首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entire muscle system of Nerilla antennata, Nerillidium sp. and Trochonerilla mobilis was three-dimensionally reconstructed from whole mounts. In juvenile and adult specimens the F-actin musculature subset was stained with FITC-conjugated phalloidin and visualized with a confocal laser scanning microscope (cLSM). The muscle system shows the following major organization: 1) circular muscles are totally absent in the body wall; 2) the longitudinal muscles are confined in two ventral and two dorsal thick bundles; 3) additional longitudinal muscles are located in the ventro- and dorsomedian axis; 4) three segmental pairs of ventral oblique muscles elongate into the periphery: the main dorsoventral muscles that run along the body side posterior and dorsally and the anterior and posterior oblique parapodial muscles, which contribute to the ventral chaetal sacs; 5) one segmental pair of dorsal oblique parapodial muscles, contributing to the dorsal chaetal sacs; 6) five to seven small dorsoventral muscles per segment; and 7) complex head and pharyngeal musculature. These results support the belief that absence of circular muscles in the polychaete body wall is much more widely distributed than is currently presumed.  相似文献   

2.
The morphology and ultrastructure of the sedentary polychaete Diplocirrus longisetosus Marenzeller, 1890, collected from the White Sea, were studied using dissection, histological methods, light microscopy, and both scanning and transmission electron microscopy. The prostomium and peristomium carry a pair of palps, eight branchiae, a pair of nuchal organs and two nephridiopores, ciliated folds and the mouth. The prostomium, peristomium and the first chaetigerous segment with all appendages comprise the so-called siphon complex. The mouth leads to a pharyngeal organ that is closed ventrally and composed of a ventral muscle bulb adjoined dorsally by two folds projecting into the pharyngeal lumen. These parts are connected and enveloped by the longitudinal investing muscle. No tongue-like organ is present. The nervous system of the siphonal part comprises the brain, the circum-oesophageal connectives and the ganglia of the peristomium and first chaetigerous segment.  相似文献   

3.
The distribution and configuration of nephridia and gonoducts are described for seven species from seven genera of the interstitial polychaete family Nerillidae. The ciliated nephridia and gonoducts were identified by tubulin staining and examined with a confocal laser scanning microscope. The following species of the seven to nine-segmented nerillids were examined: Leptonerilla prospera, Nerilla antennata (nine segments); Nerillidium mediterraneum, Trochonerilla mobilis, Gen. sp. A (eight segments); and Aristonerilla brevis, Paranerilla limicola (seven segments). Two of the examined species are hermaphroditic (N. mediterraneum and Gen. sp. A). Segmented nephridia can be found from the first to the last segment, with a total of two to five pairs. One to three pairs of segmented spermioducts are present in all species. One pair of gonoducts is found in all species, except for P. limicola, where they are absent. Nephridia vary in length from half to almost twice the length of a segment and may be curled up in loops. In A. brevis and P. limicola the nephridia are discontinuously ciliated. The distribution and configuration of spermioducts and gonoducts are also variable, although to a lesser extent. The spermioduct distribution is generally consistent within genera and therefore of systematic significance. Nephridia and gonoducts are never found together in the same segments, and the results indicate that gonoducts and nephridia have developed from the same anlagen. The distribution patterns of nephridia and gonoducts are discussed with respect to segmentation, systematics, and development.  相似文献   

4.
 The reproductive organs of the simultaneous hermaphrodite Sphaerosyllis hermaphrodita (Syllidae, Exogoninae) were examined by TEM and reconstructed from ultrathin serial sections. Oocytes are produced in the 11–13th chaetigerous segments and then attached to the outer body surface. The male organs comprise a seminal vesicle, testes, sperm ducts and copulatory chaetae. The unpaired seminal vesicle is an uncompartmented cavity above the gut and within the chaetigerous segments 8–10. Its interior is lined with a layer of gland cells that degenerate as spermatogenesis in the vesicle proceeds. The testes are situated ventrolaterally, close to the seminal vesicle in the 9th chaetigerous segment. They contain cells at early stages of spermatogenesis, which are connected to one another by zonulae collares. The testes and seminal vesicle are enclosed in epithelia. Paired sperm ducts run ventrally from about the midline of the body under the seminal vesicle and into the parapodia of the 9th chaetigerous segment. There they open, together with the protonephridia of this segment, to the outside next to the stout copulatory chaeta. Each sperm duct consists of six cells, the luminal surface of which bears microvilli but no cilia. Only in animals with fully differentiated sperm does the small opening of the proximal duct cell in each duct give access to the seminal vesicle. The mode of sperm transfer is discussed. Accepted: 9 December 1996  相似文献   

