首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats fasted overnight were allowed to consume single meals containing 0, 18, or 40% protein or continued to fast; after 2 h, brains and sera were taken and assayed for various amino acids. In general, serum levels of most amino acids were reduced by the 0% protein meal and elevated by the high-protein meal when compared with those associated with fasting conditions. Exceptions were those not diminished by the 0% protein meal (tryptophan, methionine, proline) and those increased (alanine) or decreased (glycine) by all of the test meals. Amino acids exhibiting the broadest normal ranges (estimated by comparing their serum levels after 40% protein with those after 0% protein) were tyrosine, leucine, valine, isoleucine, and proline; serum lysine and histidine, two basic amino acids, also varied more than threefold. Brain levels of lysine, histidine, and some of the large neutral amino acids (LNAAs) also exhibited clear relationships to the protein content of the test meal: those of valine, leucine, and isoleucine were depressed by the 0% protein but increased (compared with 0% protein) when protein was added to the meal: brain tyrosine was increased by all of the test meals in proportion to their protein contents; tryptophan, phenylalanine, and glutamate were increased after the 0% protein meal but not by protein-containing meals; brain lysine, histidine, and methionine were increased after the high-protein meal, and brain alanine was increased slightly by all of the meals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Spatial and temporal regulation of Ca(2+) signaling require the assembly of multiprotein complexes linking molecules involved in Ca(2+) influx, sensing, buffering, and extrusion. Recent evidence indicates that plasma membrane Ca(2+) ATPases (PMCAs) participate in the control of local Ca(2+) fluxes, but the mechanism of multiprotein complex formation of specific PMCAs is poorly understood. Using the PMCA2b COOH-terminal tail as bait in a yeast two-hybrid screen, we identified the PSD-95, Dlg, ZO-1 (PDZ) domain-containing Na(+)/H(+) exchanger regulatory factor-2 (NHERF2) as an interacting partner. Protein pull-down and coimmunoprecipitation experiments using recombinant PMCA2b and PMCA4b as well as NHERF1 and NHERF2 showed that the interaction of PMCA2b with NHERF2 was specific and selective. PMCA4b did not interact with either of the NHERFs, and PMCA2b selectively preferred NHERF2 over NHERF1. Green fluorescent protein-tagged PMCA2b was expressed at the apical membrane in Madin-Darby canine kidney epithelial cells, where it colocalized with apically targeted NHERF2. Our study identifies NHERF2 as the first specific PDZ partner for PMCA2b not shared with PMCA4b, and demonstrates that PMCA splice forms differing only minimally in their COOH-terminal residues interact with unique PDZ proteins. NHERFs have been implicated in the targeting, retention and regulation of membrane proteins including the beta(2)-adrenergic receptor, cystic fibrosis transmembrane conductance regulator, and Trp4 Ca(2+) channel, and NHERF2 is now shown to also interact with PMCA2b. This interaction may allow the functional assembly of PMCA2b in a multiprotein Ca(2+) signaling complex, facilitating integrated cross-talk between local Ca(2+) influx and efflux.  相似文献   

