首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Disruption of latent TGF-beta binding protein (LTBP)-4 expression in the mouse leads to abnormal lung development and colorectal cancer. Lung fibroblasts from these mice produced decreased amounts of active TGF-beta, whereas secretion of latent TGF-beta was significantly increased. Expression and secretion of TGF-beta2 and -beta3 increased considerably. These results suggested that TGF-beta activation but not secretion would be severely impaired in LTBP-4 -/- fibroblasts. Microarrays revealed increased expression of bone morphogenic protein (BMP)-4 and decreased expression of its inhibitor gremlin. This finding was accompanied by enhanced expression of BMP-4 target genes, inhibitors of differentiation 1 and 2, and increased deposition of fibronectin-rich extracellular matrix. Accordingly, increased expression of BMP-4 and decreased expression of gremlin were observed in mouse lung. Transfection of LTBP-4 rescued the -/- fibroblast phenotype, while LTBP-1 was inefficient. Treatment with active TGF-beta1 rescued BMP-4 and gremlin expression to wild-type levels. Our results indicate that the lack of LTBP-4-mediated targeting and activation of TGF-beta1 leads to enhanced BMP-4 signaling in mouse lung.  相似文献   

2.
Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other “complete” knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo.  相似文献   

3.
The latent transforming growth factor-beta-binding protein-1 (LTBP-1) belongs to a family of extracellular glycoproteins that includes three additional isoforms (LTBP-2, -3, and -4) and the matrix proteins fibrillin-1 and -2. Originally described as a TGF-beta-masking protein, LTBP-1 is involved both in the sequestration of latent TGF-beta in the extracellular matrix and the regulation of its activation in the extracellular environment. Whereas the expression of LTBP-1 has been analyzed in normal and malignant cells and rodent and human tissues, little is known about LTBP-1 in embryonic development. To address this question, we used murine embryonic stem (ES) cells to analyze the appearance and role of LTBP-1 during ES cell differentiation. In vitro, ES cells aggregate to form embryoid bodies (EBs), which differentiate into multiple cell lineages. We analyzed LTBP-1 gene expression and LTBP-1 fiber appearance with respect to the emergence and distribution of cell types in differentiating EBs. LTBP-1 expression increased during the first 12 d in culture, appeared to remain constant between d 12 and 24, and declined thereafter. By immunostaining, fibrillar LTBP-1 was observed in those regions of the culture containing endothelial, smooth muscle, and epithelial cells. We found that inclusion of a polyclonal antibody to LTBP-1 during EB differentiation suppressed the expression of the endothelial specific genes ICAM-2 and von Willebrand factor and delayed the organization of differentiated endothelial cells into cord-like structures within the growing EBs. The same effect was observed when cultures were treated with either antibodies to TGF-beta or the latency associated peptide, which neutralize TGF-beta. Conversely, the organization of endothelial cells was enhanced by incubation with TGF-beta 1. These results suggest that during differentiation of ES cells LTBP-1 facilitates endothelial cell organization via a TGF-beta-dependent mechanism.  相似文献   

4.
The latent TGF-β binding proteins (LTBP-1 -3, and -4) assist in the secretion and localization of latent TGF-β molecules. Ltbp3(-/-) and Ltbp4S(-/-) mice have distinct phenotypes and only in the lungs does deficiency of either Ltbp-3 or Ltbp-4 cause developmental abnormalities. To determine if these two LTBPs have additional common functions, we generated mice deficient for both Ltbp-3 and Ltbp-4S. The only novel defect in Ltbp3(-/-);Ltbp4S(-/-) mice was an early lethality compared to mice with single mutations. In addition lung abnormalities were exacerbated and the terminal air sac septation defect was more severe in Ltbp3(-/-);Ltbp4S(-/-) mice than in Ltbp4S(-/-) mice. Decreased cellularity of Ltbp3(-/-);Ltbp4S(-/-) lungs was correlated with higher rate of apoptosis in newborn lungs of Ltbp3(-/-);Ltbp4S(-/-) animals compared to WT, Ltbp3(-/-), and Ltbp4S(-/-) mice. No differences in the maturation of the major lung cell types were discerned between the single and double mutant mice. However, the distribution of type 2 cells and myofibroblasts was abnormal, and myofibroblast segregation in some areas might be an indication of early fibrosis. We also observed differences in ECM composition between Ltbp3(-/-);Ltbp4S(-/-) and Ltbp4S(-/-) lungs after birth, reflected in decreased incorporation of fibrillin-1 and -2 in Ltbp3(-/-);Ltbp4S(-/-) matrix. The function of the lungs of Ltbp3(-/-);Ltbp4S(-/-) mice after the first week of life was potentially further compromised by macrophage infiltration, as proteases secreted from macrophages might exacerbate developmental emphysema. Together these data indicate that LTBP-3 and -4 perform partially overlapping functions only in the lungs.  相似文献   