5.
The alimentary canals of Trochonerilla mobilis and Nerillidium troglochaetoides consist of a ventral pharyngeal organ, oesophagus, stomach, intestine, and rectum. Prominent salivary glands lying lateral to the oesophagus discharge their secretions into the buccal cavity. Ciliated canals, the enteronephridia, embedded in the intestinal epithelium, open into the stomach near its border to the intestine. The ventral pharynx comprises a muscle bulb connected to a tonguelike organ by an investing muscle. The whole alimentary canal is ciliated except for the intestine of T. mobilis. The stomach is built up of absorptive cells and posteriorly also of secretory cells, whereas the intestine consists of only one cell type which is considered to be mainly absorptive. A typical microvillar brush border is present only in the intestine of T. mobilis; elsewhere the density of microvilli is low or the cells have irregular apical processes. In N. troglochaetoides the intestine has a ventral ciliary gutter laterally bordered by cells with highly specialized microvilli. The enteronephridia — 3 in N. troglochaetoides and 13 in T. mobilis — are unicellular tubes up to 130 μm long with a microvillar brush border and other cytological features typical for nephridial ducts. These structures are not known in any other polychaete taxon.  相似文献   

6.
The Zymomonas mobilis gene (sacA) encoding a protein with sucrase activity has been cloned in Escherichia coli and its nucleotide sequence has been determined. Potential ribosome-binding site and promoter sequences were identified in the region upstream of the gene which were homologous to E. coli and Z. mobilis consensus sequences. Extracts from E. coli cells, containing the sacA gene, displayed a sucrose-hydrolyzing activity. However, no transfructosylation activity (exchange reaction or levan formation) could be detected. This sucrase activity was different from that observed with the purified extracellular protein B46 from Z. mobilis. These two proteins showed different electrophoretic mobilities and molecular masses and shared no immunological similarity. Thus, the product of sacA (a polypeptide of 58.4-kDa molecular mass) is a new sucrase from Z. mobilis. The amino acid sequence, deduced from the nucleotide sequence of sacA, showed strong homologies with the sucrases from Bacillus subtilis, Salmonella typhimurium, and Vibrio alginolyticus.  相似文献   

7.
Wild-type Zymomonas mobilis can utilize only three substrates (sucrose, glucose, and fructose) as sole carbon sources, which are largely converted into ethanol and carbon dioxide. Here, we show that although D-mannose is not used as a growth substrate, it is taken up via the glucose uniport system (glucose facilitator protein) with a Vmax similar to that of glucose. Moreover, D-mannose was phosphorylated by a side activity of the resident fructokinase to mannose-6-phosphate. Fructokinase was purified to homogeneity from an frk-recombinant Z. mobilis strain showing a specific activity of 205 +/- 25 U of protein mg-1 with fructose (K(m), 0.75 +/- 0.06 mM) and 17 +/- 2 U mg-1 (relative activity, 8.5%) with mannose (K(m), 0.65 +/- 0.08 mM). However, no phosphomannoseisomerase activity could be detected for Z. mobilis, and this appeared to be the reason for the lack of growth on mannose. Therefore, we introduced the Escherichia coli gene pmi (manA) in Z. mobilis under the control of a lacIq-Ptac system on a broad-host-range plasmid (pZY507; Cmr). Subsequently, in pmi-recombinant cells of Z. mobilis, phosphomannoseisomerase was expressed in a range of from 3 U (without isopropyl-beta-D-thiogalactopyranoside [IPTG]) to 20 U mg-1 of protein in crude extracts (after IPTG induction). Recombinant cells of different Z. mobilis strains utilized mannose (4%) as the sole carbon source with a growth rate of 0.07 h-1, provided that they contained fructokinase activity. When the frk gene was additionally expressed from the same vector, fructokinase activities of as much as 9.7 U mg-1 and growth rates of as much as 0.25 h-1 were detected, compared with 0.34 h-1 on fructose for wild-type Z. mobilis. Selection for growth on mannose was used to monitor plasmid transfer of pZY507pmi from E. coli to Z. mobilis strains and could replace the previous selection for antibiotic resistance.  相似文献   

