首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.  相似文献   

2.

Background  

Leucine rich repeats (LRRs) are present in over 60,000 proteins that have been identified in viruses, bacteria, archae, and eukaryotes. All known structures of repeated LRRs adopt an arc shape. Most LRRs are 20-30 residues long. All LRRs contain LxxLxLxxNxL, in which "L" is Leu, Ile, Val, or Phe and "N" is Asn, Thr, Ser, or Cys and "x" is any amino acid. Seven classes of LRRs have been identified. However, other LRR classes remains to be characterized. The evolution of LRRs is not well understood.  相似文献   

3.
The luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) have an approximately 350-amino acid-long, N-terminal extracellular exodomain. This exodomain binds hormone with high affinity and specificity and contains eight to nine putative Leu-rich repeat (LRR) sequences. LRRs are known to assume the horseshoe structure in ribonuclease inhibitors, and the inner lining of the horseshoe consists of the beta-stranded Leu/Ile-X-Leu/Ile motif. In the case of ribonuclease inhibitors, these beta strands interact with ribonuclease. However, it is unclear whether the putative LRRs of LHR and FSHR play any role in the structure and function. In this work, the beta-stranded Leu/Ile residues in all LRRs of the human LHR and FSHR were Ala-scanned and characterized. In addition, the 23 residues around LRR2 of LHR were Ala-scanned. The results show that beta-stranded Leu and Ile residues in all LRRs are important but not equally. These Leu/Ile-X-Leu/Ile motifs appear to form the hydrophobic core of the LRR loop, crucial for the LRR structure. Interestingly, the hot spots are primarily in the upstream and downstream LRRs of the LHR exodomain, whereas important LRRs spread throughout the FSHR exodomain. This may explain the distinct hormone specificity despite the structural similarity of the two receptors.  相似文献   

4.
The luteinizing hormone receptor (LHR) consists of an approximately 350-amino acid-long N-terminal extracellular exodomain and a membrane-associated endodomain of similar size. Human chorionic gonadotropin (hCG) binds to the exodomain, and then hCG/exodomain complex is thought to make a secondary contact with the endodomain and generate hormone signals. The sequence alignment of the exodomain shows imperfectly matching eight to nine Leu-rich repeats (LRRs). In the preceding article (Song, Y., Ji, I., Beauchamp, J., Isaacs, N., and Ji, T. (2001) J. Biol. Chem. 276, 3426-3435), we have shown that LRR2 and LRR4 are crucial for hormone binding. In this work, we have examined the residues of LRR4, in particular Leu(103) and Ile(105) in the putative beta strand. Our data show that Leu(103) and Ile(105) are involved in the specific, hydrophobic interaction of the LRR4 loop, likely to form the hydrophobic core. This loop is crucial for the structural integrity of all of the LRRs. In contrast, the downstream sequence consisting of Asn(107), Thr(108), Gly(109), and Ile(110) of LRR4 is crucial for cAMP induction but not for hormone binding, folding, and surface expression. This implicates, for the first time, its involvement in the interaction with the endodomain and signal generation. The evidence for the interaction is presented in the following article.  相似文献   

5.

Background

Toll-like receptors (TLRs) play a central role in innate immunity. TLRs are membrane glycoproteins and contain leucine rich repeat (LRR) motif in the ectodomain. TLRs recognize and respond to molecules such as lipopolysaccharide, peptidoglycan, flagellin, and RNA from bacteria or viruses. The LRR domains in TLRs have been inferred to be responsible for molecular recognition. All LRRs include the highly conserved segment, LxxLxLxxNxL, in which "L" is Leu, Ile, Val, or Phe and "N" is Asn, Thr, Ser, or Cys and "x" is any amino acid. There are seven classes of LRRs including "typical" ("T") and "bacterial" ("S"). All known domain structures adopt an arc or horseshoe shape. Vertebrate TLRs form six major families. The repeat numbers of LRRs and their "phasing" in TLRs differ with isoforms and species; they are aligned differently in various databases. We identified and aligned LRRs in TLRs by a new method described here.

Results

The new method utilizes known LRR structures to recognize and align new LRR motifs in TLRs and incorporates multiple sequence alignments and secondary structure predictions. TLRs from thirty-four vertebrate were analyzed. The repeat numbers of the LRRs ranges from 16 to 28. The LRRs found in TLRs frequently consists of LxxLxLxxNxLxxLxxxxF/LxxLxx ("T") and sometimes short motifs including LxxLxLxxNxLxxLPx(x)LPxx ("S"). The TLR7 family (TLR7, TLR8, and TLR9) contain 27 LRRs. The LRRs at the N-terminal part have a super-motif of STT with about 80 residues. The super-repeat is represented by STTSTTSTT or _TTSTTSTT. The LRRs in TLRs form one or two horseshoe domains and are mostly flanked by two cysteine clusters including two or four cysteine residue.

