首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bcl10 and MALT1, products of distinct chromosomal translocations in mucosa-associated lymphoid tissue lymphoma, cooperate in activating NF-kappaB. Mice lacking Bcl10 demonstrate severe immunodeficiency associated with failure of lymphocytes to activate nuclear factor kappaB (NF-kappaB) in response to antigen receptor stimulation and protein kinase C activation. We characterize Bimp1, a new signaling protein that binds Bcl10 and activates NF-kappaB. Bimp1-mediated NF-kappaB activation requires Bcl10 and IkappaB kinases, indicating that Bimp1 acts upstream of these mediators. Bimp1, Bcl10, and MALT1 form a ternary complex, with Bcl10 bridging the Bimp1/MALT1 interaction. A dominant negative Bimp1 mutant inhibits NF-kappaB activation by anti-CD3 ligation, phorbol ester, and protein kinase C expression. These results suggest that Bimp1 links surface receptor stimulation and protein kinase C activation to Bcl10/MALT1, thus leading to NF-kappaB induction.  相似文献   

4.
Evidence that glutathione participates in the induction of a stress protein   总被引:1,自引:0,他引:1  
A step in the induction of a 30- to 35-kD stress protein may be the reaction of chemical inducers with glutathione. Effective inducers are sulfhydryl reagents. Further, a comparison of three reagents, 1-chloro-2,4-dinitrobenzene, diethylmaleate, and N-ethylmaleimide, indicates that the first two, which have considerable selectivity for glutathione, are strong inducers of the stress protein but the third, which is much more reactive with protein sulfhydryls, is either a poor or ineffective inducer. A decrease in cellular glutathione does not appear to be inductive, however. An increase in modified glutathione remains as a possible signal for the induction of this stress protein.  相似文献   

5.
Patterning the neural plate in vertebrates depends on complex interactions between a variety of secreted growth factors. Here we describe a novel secreted factor in zebrafish, named mdk2, related to the midkine family of heparin-binding growth factors that is involved in posterior neural development. mdk2 is expressed shortly after the onset of gastrulation in the presumptive neural plate cells of the epiblast, and this expression is enhanced by exogenous retinoic acid. Ectopic expression of mdk2 enhances neural crest cell fates at the lateral edges of the caudal neural plate, concomitant with a repression of anterior structures and mesendodermal and ectodermal markers. Reciprocally, ectopic expression of a dominant negative mdk2 results in severe deficiencies of structures posterior to the midbrain-hindbrain boundary, with negligible effects on anterior structures. In these embryos, the expression of hindbrain and neural crest markers is strongly reduced, and the formation of posterior primary moto- and sensory neurons is blocked. Analyses in mutant zebrafish embryos shows that expression of mdk2 is independent of FGF8 and nodal-related-1 signaling, but is under negative control of BMP signaling. These data support the hypothesis that mdk2 participates in posterior neural development in zebrafish.  相似文献   

6.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappaB activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified a novel protein designated as NKAP. Although NKAP interacts with RIP in yeast, NKAP does not interact with RIP in mammalian cells in co-immunoprecipitation experiments. When overexpressed in 293 cells, NKAP activated NF-kappaB in a dose-dependent manner. Moreover, down-regulation of NKAP by antisense RNA significantly inhibited TNF- and IL-1-induced NF-kappaB activation. Immunofluorescent staining indicated that NKAP was localized in the nucleus. Our findings suggest that NKAP is a novel nuclear regulator of TNF- and IL-1-induced NF-kappaB activation.  相似文献   

7.
GP73, a novel Golgi-localized protein upregulated by viral infection   总被引:16,自引:0,他引:16  
  相似文献   

8.
9.
10.
11.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

12.
Spectrin repeat (SR)-containing proteins are important for regulation of integrity of biomembranes, not only the plasma membrane but also those of intracellular organelles, such as the Golgi, nucleus, endo/lysosomes, and synaptic vesicles. We identified a novel SR-containing protein, named GSRP-56 (Golgi-localized SR-containing protein-56), by a yeast two-hybrid method, using a member of the transient receptor potential channel family, TRPV2, as bait. GSRP-56 is an isoform derived from a giant SR-containing protein, Syne-1 (synaptic nuclear envelope protein-1, also referred to as Nesprin-1 or Enaptin), predicted to be produced by alternative splicing. Immunological analysis demonstrated that this isoform is a 56-kDa protein, which is localized predominantly in the Golgi apparatus in cardiomyocytes and C2C12 myoblasts/myotubes, and we found that two SR domains were required both for Golgi targeting and for interaction with TRPV2. Interestingly, overexpression of GSRP-56 resulted in a morphological change in the Golgi structure, characterized by its enlargement of cis-Golgi marker antibody-staining area, which would result partly from fragmentation of Golgi membranes. Our findings indicate that GSRP-56 is a novel, particularly small Golgi-localized member of the spectrin family, which possibly play a role in maintenance of the Golgi structure.  相似文献   

13.
In this study, we investigated the effects of zinc L-carnosine, an anti-ulcer drug, on acetic acid-induced colonic mucosal injury and the correlation of these effects with expression of 72-kDa heat shock proteins (HSP72) and nuclear factor kappa B (NF-kappaB) activation in rat colonic mucosa in vivo. After intrarectal administration of zinc L-carnosine, the rats received intrarectal infusion of 5% acetic acid (1 ml). The colonic mucosal damage was evaluated by macroscopic assessments 24 h after the intrarectal infusion of acetic acid. Expression of HSP72 in rat colonic mucosa was evaluated by Western blot analysis before and after zinc L-carnosine administration. NF-kappaB activation was evaluated by electrophoretic mobility shift assays (EMSA). Zinc L-carnosine inhibited visible damage in rat colonic mucosa by acetic acid. Expression of HSP72 was significantly increased at 6 h after zinc L-carnosine administration. Furthermore, NF-kappaB activation in colonic mucosa was suppressed 6 h after zinc L-carnosine treatment. These results suggested that zinc L-carnosine protects the colonic mucosa against acetic acid by induction of HSP72 and suppression of NF-kappaB activation and zinc L-carnosine may be a novel therapeutic agent for the therapy of inflammatory bowel disease.  相似文献   