5.
Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.KEY WORDS: Latent transforming growth factor β-binding protein 4, Ltbp-4, Ltbp-4L, Ltbp-4S, Autosomal recessive cutis laxa type 1C, ARCL1C, Elastogenesis, Extracellular matrix, ECM, Fibulin-4, Fibulin-5  相似文献   

6.
Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) is a protein of ill-defined function associated with elastic fibers during elastinogenesis. Although LTBP-2 binds fibrillin-1, fibulin-5, and heparin/heparan sulfate, molecules critical for normal elastic fiber assembly, it does not interact directly with elastin or its precursor, tropoelastin. We investigated the modulating effect of LTBP-2 on two key interactions of tropoelastin during elastinogenesis a) with fibulin-5 and b) with heparan sulfate (using heparin). Firstly, using solid phase assays we showed that LTBP-2 bound fibulin-5 (Kd = 26.47 ± 5.68 nM) with an affinity similar to that of the tropoelastin-fibulin-5 interaction (Kd = 24.66 ± 5.64 nM). Then using a competitive binding assay we showed that LTBP-2 inhibited the tropoelastin-fibulin-5 interaction in a dose dependent manner with almost complete inhibition obtained with 5-fold molar excess of LTBP-2. Interestingly, a fragment of LTBP-2 containing the fibulin-5 binding sequence only partially inhibited the tropoelasin-fibulin-5 interaction suggesting that LTBP-2 was directly blocking only the C-terminal tropoelastin binding site on fibulin-5 and indirectly blocking tropoelastin binding to the N-terminal region. In parallel experiments heparin was shown to have minor inhibitory effects on fibulin-5 interactions with tropoelastin and LTBP-2. However, LTBP-2 was shown to significantly inhibit the binding of heparin to tropoelastin with 50% inhibition achieved with 10 fold molar excess of LTBP-2. Confocal microscopy of fibroblast matrix showed strong co-distribution of LTBP-2 with fibulin-5 and fibrillin-1 and partial co-distribution with heparan sulfate proteoglycans, perlecan and syndecan-4. Also addition of exogenous LTBP-2 to ear cartilage chondrocyte cultures blocked elastinogenesis in a concentration-dependent manner. Overall the results indicate that LTBP-2 may have a negative regulatory role during elastic fiber assembly, perhaps in displacing elastin microassemblies from complexes with fibulin-5 and/or cell surface heparan sulfate proteoglycans.  相似文献   

7.
In mouse embryonic fibroblasts (MEF) lacking dioxin receptor (AhR), high levels of latent transforming growth factor-beta (TGF-beta)-binding protein-1 (LTBP-1) correlated with increased TGF-beta1 activity, an observation suggesting that LTBP-1 could contribute to maintain TGF-beta1 levels. Here, using small interfering RNAs (siRNA), we have first analyzed if LTBP-1 expression affected TGF-beta1 activity in MEF cells. We have then determined how LTBP-1 levels could alter the activity of extracellular proteases known to activate TGF-beta1, and finally, whether protease inhibition could reduce TGF-beta1 activation. LTBP-1 inhibition by siRNA in AhR-/- MEF decreased the amount of active TGF-beta1 and reduced plasminogen activators (PA)/plasmin and elastase activities and thrombospondin-1 (TSP-1) expression, without significantly affecting their mRNA levels. On the contrary, LTBP-1 siRNA restored matrix metalloproteinase-2 (MMP-2) activity in AhR-/- MEF. Interestingly, whereas a TGF-beta1 neutralizing antibody mimicked many of the LTBP-1 siRNA effects on extracellular proteases, addition of recombinant TGF-beta1 protein increased proteases activity over basal levels in AhR-/- MEF. These proteases contributed to TGF-beta activation since their specific inhibitors reduced active TGF-beta levels in these cells. These results suggest that LTBP-1 contributes to TGF-beta1 activation in MEF, possibly by influencing the activities of PA/plasmin, elastase, TSP-1, and MMP-2. TGF-beta1, on the other hand, could be also involved in maintaining the activity of these extracellular proteases. Thus, LTBP-1 appears to play a role in TGF-beta1 activation through a process involving extracellular protease activities, which, in turn, could be affected by TGF-beta1 levels.  相似文献   

