首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of fungal biocontrol agents by solid-state fermentation (SSF) processes in inert supports demands deeper studies in SSF-modelling and SSF-optimisation to cope with scale-up issues. Here, we report the systematic application of fractional factorial and central composite designs to optimise the conidia productivity and maximum specific growth rate of the biological control candidate Trichoderma asperellum strain Th204 using two inert supports: polyurethane foam (PUF) and rice husk (RH), in a pilot 16 L fixed bed fermenter. By using response surface methodology, 2D contour graphs and Spearman’s correlation coefficients, axial temperature, conidia concentration, bed moisture and pressure drop gradients were modelled. C:N ratio and airflow rate were identified as significant factors. Optimal conditions using PUF a C:N ratio of 18.1 and airflow of 0.8?m3?h?1 were found, with the highest productivity of 3.09?×?107conidia g?1 initial dry matter h1. Polynomial models and response surfaces found in this study are advantageous to design strategies to scale-up the SSF process in fixed bed fermenters for fungal biological control candidates.  相似文献   

2.
AIM: Production of L-lactic acid in solid-state fermentation (SSF) using polyurethane foam (PUF) as inert support moistened with cassava bagasse starch hydrolysate. METHODS AND RESULTS: PUF impregnated with cassava bagasse starch hydrolysate as major carbon source was used for the production of L-lactic acid using Lactobacillus casei in solid-state condition. The key parameters such as reducing sugar, inoculum size and nutrient mixture were optimized by statistical approach using response surface methodology. More than 95% conversion of sugars to lactic acid from 4 g reducing sugar per gram dry support was attained after 72 h when the inert substrate was moistened with 6.5 ml of nutrient solution and inoculated with 1.5 x 10(9) CFU of L. casei. While considering the lactate yield based on the solid support used, a very high yield of 3.88 g lactic acid per gram PUF was achieved. CONCLUSION: PUF acted as an excellent inert support for L. casei and provided a platform for the utilization of starchy waste hydrolysate in a lower reactor volume. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a cost effective cultivation of lactic acid bacteria for producing lactic acid from agro based waste products such as cassava bagasse. This is the first report on the exploitation of PUF as an inert support for lactate production under SSF.  相似文献   

3.
High concentration of glycerol was used as the sole carbon source for efficient production of Monacolin K (MK) by solid-state fermentation (SSF) of Monascus purpureus 9901 using agricultural residue (bagasse), as an inert carrier. A comparative study showed that MK production in SSF was about 5.5 times higher than that of submerged fermentation when 26 % of glycerol was used, which may be due to the formation of glycerol concentration gradients in the inert carrier and less catabolite repression in SSF. For enhancement of MK yield in SSF, the effects of different influential variables, such as glycerol concentration, nitrogen source and its concentration, initial moisture content, inoculum size and particle size of bagasse, were systematically examined. All the factors mentioned above had an effect on the MK production in SSF to some extent. The maximal yield of MK (12.9 mg/g) was achieved with 26 % glycerol, 5 % soybean meal, 51 % initial moisture content, 20 % inoculum size and 1 mm particle size of bagasse. The results in this study may expand our understanding on the application of SSF using agricultural residue as carrier for production of useful microbial metabolites, especially the efficient conversion of high concentration of glycerol to MK by Monascus purpureus.  相似文献   

4.
Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett–Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature (30°C), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.  相似文献   

5.
Aims: To investigate the effect of pH regulation and nutrient concentration on cephalosporin C (CPC) production in solid‐state fermentation (SSF), using sugarcane bagasse as inert support, impregnated with liquid medium. Methods and Results: Solid‐state fermentation using different initial pH values, buffer and nutrient concentrations were performed. Results revealed pH as a key parameter in CPC SSF, as it hampered the antibiotic production not only above 7·8, but also under 6·4. Using initial pH lower than 6·8 and PB in the solid medium, it was possible to keep pH within the production range, increase the production period (from 1 to 3 days) and hence the CPC yield from 468 to 3200 μg gdm?1 (g?1 of dry matter). Conclusion: Parameters that help to keep pH in adequate values for CPC production in SSF, such as initial pH, buffering system and nutrient concentration, can greatly increase the production time and CPC yields in this fermentation technique. Significance and Impact of the Study: This is the first work on CPC production on impregnated support, and the only one revealing pH as a key parameter; it is also shown that high nutrient concentration can improve CPC yields in SSF as long as pH is kept under control.  相似文献   