8.
9.
Zymomonas mobilis ferments sugars to produce ethanol with two biochemically distinct isoenzymes of alcohol dehydrogenase. The adhA gene encoding alcohol dehydrogenase I has now been sequenced and compared with the adhB gene, which encodes the second isoenzyme. The deduced amino acid sequences for these gene products exhibited no apparent homology. Alcohol dehydrogenase I contained 337 amino acids, with a subunit molecular weight of 36,096. Based on comparisons of primary amino acid sequences, this enzyme belongs to the family of zinc alcohol dehydrogenases which have been described primarily in eucaryotes. Nearly all of the 22 strictly conserved amino acids in this group were also conserved in Z. mobilis alcohol dehydrogenase I. Alcohol dehydrogenase I is an abundant protein, although adhA lacked many of the features previously reported in four other highly expressed genes from Z. mobilis. Codon usage in adhA is not highly biased and includes many codons which were unused by pdc, adhB, gap, and pgk. The ribosomal binding region of adhA lacked the canonical Shine-Dalgarno sequence found in the other highly expressed genes from Z. mobilis. Although these features may facilitate the expression of high enzyme levels, they do not appear to be essential for the expression of Z. mobilis adhA.  相似文献   

10.
The five glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase were each purified from extracts of Zymomonas mobilis cells, by using dye-ligand chromatography as the principal step. Two procedures, producing three and two of the enzymes respectively, are described in detail. Z. mobilis glyceraldehyde-phosphate dehydrogenase was found to be similar in most respects to the enzyme from other sources, except for having a slightly larger subunit size. Phosphoglycerate kinase has properties typical for this enzyme; however, it did not show the sulphate activation effects characteristic of this enzyme from most other sources. Phosphoglycerate mutase is a dimer, partially independent of 2,3-bisphosphoglycerate, and has a high specific activity. Enolase was found to be octameric; otherwise its properties were very similar to those of the yeast enzyme. Pyruvate kinase is unusual in being dimeric, and not requiring K+ for activity. It is not allosterically activated by sugar phosphates, having a high activity in the absence of any effectors. Some quantitative differences in the relative amounts of these enzymes, compared with eukaryotic species, are ascribed to the fact that Z. mobilis utilizes the Entner-Doudoroff pathway rather than the more common Embden-Meyerhoff glycolytic route.  相似文献   

11.
A recombinant plasmid was constructed by ligating EcoRI digests of the plasmid cloning vector pBR325 and pZMO2, one of the natural plasmids of Zymomonas mobilis ATCC 10988. This vector, named pDS212 (total size 7.9 kb), which was able to transform Escherichia coli efficiently, was also transferred to Z. mobilis hosts by mobilization during conjugation using the helper plasmid pRK2013. pDS212 was inherited stably in both E. coli and Z. mobilis hosts and could be recovered intact from them. Markers of pBR325 and pRK2013 were also transferred in Z. mobilis but at very low frequencies. Neither pBR325 nor pRK2013 could be recovered intact from the Z. mobilis hosts. It is proposed that expression and stability of pDS212 in Z. mobilis is due to the origin of replication of pZMO2 that it carries, and that it may be used for developing a gene transfer system in Z. mobilis.  相似文献   

12.
The energetics of the anaerobic gram-negative bacterium Zymomonas mobilis, a well-known ethanol-producing organism, is based solely on synthesis of 1 mol of ATP per mol of glucose by the Entner-Doudoroff pathway. When grown in the presence of glucose as a carbon and energy source, Z. mobilis had a cytosolic ATP content of 3.5 to 4 mM. Because of effective pH homeostasis, the components of the proton motive force strongly depended on the external pH. At pH 5.5, i.e., around the optimal pH for growth, the proton motive force was about -135 mV and was composed of a pH gradient of 0.6 pH units (internal pH 6.1) and a membrane potential of about -100 mV. Measurement of these parameters was complicated since ionophores and lipophilic probes were ineffective in this organism. So far, only glucose transport by facilitated diffusion is well characterized for Z. mobilis. We investigated a constitutive secondary glutamate uptake system. Glutamate can be used as a nitrogen source for Z. mobilis. Transport of glutamate at pH 5.5 shows a relatively high Vmax of 40 mumol.min-1.g (dry mass) of cells-1 and a low affinity (Km = 1.05 mM). Glutamate is taken up by a symport with two H+ ions, leading to substantial accumulation in the cytosol at low pH values.  相似文献   