3.
An approach to proteomic analysis that combines bioorthogonal noncanonical amino acid tagging (BONCAT) and pulsed stable isotope labeling with amino acids in cell culture (pSILAC) provides accurate quantitative information about rates of cellular protein synthesis on time scales of minutes. The method is capable of quantifying 1400 proteins produced by HeLa cells during a 30 min interval, a time scale that is inaccessible to isotope labeling techniques alone. Potential artifacts in protein quantification can be reduced to insignificant levels by limiting the extent of noncanonical amino acid tagging. We find no evidence for artifacts in protein identification in experiments that combine the BONCAT and pSILAC methods.Methods for the analysis of cellular protein synthesis should be quantitative and fast. In 2006, Dieterich and coworkers introduced a proteomics discovery tool called bioorthogonal noncanonical amino acid tagging (BONCAT),1 in which noncanonical amino acids (ncAAs) with bioorthogonal functional groups (e.g. azides or alkynes) are used as metabolic labels to distinguish new proteins from old (1, 2). Labeled proteins can be conjugated to fluorescent reporters for visualization or affinity tags for purification and subsequent identification by mass spectrometry (3). Because the ncAA probe can be introduced to cells in a well-defined “pulse,” affinity purification removes pre-existing proteins and provides both reduced sample complexity and excellent time resolution.The methionine (Met) surrogate l-azidohomoalanine (Aha) has become standard in the application of BONCAT methodologies. Using Aha and fluorescent tagging, Tcherkezian et al. observed co-localization of the DCC receptor with sites of protein synthesis, providing support for the role of netrin as a stimulant of extranuclear protein production in neurons (4). Combining Aha labeling and 2D gel electrophoresis, Yoon et al. discovered that the protein lamin B2 is synthesized in axons and crucial to mitochondrial function and axon maintenance in Xenopus retinal glial cells (5). Aha has also been used to study histone turnover (6), protein palmitoylation (7), pathogen amino acid uptake (8), inflammatory response (9), and local translation in neuronal dendrites and axons (10). These labeling techniques have been expanded to tissue and animal culture, where Aha has been used to profile protein synthesis in rat hippocampal brain slices (11, 12) and zebrafish embryos (13).The development of fast, reliable, quantitative BONCAT methods will enable new insights into proteome dynamics in response to biological stimuli. Recent work by Eichelbaum et al. combined Aha labeling with stable isotope labeling to measure lipopolysaccharide-stimulated protein secretion by macrophages (14). Using similar approaches, Somasekharan et al. identified a set of proteins that are translationally regulated by the Y-box binding protein-1 (YB-1) in TC-32 Ewing sarcoma cells (15), and Howden et al. monitored changes in protein expression following stimulation of primary T cells with phorbol 12-myristate 13-acetate and ionomycin (16).A concern that arises in the use of Aha (as it does for all chemical probes of biological processes) is that the protocols used for Aha labeling might perturb cellular protein synthesis. The development of ncAAs as reliable analytic tools hinges on our ability to understand and minimize such unintended effects. For Aha, previous work has shown that protein labeling does not visibly alter cellular morphology in dissociated hippocampal neurons or HEK293 cells, and 1D gels reveal no discrepancies between the proteomes of Aha- and Met-treated cells (1). These experiments, however, offer only coarse measures of effects on protein synthesis, and as Aha labeling is frequently coupled to mass spectrometry-based proteomic analysis, the biological effects of Aha treatment must be investigated with equivalent sensitivity and resolution.Here we report sound methods for fast, reliable measurement of proteome dynamics via noncanonical amino acid tagging. First, we use the quantitative proteomics technique pulsed stable isotope labeling with amino acids in cell culture (pSILAC) to investigate potential unintended effects of Aha labeling on protein abundance in HeLa cell cultures, and we develop a strategy for minimizing these effects. Second, we show that a combined BONCAT-pSILAC approach, capable of both enriching and quantifying newly synthesized proteins, yields detailed proteomic information on time scales that are inaccessible to isotope labeling techniques alone.  相似文献   

4.
Common fragile sites (CFSs) are specific chromosome regions that exhibit an increased frequency of breaks when cells are exposed to a DNA-replication inhibitor such as aphidicolin. PARK2 and DMD, the causative genes for autosomal-recessive juvenile Parkinsonism and Duchenne and Becker muscular dystrophy, respectively, are two very large genes that are located within aphidicolin-induced CFSs. Gross rearrangements within these two genes are frequently observed as the causative mutations for these diseases, and similar alterations within the large fragile sites that surround these genes are frequently observed in cancer cells. To elucidate the molecular mechanisms underlying this fragility, we performed a custom-designed high-density comparative genomic hybridization analysis to determine the junction sequences of approximately 500 breakpoints in germ cell lines and cancer cell lines involving PARK2 or DMD. The sequence signatures where these breakpoints occur share some similar features both in germ cell lines and in cancer cell lines. Detailed analyses of these structures revealed that microhomologies are predominantly involved in rearrangement processes. Furthermore, breakpoint-clustering regions coincide with the latest-replicating region and with large nuclear-lamina-associated domains and are flanked by the highest-flexibility peaks and R/G band boundaries, suggesting that factors affecting replication timing collectively contribute to the vulnerability for rearrangement in both germ cell and somatic cell lines.  相似文献   