6.
《Process Biochemistry》1999,34(1):11-16
In a comparison of submerged cultivation (SC) with solid substrate fermentation (SSF) for the production of bacterial exopolysaccharides (EPS), the latter technique yielded 2 to 4.7 times more polymer than the former, on the laboratory scale. SSF was performed using inert solid particles (spent malt grains) impregnated with a liquid medium. The polymer yields obtained from SSFs, as referred to the impregnating liquid volumes, were as follows: 38.8 g/litre xanthan from Xanthomonas campestris, 21.8 g/litre succinoglycan from Rhizobium hedysari and 20.3 g/litre succinoglycan from Agrobacterium tumefaciens PT45. These results make this technique promising for a potential application on the industrial scale. A further advantage with this fermentation process is found in the availability and low cost of substrates, which are obtained as by-products or wastes from the agriculture or food industry.  相似文献   

7.
SSF3 is a CHO cell line adapted for growth in protein-free medium. It grows in suspension unless serum-derived attachment factors such as vitronectin are added to the medium. Serum-independent cell lines, which adhere to the substrate after induction with dexamethasone or constitutively, were created by transfection with a human vitronectin gene under control of the mouse mammary tumor-virus promoter. Substrate attachment and SSF3VN-cell spreading could be prevented with an RGD peptide (arginine-glycine-aspartic acid) confirming that attachment is mediated by an intregrin receptor. Hormone-inducible attachment could be blocked by glucocorticoid antagonist promegestone. All steps in the isolation of stable transfected SSF3VN cell lines could be done in a chemically defined medium avoiding the risk of introduction of serum-derived infectious agents. SSF3VN cells could be grown in protein-free medium in solid-phase large-scale bioreactors. Application in microplates as used in high-throughput screening was demonstrated in an assay of Ca(2+) release from internal stores induced by agonist-binding to recombinant human metabotropic glutamate receptor hmGluR1b.  相似文献   

8.
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Optimum operation and automatic control of large-scale solid substrate fermentation (SSF) bioreactors is difficult. Though advanced control algorithms can handle most challenges encountered properly, for real-time SSF processes such controllers are expensive and time consuming to design and tune. With these considerations, advanced control algorithm tests using realistic simulations appear more appropriate. We used a phenomenological process model of an SSF pilot bioreactor, coupled with a realistic noise model, to test linear model predictive controllers. We focused on the effect noise has on the performance of the control algorithms, and how to enhance performance using a combination of low-pass (Butterworth) and outlier shaving (Hampel) filters. In simulations undertaken directly with the phenomenological model it was relatively straightforward to achieve good control performance. Nevertheless, control degraded sharply when the output of the phenomenological model was contaminated with noise using our realistic noise model, even with proper signal filtering.  相似文献   

10.
Aspergillus ficuum TUB F-1165 and Rhizopus oligosporus TUB F-1166 produced extra-cellular phytase during solid-state fermentation (SSF) using polystyrene as inert support. Maximal enzyme production (10.07 U/g dry substrate (U/gds) for A. ficuum and 4.52 U/gds for R. oligosporus) was observed when SSF was carried out with substrate pH 6.0 and moisture 58.3%, incubation temperature 30 degrees C, inoculum size of 1.3 x 10(7) spores/5 g substrate, for 72 h for A. ficuum and with substrate pH 7.0 and moisture 58.3%, incubation temperature 30 degrees C, inoculum size of 1 x 10(6) spores/5 g substrate for 96 h for R. oligosporus. Results indicated scope for production of phytase using polystyrene as inert support.  相似文献   

11.
The extensive use of synthetic plastics has caused serious waste disposal problems in our environment. Poly-3-hydroxybutyrates (PHB) are eco-friendly bacterial polyesters which are produced under unbalanced nutrient conditions. Few reports are available on PHB production by solid state fermentation (SSF). We have developed a novel SSF bioprocess in which polyurethane foam (PUF) is used as a physical inert support for the production of PHB by Bacillus sphaericus NII 0838. Media engineering for optimal PHB production was carried out using response surface methodology (RSM) adopting a Box–Behnken design. The factors optimized by RSM were inoculum size, pH and (NH4)2SO4 concentration. Under optimized conditions—6.5 % inoculum size, 1.7 % (w/v) (NH4)2SO4 and pH 9.0—PHB production and biomass were 0.169?±?0.03 and 0.4?±?0.002 g/g PUF, respectively. This is the first report on PHB production by SSF using PUF as an inert support. Our results demonstrate that SSF can be used as an alternative strategy for the production of PHB.  相似文献   

12.
Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF — a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail.  相似文献   

13.
14.
Simultaneous saccharification and fermentation (SSF) is a well-known strategy for valorization of lignocellulosic biomass. Because the fermentation process typically is anaerobic, oxidative enzymes found in modern commercial cellulase cocktails, such as lytic polysaccharide monooxygenases (LPMOs), may be inhibited, limiting the overall efficiency of the enzymatic saccharification. Recent discoveries, however, have shown that LPMOs are active under anoxic conditions if they are provided with H2O2 at low concentrations. In this study, we build on this concept and investigate the potential of using externally added H2O2 to sustain oxidative cellulose depolymerization by LPMOs during an SSF process for lactic acid production. The results of bioreactor experiments with 100 g/L cellulose clearly show that continuous addition of small amounts of H2O2 (at a rate of 80 µM/h) during SSF enables LPMO activity and improves lactic acid production. While further process optimization is needed, the present proof-of-concept results show that modern LPMO-containing cellulase cocktails such as Cellic CTec2 can be used in SSF setups, without sacrificing the LPMO activity in these cocktails.  相似文献   