Conclusion

Each of the six major TLR families is characterized by their constituent LRR motifs, their repeat numbers, and their patterns of cysteine clusters. The central parts of the TLR1 and TLR7 families and of TLR4 have more irregular or longer LRR motifs. These central parts are inferred to play a key role in the structure and/or function of their TLRs. Furthermore, the super-repeat in the TLR7 family suggests strongly that "bacterial" and "typical" LRRs evolved from a common precursor.  相似文献   

6.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

7.
8.
The phytopathogenic bacterium Ralstonia solanacearum encodes type III effectors, called GALA proteins, which contain F-box and LRR domains. The GALA LRRs do not perfectly fit any of the previously described LRR subfamilies. By applying protein sequence analysis and structural prediction, we clarify this ambiguous case of LRR classification and assign GALA-LRRs to CC-LRR subfamily. We demonstrate that side-by-side packing of LRRs in the 3D structures may control the limits of repeat variability within the LRR subfamilies during evolution. The LRR packing can be used as a criterion, complementing the repeat sequences, to classify newly identified LRR domains. Our phylogenetic analysis of F-box domains proposes the lateral gene transfer of bacterial GALA proteins from host plants. We also present an evolutionary scenario which can explain the transformation of the original plant LRRs into slightly different bacterial LRRs. The examination of the selective evolutionary pressure acting on GALA proteins suggests that the convex side of their horse-shoe shaped LRR domains is more prone to positive selection than the concave side, and we therefore hypothesize that the convex surface might be the site of protein binding relevant to the adaptor function of the F-box GALA proteins. This conclusion provides a strong background for further functional studies aimed at determining the role of these type III effectors in the virulence of R. solanacearum.  相似文献   

9.
The amino acid sequence of alcohol dehydrogenase of class III from rat liver (the enzyme ADH-2) has been determined. This type of structure is quite different from those of both the class I and the class II alcohol dehydrogenases. The rat class III structure differs from the rat and human class I structures by 133-138 residues (exact value depending on species and isozyme type); and from that of human class II by 132 residues. In contrast, the rat/human species difference within the class III enzymes is only 21 residues. The protein was carboxymethylated with iodo[2(14)C]acetate, and cleaved with CNBr and proteolytic enzymes. Peptides purified by exclusion chromatography and reverse-phase high-performance liquid chromatography were analyzed by degradation with a gas-phase sequencer and with the manual 4-N,N-dimethylaminoazobenzene-4'-isothiocyanate double-coupling method. The protein chain has 373 residues with a blocked N terminus. No evidence was obtained for heterogeneity. The rat ADH-2 enzyme of class III contains an insertion of Cys at position 60 in relation to the class I enzymes, while the latter alcohol dehydrogenase in rat (ADH-3) has another Cys insertion (at position 111) relative to ADH-2. The structure deduced explains the characteristic differences of the class III alcohol dehydrogenase in relation to the other classes of alcohol dehydrogenase, including a high absorbance, an anodic electrophoretic mobility and special kinetic properties. The main amino acid substitutions are found in the catalytic domain and in the subunit interacting segments of the coenzyme-binding domain, the latter explaining the lack of hybrid dimers between subunits of different classes. Several substitutions provide an enlarged and more hydrophilic substrate-binding pocket, which appears compatible with a higher water content in the pocket and hence could possibly explain the higher Km for all substrates as compared with the corresponding values for the class I enzymes. Finally the class III structure supports evolutionary relationships suggesting that the three classes constitute clearly separate enzymes within the group of mammalian zinc-containing alcohol dehydrogenases.  相似文献   