5.
The production of infectious virus, hemagglutinin, and viral (V) antigens and the changes in ribonucleoprotein (RNP) and lipoprotein metabolism have been studied in four sublines of HeLa cells infected with the PR8 and a PR8 recombinant strain of influenza virus. Much greater amounts of infectious virus and much less hemagglutinin were produced by the PR8 recombinant than by PR8 virus in all four cell lines. Different amounts of infectious virus per infected cell were produced by the recombinant in the four cell lines, whereas very little infectious virus was produced by the PR8 strain in any of the HeLa cells. In all cell lines infected with both strains of virus, "soluble" (S) antigen appeared early in the nucleolus. In cells infected with PR8 recombinant, S antigen subsequently filled the nucleus and later appeared in the cytoplasm. In most cells infected with PR8 virus, nuclear S antigen did not fuse to fill the nucleus, and S antigen was not detected in the cytoplasm. V antigen was observed in the cytoplasm of cells when diffuse nuclear S antigen had formed. The earliest and most frequent change in the RNP of the infected cells was a decrease in stainable RNP spherules (nucleolini) in the nucleolus. This was followed, in a smaller proportion of cells, by the appearance of nuclear and cytoplasmic inclusions containing RNP. There was a characteristic difference in the morphology of the cytoplasmic inclusions produced by the two strains of virus, but the same types of inclusions were observed in all four HeLa lines. A significant increase in lipoprotein was observed only in association with the cytoplasmic inclusions produced by PR8 recombinant virus. There was a striking difference in the proportion of cells with cytochemical changes in RNP in the four cell lines. A significant cytopathic effect (CPE) was observed only in three virus-cell systems in which a high proportion of cells exhibited changes in nucleolinar RNP. It is suggested that disappearance of RNP in the nucleolini may be an indication of shutdown of host ribonucleic acid synthesis and that this in turn results in a CPE. Virus infection resulted in a C-mitotic block that was followed by karyorrhexis. Infection of the cell did not always result in the production of infectious virus, in changes in the RNP of the nucleolini, in the development of nuclear or cytoplasmic RNP inclusions, or in CPE. The results suggest that production of infectious virus, shutdown of cellular RNP synthesis with accompanying CPE, and the formation of inclusions appear to be independent events.  相似文献   

6.
7.
The biochemical and pharmacological properties of the (Na+,K+)-ATPase have been studied at different stages of chick embryonic heart development in ovo and under cell culture conditions. The results show the existence of two families of ouabain binding sites: a low affinity binding site with a dissociation constant (Kd) of 2-6 microM for the ouabain-receptor complex and a high affinity binding site with a Kd of 26-48 nM. Levels of high affinity sites gradually decrease during cardiac ontogenesis to reach a plateau near 14 days of development. Conversely the number of low affinity binding sites is essentially invariant between 5 days and hatching. Cultured cardiac cells display the same binding characteristics as those found in intact ventricles. Inhibition of 86Rb+ uptake in cultured cardiac cells and an increase in intracellular Na+ concentration, due to (Na+,K+)-ATPase blockade, occur in a ouabain concentration range corresponding to the saturation of the low affinity ouabain site. Ouabain-stimulated 45Ca2+ uptake increases in parallel with the increase in the intracellular Na+ concentration. It is suppressed in Na+-free medium or when Na+ is replaced by Li+ suggesting that the increase is due to the indirect activation of the Na+/Ca2+ exchange system in the plasma membrane. Dose-response curves for the inotropic effects of ouabain on papillary muscle and on ventricular cells in culture indicate that the development of the cardiotonic properties is parallel to the saturation of the low affinity binding site for ouabain. Therefore, inhibition of the cardiac (Na+,K+)-ATPase corresponding to low affinity ouabain binding sites seems to be responsible for both the cardiotonic and cardiotoxic effects of the drug.  相似文献   