14.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive posttranslational modifications and remodeling, including the addition and subsequent removal of phosphoethanolamine (EtNP) from mannose 1 (Man1) and mannose 2 (Man2) of the glycan moiety. Removal of EtNP from Man1 is catalyzed by Cdc1p, an event that has previously been considered to occur in the endoplasmic reticulum (ER). We establish that Cdc1p is in fact a cis/medial Golgi membrane protein that relies on the COPI coatomer for its retention in this organelle. We also determine that Cdc1p does not cycle between the Golgi and the ER, and consistent with this finding, when expressed at endogenous levels ER-localized Cdc1p-HDEL is unable to support the growth of cdc1Δ cells. Our cdc1 temperature-sensitive alleles are defective in the transport of a prototypical GPI-AP-Gas1p to the cell surface, a finding we posit reveals a novel Golgi-localized quality control warrant. Thus, yeast cells scrutinize GPI-APs in the ER and also in the Golgi, where removal of EtNP from Man2 (via Ted1p in the ER) and from Man1 (by Cdc1p in the Golgi) functions as a quality assurance signal.  相似文献   

15.
The scrapie agent protein (Sp33-37 or PrPSc) is the disease-associated isoform of a normal cellular membrane protein (Cp33-37 or PrPC) of unknown function. We report that normal human lymphocytes and lymphoid cell lines, but not erythrocytes or granulocytes, express PrPC mRNA and protein. PrPC is detectable on the surface of lymphocytes; the surface immunoreactivity is sensitive to phosphatidylinositol-specific phospholipase C, indicating glycosyl-phosphatidylinositol membrane anchorage. Lymphocyte PrPC surface abundance is increased by cell activation, and polyclonal antibodies to PrPC suppress mitogen-induced activation. We conclude that PrPC is a lymphocyte surface molecule that may participate in cell activation.  相似文献   

16.
Ultraviolet (UV) exerts its biological activities by activating downstream effectors, including NF-kappaB, JNK, and caspases. Activation of JNK is required for UV-induced apoptosis. It is unknown whether any crosstalk occurs between NF-kappaB and JNK in response to UV and, if so, how it affects UV killing. Here we report that NF-kappaB promotes UV-induced JNK activation, thereby contributing to UV-induced apoptosis. UV-induced JNK activation is impaired in RelA/NF-kappaB null murine embryonic fibroblasts. In resting cells, the preexisting nuclear RelA has already been recruited to PKCdelta promoter and is essential for its expression. UV-induced rapid and robust activation of JNK requires PKCdelta, which augments JNK phosphorylation-activation by its upstream kinases. The RelA/NF-kappaB-PKCdelta-JNK pathway is critical for UV-induced apoptosis, as it induces the immediate expression of the proapoptotic Fas ligand. Thus, our results demonstrate that RelA/NF-kappaB via PKCdelta positively regulates UV-induced JNK activation and provide a mechanism by which NF-kappaB promotes UV-induced apoptosis.  相似文献   

17.
18.
19.
Nomura Y 《Life sciences》2001,68(15):1695-1701
This review will discuss the recent literature on the molecular mechanism of NF-kappaB activation, with special focus on IkappaB alpha dynamism involved in iNOS- and chemokine-induction in glial cells. NF-kappaB, a heterotrimer composed of p50, p65 (Rel A) and IkappaB alpha, has been shown to be activated by elimination of the regulatory subunit IkappaB alpha from the heterotrimer. The elimination of IkappaB alpha (formation of active NF-kappaB, p50-p65) is due to phosplorylation of serines 32 and 36 of IkappaB alpha, followed by polyubiquitination and 26S proteasomal degradation of IkappaB alpha. Experiments using stable clones of rat C6 glioma cells transfected with dominant negative IkappaB alpha (serines 32 and 36 replaced by alanine) suggest that NF-kappaB activation (phosphorylation of IkappaB alpha) is involved in LPS/IFNgamma- or IL-1beta/IFNgamma-induced iNOS expression. Furthermore, the time courses of phosphorylation, ubiquitination of IkappaB alpha and proteasome activity after IL-1beta treatment also suggest that 26S proteasomal degradation of IkappaB alpha is more crucial for chemokine expression in glial cells.  相似文献   

20.
Pyrrolidine dithiocarbamate (PDTC) suppresses NF-kappaB activity and exhibits cytotoxic effects in bovine cerebral endothelial cells (BCECs), and we have previously reported that these PDTC effects were accompanied by an increase in intracellular zinc levels. To further explore the role of zinc in the modulation of NF-kappaB activation, we studied the effect of pyrithione, a zinc ionophore, on NF-kappaB activation in BCECs. Pyrithione inhibited NF-kappaB activity in a time- and dose-dependent manner. Ca-EDTA, but not Zn-EDTA, prevented pyrithione inhibition of NF-kappaB activity. Pyrithione increased the intracellular zinc level within 15 min. This effect was also abolished by Ca-EDTA, but not by Zn-EDTA. The potency of pyrithione on NF-kappaB inhibition and zinc influx was approximately one order of magnitude more potent than PDTC. These findings establish the regulatory role of intracellular zinc levels on NF-kappaB activity in BCECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号