10.
In order to serve as the effective target of a relevant cytotoxic T-cell receptor, the same peptide fragment has to occupy at least 0.1% of the class I major histocompatibility complex (MHC) antigen sites on the plasma membrane. Because of this need, I contend that the thymic educator cell of self to cytotoxic T cells can suppress autoreactive T-cell clones only with regard to at the most, 1000 self nonapeptides per a given allelic form of class I MHC antigens; e. g., HLA-A2. Each allelic form of class I MHC antigen apparently developed the preferential binding affinity toward a specific set of nonapeptides. The requirement for preferential binding can either be permissive or stringent. In the case of human HLA-A2, those nonapeptides having either Leu or Met at the second position and mainly Val, but occasionally Leu at the ninth position are preferred. Since both Leu and Val are very common residues, the typical somatic cell type readily supplies nearly 3000 high affinity host nonapeptides preferred by HLA-A2. Of those, the tolerance can be induced, at the most, to only 1000 nonapeptides. In view of this, permissive class I MHC antigens such as HLA-A2 carefully avoid high affinity nonapeptides in viral proteins, for their status as to self or nonself is uncertain, and they choose second choice nonapeptides as T epitopes. In sharp contrast to human HLA-A2, mouse H-2Db represents the stringent class I MHC antigens. In order to show the high binding affinity toward H-2Db, nonapeptides are required to carry Asn at position 5 and Met or Ile at the equally critical position 9. Inasmuch as Asn and Met are rare residues and Ile, too, is not a common residue, the typical somatic cell type can supply only several hundred host nonapeptides having the high binding affinity toward H-2Db. Under the circumstance, there is no problem in memorizing the selfness of all of them. Accordingly, T epitopes are almost invariably chosen from the high affinity nonapeptides that are present in their viral proteins.  相似文献   

11.
We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane‐anchored leucine‐rich repeat receptor‐like protein (LRR‐RLP). Unlike most other LRR‐RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR‐RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR‐RLPs, recognition specificity is determined in the C‐terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1‐dependent necrosis in Nicotiana benthamiana depends on the LRR receptor‐like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR‐RLPs involved in plant defence all carry residues in their last LRR and C‐terminal LRR capping domain that are conserved with SERK3/BAK1‐interacting residues in the same relative positions in the LRR‐RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1‐dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.  相似文献   

12.

Background

Many proteins have LRR (leucine-rich repeat) units interrupted by non-LRRs which we call IR (non-LRR island region).

Methods

We identified proteins containing LRR@IRs (LRRs having IR) by using a new method and then analyzed their natures and distributions.

Results

LRR@IR proteins were found in over two hundred proteins from prokaryotes and from eukaryotes. These are divided into twenty-one different protein families. The IRs occur one to four times in LRR regions and range in length from 5 to 11,265 residues. The IR lengths in Fungi adenylate cyclases (acys) range from 5 to 116 residues; there are 22 LRR repeats. The IRs in Leishmania proteophosphoglycans (ppgs) vary from 105 to 11,265 residues. These results indicate that the IRs evolved rapidly. A group of LRR@IR proteins—LRRC17, chondroadherin-like protein, ppgs, and four Pseudomonas proteins—have a super motif consisting of an LRR block and its adjacent LRR@IR region. This indicates that the entire super motif experienced duplication. The sequence analysis of IRs offers functional similarity in some LRR@IR protein families.

General significance

This study suggests that various IRs and super motifs provide a great variety of structures and functions for LRRs.  相似文献   

13.
Despite sharing little sequence identity, most type III chaperones display a similar homodimeric structure characterized by negative charges distributed broadly over their entire surface, interspersed with hydrophobic patches. Here we have used SigE from Salmonella as a model for class IA type III chaperones to investigate the role of these surface-exposed residues in chaperone function. SigE is essential for the stability, secretion and translocation of its cognate effector, SopB (SigD). We analysed the effect of mutating nine conserved hydrophobic and electronegative surface-exposed amino acids of SigE on SopB binding, stability, secretion and translocation. Six of these mutations affected some aspect of SigE function (Leu14, Asp20, Leu22, Leu23, Ile25 and Asp51) and three were without effect (Leu54, Glu92 and Glu99). Our results highlight that both hydrophobic and electronegative surfaces are required for the function of SigE and provide an important basis for the prediction of side-chain requirements for other chaperone-effector pairs.  相似文献   

14.
The high degree of amino acid sequence homology and the divergent ligand binding affinities of the rat (r) and human (h) LH receptors (LHRs) allowed us to identify amino acid residues of their extracellular domain that are responsible for the different binding affinities of bovine (b) and hLH, and human choriogonadotropin (hCG) to the hLHR and rLHR. Because of the proposed importance of the beta-sheets of the leucine-rich repeats (LRRs) of the extracellular domain of the LHR on hormone binding, we examined 10 divergent residues present in these regions by analyzing two complementary sets of mutants in which hLHR residues were substituted with the corresponding rLHR residues and vice versa. These experiments resulted in the identification of a single residue (a Ile or Ser in the C-terminal end of LRR2 of the hLHR or rLHR, respectively) that is important for hLH binding affinity. Surprisingly, however, this residue does not affect hCG or for bLH binding affinity. In fact, the results obtained with bLH and hCG show that several of the divergent residues in the beta-sheets of LRR1-9 affect bLH binding affinity, but none of them affect hCG binding affinity. Importantly, our results also emphasize the involvement of residues outside of the beta-sheets of the LRRs of the LHR in ligand binding affinity. This finding has to be considered in future models of the interaction of LH/CG with the LHR.  相似文献   