8.
9.
Latent transforming growth factor-beta binding proteins are a family of extracellular matrix proteins comprising four isoforms (LTBP-1, -2, -3, -4) with different structures, tissue expression patterns and affinity for TGF-beta. So far, respective knockout models have highlighted some essential functions for LTBP-2, LTBP-3 and LTBP-4, while the physiological significance of LTBP-1 is only superficially known. Here we report for the first time the generation and characterization of a mouse model lacking both the long and short LTBP-1 isoform. Surprisingly, respective mice are viable and fertile. However, detailed X-ray analysis of the skull revealed a modified facial profile. In addition, the gene disruption induces a reduced biological activity of TGF-beta that became evident in an experimental model of hepatic fibrogenesis in which the LTBP-1 knockout animals were less prone to hepatic fibrogenesis. Furthermore, comparative cDNA microarray gene expression profiling of cultured hepatic stellate cells confirmed that respective nulls were less receptive to cellular activation and transdifferentiation into myofibroblasts. Therefore, we conclude that LTBP-1 has essential functions in the control of TGF-beta activation.  相似文献   

10.
Elastic fibers play the principal roles in providing elasticity and integrity to various types of human organs, such as the arteries, lung, and skin. However, the molecular mechanism of elastic fiber assembly that leads to deposition and crosslinking of elastin along microfibrils remains largely unknown. We have previously shown that developing arteries and neural crest EGF-like protein (DANCE) (also designated fibulin-5) is essential for elastogenesis by studying DANCE-deficient mice. Here, we report the identification of latent transforming growth factor-beta-binding protein 2 (LTBP-2), an elastic fiber-associating protein whose function in elastogenesis is not clear, as a DANCE-binding protein. Elastogenesis assays using human skin fibroblasts reveal that fibrillar deposition of DANCE and elastin is largely dependent on fibrillin-1 microfibrils. However, downregulation of LTBP-2 induces fibrillin-1-independent fibrillar deposition of DANCE and elastin. Moreover, recombinant LTBP-2 promotes deposition of DANCE onto fibrillin-1 microfibrils. These results suggest a novel regulatory mechanism of elastic fiber assembly in which LTBP-2 regulates targeting of DANCE on suitable microfibrils to form elastic fibers.  相似文献   

11.
Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin-4-/- mice generated by gene targeting exhibited severe lung and vascular defects including emphysema, artery tortuosity, irregularity, aneurysm, rupture, and resulting hemorrhages. All the homozygous mice died perinatally. The earliest abnormality noted was a uniformly narrowing of the descending aorta in fibulin-4-/- embryos at embryonic day 12.5 (E12.5). Aorta tortuosity and irregularity became noticeable at E15.5. Histological analysis demonstrated that fibulin-4-/- mice do not develop intact elastic fibers but contain irregular elastin aggregates. Electron microscopy revealed that the elastin aggregates are highly unusual in that they contain evenly distributed rod-like filaments, in contrast to the amorphous appearance of normal elastic fibers. Desmosine analysis indicated that elastin cross-links in fibulin-4-/- tissues were largely diminished. However, expression of tropoelastin or lysyl oxidase mRNA was unaffected in fibulin-4-/- mice. In addition, fibulin-4 strongly interacts with tropoelastin and colocalizes with elastic fibers in culture. These results demonstrate that fibulin-4 plays an irreplaceable role in elastogenesis.  相似文献   

12.
Caveolin-1 (cav1) is a 22-kDa membrane protein essential to the formation of small invaginations in the plasma membrane, called caveolae. The cav1 gene is expressed primarily in adherent cells such as endothelial and smooth muscle cells and fibroblasts. Caveolae contain a variety of signaling receptors, and cav1 notably downregulates transforming growth factor (TGF)-beta signal transduction. In pulmonary pathologies such as interstitial fibrosis or emphysema, altered mechanical properties of the lungs are often associated with abnormal ECM deposition. In this study, we examined the physiological functions and the deposition of ECM in cav1(-/-) mice at various ages (1-12 mo). Cav1(-/-) mice lack caveolae and by 3 mo of age have significant reduced lung compliance and increased elastance and airway resistance. Pulmonary extravasation of fluid, as part of the cav1(-/-) mouse phenotype, probably contributed to the alteration of compliance, which was compounded by a progressive increase in deposition of collagen fibrils in airways and parenchyma. We also found that the increased elastance was caused by abundant elastic fiber deposition primarily around airways in cav1(-/-) mice at least 3 mo old. These observed changes in the ECM composition probably also contribute to the increased airway resistance. The higher deposition of collagen and elastic fibers was associated with increased tropoelastin and col1alpha2 and col3alpha1 gene expression in lung tissues, which correlated tightly with increased TGF-beta/Smad signal transduction. Our study illustrates that perturbation of cav1 function may contribute to several pulmonary pathologies as the result of the important role played by cav1, as part of the TGF-beta signaling pathway, in the regulation of the pulmonary ECM.  相似文献   

