轻度干旱期、中度干旱期和重度干旱期。在适应期和轻度干旱期,堇叶紫金牛叶片游离脯氨酸和可溶性糖含量稳定在一个较低水平,可溶性蛋白质含量先下降后快速上升,细胞膜系统和抗氧化酶系统能主动进行生理调节;中度干旱期,丙二醛(MDA)含量和质膜相对透性迅速升高,细胞膜系统受损加剧,游离脯氨酸、可溶性糖含量均急剧增加,对抵御干旱起到重要的渗透调节作用。在轻度干旱期和中度干旱期,光合色素中叶绿素a和叶绿素b含量显著提高,以抵抗干旱胁迫。重度干旱期,细胞膜系统、抗氧化酶SOD、游离脯氨酸和可溶性糖含量上升,但MDA略微下降,这时可能达到植物耐受干旱的极限,不再发生膜脂过氧化作用。综上表明,堇叶紫金牛具有较强的耐旱性,RWC为49.94%是细胞膜系统、抗氧化酶系统和渗透调节物质含量变化的拐点,渗透调节和抗氧化酶系统的主动适应是其耐旱的主要机制。  相似文献   

17.
Ain-Lhout  F.  Zunzunegui  M.  Diaz Barradas  M.C.  Tirado  R.  Clavijo  A.  Garcia Novo  F. 《Plant and Soil》2001,230(2):175-183
The effect of water stress on proline accumulation was tested in two contrasted species of Mediterranean scrub: Halimium halimifolium (L.) Willk and Pistacia lentiscus L. Leaf water potential, stomatal resistance and proline content have been measured both in experimental and in natural water stress conditions. Both species accumulated proline in their leaves when leaf water potential dropped below a threshold value of –3.0 MPa, under natural as well as under experimental conditions. In the field, however, a time-lag between decrease of leaf water potential and proline accumulation could be observed. In Halimium halimifolium, proline accumulation appeared to be associated with severe stress conditions as most plants with high proline contents suffered irreversible wilting, especially in the greenhouse. P. lentiscus showed a different pattern, accumulating proline at two different times of the year, as a response to cold or to drought. The results of our study indicated that the role of proline in this species, rather than an osmotic agent, seems to be more related to a protective action in cases of severe stress conditions.  相似文献   

18.
Efficient procedures for regeneration and Agrobacterium-mediated transformation were established for Agrostis mongolica Roshev. and generated transgenic plants tolerant to drought and heat stresses using a regulatory gene from Arabidopsis, ABF3, which controls the ABA-dependent adaptive responses. The identification and selection of regenerable and reproducible callus type was a key factor for successful transformation. The transformation efficiency was 49.2% and gfp expression was detected in hygromycin-resistant calli and stem of putative transgenic plants. The result of Southern blot analysis showed that the ABF3 transgene was stably integrated into the genome of transgenic plants. Of the five transgenic lines analyzed, single transgene integration was observed in two lines and two copy integration was observed in three transgenic lines. Northern blot analysis confirmed that ubi::ABF3 was expressed in all transgenic lines. Transgenic plants exhibited neither growth inhibition nor visible vegetative phenotypic alternations. However, both transgenic and wild-type plants were highly sterile and did not flower during 3 years of growth period in the open field under subtropical Jeju Island climate. The stomata of the transgenic plants opened less than did stomata of the wild-type plants, and water content of the transgenic leaves remained about 3–4 fold higher than observed for wild-type leaves under drought stress. The transgenic plants showed about 2 fold higher survival rates under drought stress and about 3 fold higher survival rates under heat stress when compared to wild-type plants. Thus, overexpression of the Arabidopsis ABF3 gene results in enhancement of both drought and heat stress tolerance in Agrostis mongolica Roshev.  相似文献   

19.
周瑞莲  逄金强  宋玉 《生态学报》2022,42(1):196-208
以海岸防风固沙优势树种紫穗槐(Amorpha fruticosa Linn)和黑松(Pinus thunbergii Parl)为研究对象,利用野外便携式沙风洞用间歇风吹模拟自然阵风,通过分析间歇强净风(18m/s)和强风沙流(172.93g cm-1 min-1)吹袭过程中和风后恢复中,两树种叶片膜脂过氧化产物含量、抗氧化酶活力、渗透调节物含量的变化,以探讨其对自然阵风吹袭响应机制及自愈修复生理机制。结果表明,自然状况下,紫穗槐和黑松叶片相对含水量(RWC)相近,但抗氧化酶活力及种类和渗透调节物含量及种类上存在差异。紫穗槐叶片丙二醛含量(MDA)、脯氨酸含量及过氧化氢酶(CAT)和过氧化物酶(POD)活力分别较黑松高93.3%、78.6%、118.8%、6.5倍。而黑松可溶糖含量和超氧化物歧化酶(SOD)活力较紫穗槐高111.5%和28.2%。在间歇净风和风沙流处理中,随着风吹袭次数增多,黑松叶片RWC趋于小幅降低,可溶性糖含量及POD、SOD、CAT活力呈小幅波动式变化;紫穗槐叶片RWC大幅下降,伴随着脯氨酸含量,POD、CAT、SOD活...  相似文献   

20.
Abscisic acid (ABA) content and relative water content (RWC) in second fully expanded leaves of cold hardened plants and in dehydrated leaves of freezing tolerant barley (Hordeum vulgare L. cv. Lunet) were compared. ABA content and RWC in leaves did not change during the first day of cold hardening. On the contrary, dehydration of leaves led to a decrease of RWC and to an increase of ABA content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号