13.
Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses.  相似文献   

14.
Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome.  相似文献   

15.
C K Eddy  O H Smith    K D Noel 《Journal of bacteriology》1988,170(7):3158-3163
A library of Zymomonas mobilis genomic DNA was constructed in the broad-host-range cosmid pLAFR1. The library was mobilized into a variety of Escherichia coli and Pseudomonas putida trp mutants by using the helper plasmid pRK2013. Five Z. mobilis trp genes were identified by the ability to complement the trp mutants. The trpF, trpB, and trpA genes were on one cosmid, while the trpD and trpC genes were on two separate cosmids. The organization of the Z. mobilis trp genes seems to be similar to the organization found in Rhizobium spp., Acinetobacter calcoaceticus, and Pseudomonas acidovorans. The trpF, trpB, and trpA genes appeared to be linked, but they were not closely associated with trpD or trpC genes.  相似文献   

16.
Sucrose utilization by Zymomonas mobilis: formation of a levan   总被引:6,自引:1,他引:5       下载免费PDF全文
1. Molar growth-yield coefficients of Zymomonas mobilis for glucose, fructose, glucose plus fructose, and sucrose are reported. Yield coefficients for sucrose are appreciably lower than those for the equivalent concentrations of glucose plus fructose. 2. Only 2.6% of [U-(14)C]glucose supplied in the growth medium is incorporated into cell substance by Z. mobilis utilizing glucose as the energy source. 3. During growth on sucrose a levan is formed. It has been characterized and shown to resemble other bacterial levans. 4. Levan formation from sucrose could be demonstrated with both washed cell suspensions and cell extracts of Z. mobilis. 5. Sucrose phosphorylase could not be demonstrated in extracts of the organism.  相似文献   

17.
18.
19.
The external and internal structures of adult Neomysis integer mandibles were studied using light and electron microscopy with special reference to the lacinia mobilis, a highly specialized appendage on the gnathal edge of many crustaceans. The right and left lacinia mobilis are equipped with ciliary primary sensory cells revealing that both laciniae are also mechanosensory organs in addition to their mechanical function during mastication. A detailed character analyses indicated that the right lacinia is probably a highly derived sensory seta, whereas two alternative interpretations are considered for the left lacinia; it could be a sensillar appendage equipped with two mechanosensory units, or it could be a movable appendage of the incisor process containing two sensilla deprived of external appendages. The ecdysis of the lacinia mobilis corresponds very well to type I sensillar ecdysis, suggesting classification as a sensillar appendage. These features support a possible homology of the right lacinia mobilis in Peracarida and Decapoda, tracing them to an origin as a member of the setal row. Whether the left lacinia mobilis is a sensillum or an appendage with sensilla cannot be resolved presently.  相似文献   

20.
Phosphoglycerate mutase is an essential glycolytic enzyme for Zymomonas mobilis, catalyzing the reversible interconversion of 3-phosphoglycerate and 2-phosphoglycerate. The pgm gene encoding this enzyme was cloned on a 5.2-kbp DNA fragment and expressed in Escherichia coli. Recombinants were identified by using antibodies directed against purified Z. mobilis phosphoglycerate mutase. The pgm gene contains a canonical ribosome-binding site, a biased pattern of codon usage, a long upstream untranslated region, and four promoters which share sequence homology. Interestingly, adhA and a D-specific 2-hydroxyacid dehydrogenase were found on the same DNA fragment and appear to form a cluster of genes which function in central metabolism. The translated sequence for Z. mobilis pgm was in full agreement with the 40 N-terminal amino acid residues determined by protein sequencing. The primary structure of the translated sequence is highly conserved (52 to 60% identity with other phosphoglycerate mutases) and also shares extensive homology with bisphosphoglycerate mutases (51 to 59% identity). Since Southern blots indicated the presence of only a single copy of pgm in the Z. mobilis chromosome, it is likely that the cloned pgm gene functions to provide both activities. Z. mobilis phosphoglycerate mutase is unusual in that it lacks the flexible tail and lysines at the carboxy terminus which are present in the enzyme isolated from all other organisms examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号