13.
Extracellular matrix (ECM) keratan sulfate proteoglycans (KSPGs) are core proteins with sulfated polylactosamine side chains (KS). The KSPG core protein keratocan gene (Kera) is expressed almost exclusively in adult vertebrate cornea, but its embryonic expression is little known. Embryonic chick in situ hybridization reveals Kera mRNA expression in corneal endothelium from embryonic day (E) 4.5, Hamburger-Hamilton (HH) 25, in stromal keratocytes from E6.5, HH30, and in iris distal surface cells from E8, HH34. As highly sulfated, antibody I22-positive KS increases extracellularly from posterior to anterior across the stroma, nerves enter and populate only anterior stroma and epithelium. RT-PCR and in situ hybridization demonstrate that developmentally regulated Kera mRNA expression initiates in midbrain and dorsolateral mesenchyme at E1, HH7, then spreads caudally in hindbrain and cranial and trunk mesenchyme flanking the neural tube through E2, HH20. Cranial expression extends ventrally through the developing head, and concentrates in mesenchyme surrounding eye anterior regions and cranial ganglia, and in subepidermal pharyngeal arch mesenchyme by E3.5, HH22. Kera expression in the trunk at E3.5, HH22 and E4.5, HH25, is strong in dorsolateral subepidermal, sclerotomal and nephrogenic mesenchymes, but absent in neural tube, dorsal root ganglia, nerve outgrowths, notochord, heart and gut. Early limb buds express Kera mRNA throughout their mesenchyme, then in restricted proximal and distal mesenchymes. I22-positive KS appears only in notochord in E3.5, HH22 and E4.5, HH25, embryos. Results suggest the hypothesis that keratocan, or keratocan with minimally sulfated KS chains, may play a role in structuring ECM for early embryonic cell and neuronal migrations.  相似文献   

14.
Latent TGF-beta binding proteins (LTBPs) mediate the targeting of latent TGF-beta complexes into ECM structures, which is important for TGF-beta activation and functions. LTBPs-1, -3 and -4 associate with and regulate the bioavailability of TGF-betas. We investigated whether LTBP-3 and -4 are associated with pericellular fibrillar structures of human lung fibroblast ECM, and which of their domains are important for this function. Immunoblotting analyses of isolated insoluble matrices as well as immunofluorescence analyses and confocal microscopy indicated that both LTBP-3 and -4 get assembled into the ECM. Interestingly, LTBP-4 was not detected until 7-10 days of culture and LTBP-3 until 14 days of culture. This was a major difference from the deposition kinetics of LTBP-1, which was detected already within 2 days of culture. Expression analyses by real time RT-PCR indicated that the slow appearance of LTBP-3 and -4 was due to the low expression levels soon after subculture. Recombinant N-terminal fragments of LTBP-3 and -4 bound readily to fibroblast ECM. The C-terminal domain of LTBP-4, but not of LTBP-3, also associated with the matrix structures. The levels of ECM-associated latent complexes of TGF-beta1 increased in parallel with the increased production and deposition of the LTBPs. The amount of active TGF-beta in the conditioned medium decreased during extended culture. Our results suggest that ECM is an important site of deposition also for LTBP-3 and -4 and that the temporal and spatial targeting of the TGF-beta complexes are associated with ECM maturation.  相似文献   