8.
研究了渗透胁迫和盐胁迫下一年生胡杨(Populus euphratica Oliv.)幼苗的木质部汁液脱落酸(ABA)、离子浓度及叶片气体交换的变化.PEG 6000 (溶液渗透势 -0.24 MPa)、50 mmol/L含钠离子的盐溶液 (NaNO3∶NaHCO3∶NaH2PO4=5∶4∶1, pH 6.8, 渗透势 -0.24 MPa)和50 mmol/L含氯离子的盐溶液 (KCl∶NH4Cl=1∶1, 渗透势 -0.24 MPa) 3种处理都显著降低了苗木的净光合速率(Pn)和蒸腾速率(TRN),但盐处理植株的TRN高于PEG处理的苗木.木质部汁液ABA的浓度在PEG处理后1 h达到峰值,之后开始下降,降到对照水平后又逐渐回升.盐处理苗木的ABA也是在处理开始后就迅速升高,但之后ABA水平明显高于PEG处理的植株.结果显示,渗透胁迫和离子胁迫都能提高胡杨木质部汁液ABA的浓度: 盐处理开始后ABA的迅速升高主要是渗透胁迫的作用,而此后离子胁迫(Na+和Cl-)对ABA水平的提高具有重要作用.钠盐处理对胡杨净光合速率和蒸腾速率的抑制作用高于氯盐处理,其木质部汁液中较高水平的ABA和盐离子(Na+和Cl-)是可能的原因.钠盐处理苗木的盐离子(Na+和Cl-)水平高于氯盐处理,主要是由以下两方面的原因所致: (1)细胞膜上的Ca2+被Na+所取代, 增加了膜的透性; (2)胡杨根细胞液泡对Na+的区隔化能力较弱(与区隔Cl-相比).另外,盐胁迫下胡杨能保持对营养元素K+、Ca2+和Mg2+的吸收,这也是其抗盐性强的重要原因.  相似文献   

9.
The Na(+)-F(1)F(0)-ATPase operon of Acetobacterium woodii was recently shown to contain, among eleven atp genes, those genes that encode subunit a and b, a gene encoding a 16-kDa proteolipid (subunit c(1)), and two genes encoding 8-kDa proteolipids (subunits c(2) and c(3)). Because subunits a, b, and c(1) were not found in previous enzyme preparations, we re-determined the subunit composition of the enzyme. The genes were overproduced, and specific antibodies were raised. Western blots revealed that subunits a, b, and c(1) are produced and localized in the cytoplasmic membrane. Membrane protein complexes were solubilized by dodecylmaltoside and separated by blue native-polyacrylamide gel electrophoresis, and the ATPase subunits were resolved by SDS-polyacrylamide gel electrophoresis. N-terminal sequence analyses revealed the presence of subunits a, c(2), c(3), b, delta, alpha, gamma, beta, and epsilon. Biochemical and immunological analyses revealed that subunits c(1), c(2), and c(3) are all part of the c-oligomer, the first of a F(1)F(0)-ATPase that contains 8- and 16-kDa proteolipids.  相似文献   

10.
11.
The effects of pronase and/or SDS pretreatment on Na+-Ca2+ exchange were studied in rat brain microsomal membranes. Pronase in concentrations that liberated 11% of the membrane proteins stimulated the Na+-Ca2+ exchange. When about 24% of the proteins were split off, the results did not differ from those in control experiments. When 40% or more of the proteins were solubilized, Na+-Ca2+ exchange was abolished. Pronase pretreatment did not change the Km value for Ca2+, it increased Vmax only. The effect of pronase was partially blocked by Trasylol. Neuraminidase had no effect on Na+-Ca2+ exchange. SDS pretreatment of the membranes inhibited Na+-Ca2+ exchange: when 25% of membrane proteins were solubilized with SDS, the Na+-Ca2+ exchange was abolished while the same amount of proteins split off with pronase did not change the rate of Na+-Ca2+ exchange as related to membrane proteins. Ischaemia lasting for 2-4 h or complete hypoxia which should stimulate endogenous proteinases due to the rise of free intracellular calcium did not influence the Na+-Ca2+ exchange. A decrease in Na+-Ca2+ exchange rate was observed when proteins with molecular weight between 45,000 and 20,000 were split off from the membranes. It is assumed that the Na+-Ca2+ antiporter is a polypeptide from the group of proteins within the above molecular weights.  相似文献   

12.
Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms.  相似文献   

13.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

14.
15.
16.
In Dictyostelium discoideum, the initial differentiation of cells is regulated by the phase of the cell cycle at starvation. Cells in S and early G2 (or with a low DNA content) have relatively high levels of cellular Ca2+ and display a prestalk tendency after starvation, whereas cells in mid to late G2 (or with a high DNA content) have relatively low levels of Ca2+ and display a prespore tendency. We found that there is a correlation between cytosolic Ca2+ and cell cycle phase, with high Ca2+ levels being restricted to cells in the S and early G2 phases. As expected on the basis of this correlation, cell cycle inhibitors influence the proportions of amoebae containing high or low Ca2+. However, it has been reported that in the rtoA mutant, which upon differentiation gives rise to many more stalk cells than spores (compared to the wild type), initial cell-type choice is independent of cell cycle phase at starvation. In contrast to the wild type, a disproportionately large fraction of rtoA amoebae fall into the high Ca2+ class, possibly due to an altered ability of this mutant to transport Ca2+.  相似文献   