15.
The primary structure of the major quail liver alcohol dehydrogenase was determined. It is a long-chain, zinc-containing alcohol dehydrogenase of the type occurring also in mammals and hence allows judgement of the gene duplications giving rise to the classes of the human alcohol dehydrogenase system. The avian form is most closely related to the class I mammalian enzyme (72-75% residue identity), least related to class II (60% identity), and intermediately related to class III (64-65% identity). This pattern distinguishes the mammalian enzyme classes and separates classes I and II in particular. In addition to the generally larger similarities with class I, the avian enzyme exhibits certain residue patterns otherwise typical of the other classes, including an extra Trp residue, present in both class II and III but not in class I, with a corresponding increase in the UV absorbance. The avian enzyme further shows that a Gly residue at position 260 previously considered strictly conserved in alcohol dehydrogenases can be exchanged with Lys. However, zinc-binding residues, coenzyme-binding residues, and to a large extent substrate-binding residues are unchanged in the avian enzyme, suggesting its functional properties to be related to those of the class I mammalian alcohol dehydrogenases. In contrast, the areas of subunit interactions in the dimers differ substantially. These results show that (a) the vertebrate enzyme classes are of distant origin, (b) the submammalian enzyme exhibits partly mixed properties in relation to the classes, and (c) the three mammalian enzyme classes are not as equidistantly related as initially apparent but suggest origins from two sublevels.  相似文献   

16.
Sequence analysis of two DNA fragments generated from bacteriophage T5 DNA by restriction with Hpa I and Hae III has resulted in the detection and localization of nine tRNA genes (His, two Ser genes, Leu, Val, Lys, fMet, Pro, and Ile). The genes which code for tRNAs His and Leu are partials, whereas the remaining genes are complete. A majority of the tRNA genes are located in close proximity to one another. A unique feature of the Pro and Ile genes is that their DNA sequence overlap.  相似文献   

17.
We present a novel approach to design repeat proteins of the leucine-rich repeat (LRR) family for the generation of libraries of intracellular binding molecules. From an analysis of naturally occurring LRR proteins, we derived the concept to assemble repeat proteins with randomized surface positions from libraries of consensus repeat modules. As a guiding principle, we used the mammalian ribonuclease inhibitor (RI) family, which comprises cytosolic LRR proteins known for their extraordinary affinities to many RNases. By aligning the amino acid sequences of the internal repeats of human, pig, rat, and mouse RI, we derived a first consensus sequence for the characteristic alternating 28 and 29 amino acid residue A-type and B-type repeats. Structural considerations were used to replace all conserved cysteine residues, to define less conserved positions, and to decide where to introduce randomized amino acid residues. The so devised consensus RI repeat library was generated at the DNA level and assembled by stepwise ligation to give libraries of 2-12 repeats. Terminal capping repeats, known to shield the continuous hydrophobic core of the LRR domain from the surrounding solvent, were adapted from human RI. In this way, designed LRR protein libraries of 4-14 LRRs (equivalent to 130-415 amino acid residues) were obtained. The biophysical analysis of randomly chosen library members showed high levels of soluble expression in the Escherichia coli cytosol, monomeric behavior as characterized by gel-filtration, and alpha-helical CD spectra, confirming the success of our design approach.  相似文献   

18.
The thermostability of potato type L alpha-glucan phosphorylase (EC 2.4.1.1) was enhanced by random and site-directed mutagenesis. We obtained three single-residue mutations-Phe39-->Leu (F39L), Asn135-->Ser (N135S), and Thr706-->Ile (T706I)-by random mutagenesis. Although the wild-type enzyme was completely inactivated, these mutant enzymes retained their activity even after heat treatment at 60 degrees C for 2 h. Combinations of these mutations were introduced by site-directed mutagenesis. The simultaneous mutation of two (F39L/N135S, F39L/T706I, and N135S/T706I) or three (F39L/N135S/T706I) residues further increased the thermostability of the enzyme, indicating that the effect of the replacement of the residues was cumulative. The triple-mutant enzyme, F39L/N135S/T706I, retained 50% of its original activity after heat treatment at 65 degrees C for 20 min. Further analysis indicated that enzymes with a F39L or T706I mutation were resistant to possible proteolytic degradation.  相似文献   

19.
Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been identified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20-30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein) and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1) and emm1 mutant strain (MC25) had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号