15.
Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.  相似文献   

16.
Latent TGF-beta binding proteins (LTBPs) mediate the targeting of latent TGF-beta complexes into ECM structures, which is important for TGF-beta activation and functions. LTBPs-1, -3 and -4 associate with and regulate the bioavailability of TGF-betas. We investigated whether LTBP-3 and -4 are associated with pericellular fibrillar structures of human lung fibroblast ECM, and which of their domains are important for this function. Immunoblotting analyses of isolated insoluble matrices as well as immunofluorescence analyses and confocal microscopy indicated that both LTBP-3 and -4 get assembled into the ECM. Interestingly, LTBP-4 was not detected until 7-10 days of culture and LTBP-3 until 14 days of culture. This was a major difference from the deposition kinetics of LTBP-1, which was detected already within 2 days of culture. Expression analyses by real time RT-PCR indicated that the slow appearance of LTBP-3 and -4 was due to the low expression levels soon after subculture. Recombinant N-terminal fragments of LTBP-3 and -4 bound readily to fibroblast ECM. The C-terminal domain of LTBP-4, but not of LTBP-3, also associated with the matrix structures. The levels of ECM-associated latent complexes of TGF-beta1 increased in parallel with the increased production and deposition of the LTBPs. The amount of active TGF-beta in the conditioned medium decreased during extended culture. Our results suggest that ECM is an important site of deposition also for LTBP-3 and -4 and that the temporal and spatial targeting of the TGF-beta complexes are associated with ECM maturation.  相似文献   

17.
Germ-line mutations of LKB1 and PTEN tumor suppressor genes underlie the phenotypically related Peutz-Jeghers syndrome (PJS) and Cowden disease (CD), respectively. To analyze possible developmental roles of PTEN and LKB1, we have studied their mRNA expression during mouse embryonic development (E7-17.5) by in situ hybridization. Ubiquitous expression of both genes during early stages (E7-11) became more restricted in later embryonic development (E15-19) where LKB1 and PTEN showed prominent overlapping expression in e.g. gastrointestinal tract and lung. In contrast, LKB1 was selectively expressed at high levels in testis and PTEN was prominently expressed in skin epithelium and underlying mesenchyme. These results indicate that LKB1 and PTEN display largely overlapping expression patterns during embryonic development. Moreover, a high expression of these genes was observed in the tissues and organs affected in PJS and CD patients and in PTEN+/- mice.  相似文献   

18.
19.
Endothelial lipase (EL) is a recently discovered member of the triglyceride-lipase family that is involved in plasma HDL metabolism. In this study, we investigated the putative role of EL in mouse reproduction by studying EL gene expression in mouse embryos and adult reproductive organs. PCR analysis revealed that EL mRNA is expressed in mouse embryos on embryonic day 8.5 (E8.5) to E11.5, but not later in development. In situ hybridization studies on E10.5 whole embryos and embryonic sections showed expression of EL mRNA in multiple tissues, although of varying intensity. High expression was found in the neuroepithelium of the brain and the neural tube, the mesenchymal cells between organs, the optic lens and cup, and the otocyst. In adult mice, EL mRNA expression was high in ovaries from pregnant mice but low in ovaries from nonpregnant mice. EL mRNA was also highly expressed in placenta and testes. In situ hybridization studies demonstrated intense EL mRNA staining of lutein cells in corpora lutei in ovaries, of spermatocytes in the late pachytene and diplotene stages in testes, and of principal cells in epididymis. These results suggest that EL, in addition to its effects on plasma lipoprotein metabolism, plays a role in murine reproduction.  相似文献   

20.
Prolonged mechanical ventilation (MV) with O2-rich gas inhibits lung growth and causes excess, disordered accumulation of lung elastin in preterm infants, often resulting in chronic lung disease (CLD). Using newborn mice, in which alveolarization occurs postnatally, we designed studies to determine how MV with either 40% O2 or air might lead to dysregulated elastin production and impaired lung septation. MV of newborn mice for 8 h with either 40% O2 or air increased lung mRNA for tropoelastin and lysyl oxidase, relative to unventilated controls, without increasing lung expression of genes that regulate elastic fiber assembly (lysyl oxidase-like-1, fibrillin-1, fibrillin-2, fibulin-5, emilin-1). Serine elastase activity in lung increased fourfold after MV with 40% O2, but not with air. We then extended MV with 40% O2 to 24 h and found that lung content of tropoelastin protein doubled, whereas lung content of elastin assembly proteins did not change (lysyl oxidases, fibrillins) or decreased (fibulin-5, emilin-1). Quantitative image analysis of lung sections showed that elastic fiber density increased by 50% after MV for 24 h, with elastin distributed throughout the walls of air spaces, rather than at septal tips, as in control lungs. Dysregulation of elastin was associated with a threefold increase in lung cell apoptosis (TUNEL and caspase-3 assays), which might account for the increased air space size previously reported in this model. Our findings of increased elastin synthesis, coupled with increased elastase activity and reduced lung abundance of proteins that regulate elastic fiber assembly, could explain altered lung elastin deposition, increased apoptosis, and defective septation, as observed in CLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号