15.
In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism’s growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries.  相似文献   

16.
A bioprocess was developed for the production of L-leucine aminopeptidase under solid-state fermentation (SSF) by cultivating Streptomyces gedanensis in an inert support impregnated with a minimal medium. Response surface methodology of Box Behnken design was used to derive the optimum level of significant factors (3 ml inoculum (1.2 × 10(9) CFU/ml); 0.275% w/v (NH(4))(2)SO(4); 0.275% w/v MgSO(4)·7H(2)O and 0.55% w/v Tryptone) for maximum LAP production (489 IU/g PUF) as compared to the initial level of 176.3 ± 0.02 IU/g PUF. The high level of extracellular aminopeptidase yield achieved in this work showed the technical feasibility of LAP production under SSF using inert support and is the first report of this kind. The ability of Streptomyces amino peptidase to release particular N-terminal amino acids made them interesting for controlling the degree of hydrolysis and flavor development for a wide range of substrates in food like industries.  相似文献   

17.
Solid-state fermentation systems-an overview   总被引:7,自引:0,他引:7  
Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   

18.
Abstract

Starting with a brief history of solid-state fermentation (SSF), major aspects of SSF are reviewed, which include factors affecting SSF, biomass, fermentors, modeling, industrial microbial enzymes, organic acids, secondary metabolites, and bioremediation. Physico-chemical and environmental factors such as inoculum type, moisture and water activity, pH, temperature, substrate, particle size, aeration and agitation, nutritional factors, and oxygen and carbon dioxide affecting SSF are reviewed. The advantages of SSF over Submerged Fermentation (SmF) are indicated, and the different types of fermentors used in SSF described. The economic feasibilities of adopting SSF technology in the commercial production of industrial enzymes such as amylases, cellulases, xylanase, proteases, phytases, lipases, etc., organic acids such as citric acid and lactic acid, and secondary metabolites such as gibberellic acid, ergot alkaloids, and antibiotics such as penicillin, cyclosporin, cephamycin and tetracyclines are highlighted. The relevance of applying SSF technology in the production of mycotoxins, biofuels, and biocontrol agents is discussed, and the need for adopting SSF technology in bioremediation of toxic compounds, biological detoxication of agro-industrial residues, and biotransformation of agro-products and residues is emphasized.  相似文献   

19.
The aim of the study was to evaluate, from a technical and economic standpoint, the enzymatic processes involved in the production of fuel ethanol from softwood. Two base case configurations, one based on simultaneous saccharification and fermentation (SSF) and one based on separate hydrolysis and fermentation (SHF), were evaluated and compared. The process conditions selected were based mainly on laboratory data, and the processes were simulated by use of Aspen plus. The capital costs were estimated using the Icarus Process Evaluator. The ethanol production costs for the SSF and SHF base cases were 4.81 and 5.32 SEK/L or 0.57 and 0.63 USD/L (1 USD = 8.5SEK), respectively. The main reason for SSF being lower was that the capital cost was lower and the overall ethanol yield was higher. A major drawback of the SSF process is the problem with recirculation of yeast following the SSF step. Major economic improvements in both SSF and SHF could be achieved by increasing the income from the solid fuel coproduct. This is done by lowering the energy consumption in the process through running the enzymatic hydrolysis or the SSF step at a higher substrate concentration and by recycling the process streams. Running SSF with use of 8% rather than 5% nonsoluble solid material would result in a 19% decrease in production cost. If after distillation 60% of the stillage stream was recycled back to the SSF step, the production cost would be reduced by 14%. The cumulative effect of these various improvements was found to result in a production cost of 3.58 SEK/L (0.42 USD/L) for the SSF process.  相似文献   

20.
Solid-state fermentation (SSF) is defined as the growth of microbes without a free-flowing aqueous phase. The feasibility of using a citrus peel for producing pectinase and xylanase via the SSF process by Aspergillus niger F3 was evaluated in a 2 kg bioreactor. Different aeration conditions were tested to optimize the pectinase and xylanase production. The best air flow intensity was 1 V kg M (volumetric air flow per kilogram of medium), which allowed a sufficient amount of O2 for the microorganism growth producing 265 U/g and 65 U/g pectinases and xylanases, respectively. A mathematical model was applied to determine the different kinetic parameters related to SSF. The specific growth rate and biomass oxygen yield decreased during fermentation, whereas an increase in the maintenance coefficient for the different employed carbon sources was concurrently observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号