17.
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.  相似文献   

18.
Sod2, is a Na(+)/H(+) exchanger present on the cytoplasmic membrane of the fission yeast Schizosaccharomyces pombe. It expels toxic Na(+) from the cytosol. Sod2 was expressed in Saccharomyces cerevisiae with a C-terminal histidine tag under control of the GAL1 promoter. Western blots using anti-V5 antibodies identified the tagged protein. Solubilization of the protein was by n-dodecyl beta-D: -maltoside. Immobilized Ni-ion column affinity chromatography partially purified the protein at a yield of ~240 microg per liter of culture. Sod2 was present as a 40-kDa and an 80-kDa protein, however, it co-purified with a number of other proteins. Cross linking of sod2 with N,N'-(o-phenylene)dimaleimide showed that sod2 was present in association with a number of other proteins as a larger molecular weight complex. Partially purified sod2 protein was reconstituted in proteoliposomes and functionally active. Our results suggest that the sod2 protein associates with a number of other proteins and can be expressed in S. cerevisiae in active form.  相似文献   

19.
《The Journal of cell biology》1990,111(6):2375-2383
Purification of pig kidney Na+,K(+)-ATPase at low concentrations of SDS (0.5%) allowed copurification of several peripheral membrane proteins. Some of these associated proteins were identified as components of the membrane cytoskeleton. Here we describe two novel globular proteins of of Mr 77,000 (pasin 1) and Mr 73,000 (pasin 2) which copurify and coimmunoprecipitate with Na+,K(+)-ATPase and can be stripped off Na+,K(+)-ATPase microsomes by 1 M KCl. Pasin 1 and pasin 2 were detected by immunoblot analysis in various cells and tissues including erythrocytes and platelets. Immunostaining revealed colocalization of pasin 1 and Na+,K(+)-ATPase along the basolateral cell surface of epithelial cells of kidney tubules and parotid striated ducts (titers of pasin 2 antibodies were too weak for immunocytochemistry). In erythrocytes, pasin 1 and pasin 2 are minor components bound to the cytoplasmic surface of the plasma membrane. Pasin 1 showed the same electrophoretic mobility as protein 4.1b. However, both proteins have different isoelectric points (pasin 1, pI 6; protein 4.1, pI 7), different chymotryptic fragments, and are immunologically unrelated. Short pieces of sequence obtained from pasin 1 and pasin 2 were not found in any other known protein sequence. The occurrence of pasin 1 and pasin 2 in diverse cells and tissues and their association with Na+,K(+)-ATPase suggests a general role of these proteins in Na+,K(+)- ATPase function.  相似文献   

20.
The comparative analysis of the kinetic properties of ouabain-sensitive Na+, K+ -ATPase activity of saponin-perforated blood lymphocytes of donors and patients with rheumatoid arthritis (RA) and ankylosing spondyloarthritis (AS) was carried out. When analyzing the alterations in hydrolase activity of the examined enzyme it was shown that in the blood lymphocytes of patients with RA and AS the primary active transport of Na+ and K+ ions is less intensive in comparison with practically healthy donors, but it is characterized by almost the same capacity as in donors. The affinity constant of Na+, K+ -ATPase for ATP in the blood lymphocytes in patients with RA and AS is greater 3.1 and 2.5 times, respectively, in comparison with healthy donor. It was found that in conditions of rheumatic pathology in immunocompetent cells the inhibition of Na+, K+ -ATPase activity is not related to the reduction of maximum reaction rate, but is related to the decrease of Na+, K+ -ATPase affinity to ATP. However, Mg2+ -binding center of Na+, K+ -ATPase in patients with RA and AS remains native. It was identified that the affinity constant of Na+, K+ -ATPase to Na+ ions in the blood lymphocytes of patients with RA and AS is 2.75 times lower than its value in healthy donors. Na+, K+ -ATPase of the blood lymphocytes of patients with RA and AS retains its native receptor properties and sensitivity to ouabain does not change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号