首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to predict curvature of DNA fragments, we previously developed a computer program for simply calculating a vectorial sum of all individual roll, tilt and twist wedge angles between the nearest base pairs for a given DNA fragment [Lee et al., (1991)]. Now, a new program, called Z-curve, was developed to calculate three-dimensional coordinates of the helical center of each base pair along the DNA, using helical axis deviations from B-form DNA by wedge angles. The output file of the new program was designed to become an input file for a graphics program, Insight II. Thus, we were able to obtain three-dimensional graphic presentations of DNA helical axis curvatures of any length. It visualized spatial details of the DNA curvature, where and how much it curves, and to which direction. It also allowed calculation of the three-dimensional distance between two ends of a DNA fragment, which could provide a measure of its curvature. Here, three DNA fragments, both curved and straight, were subjected to the Z-curve and Insight II programs. The results showed that their curvature details could be visualized to the level of the base pair, whether the DNA fragments contained an oligo(A) track or not. Their estimated curvatures were consistent with the experimental results of permutation gel mobility assay.  相似文献   

3.
The analysis of the sites which are cleaved constitutively and preferentially by eukaryotic DNA topoisomerase I on two intrinsically curved DNAs reveals the conformational features that provoke the cleavage reaction on the curve-inducing sequence elements in the absence of supercoiling. This analysis is based on the observation (Caserta et al. (1989) Nucleic Acids Res. 17, 8521-8532 and (1990) Biochemistry 29, 8152-8157) that the reaction of eukaryotic DNA topoisomerase I occurs on two types of DNA sites: sites S (Supercoiled induced) and sites C (Constitutive, whose presence is topology-independent). We report that sites C are abundant on the intrinsically curved DNAs analyzed. The DNAs studied were two intrinsically curved segments of different origin: the Crithidia fasciculata kinetoplast DNA and the bent-containing domain B of the Saccharomyces cerevisiae ARS1. On these DNA segments DNA topoisomerase I cleaves at the junctions between the poly(A) tracts and mixed-sequence DNA. Analysis of the conformation of the double helix around the cleavage sites has revealed that the reaction occurs in correspondence of a defined DNA conformational motif. This motif is described by the set of Eulerian angular values that define the axial path of DNA (helical twist, deflection angle, direction) and of the orthogonal components of wedge (roll and tilt).  相似文献   

4.
CURVATURE: software for the analysis of curved DNA   总被引:10,自引:1,他引:9  
Software is presented to plot the sequence-dependent spatialtrajectory of the DNA double helix and/or distribution of curvaturealong the DNA molecule. The nearest-neighbor wedge model isimplemented to calculate overall DNA path using local helixparameters: helix twist angle, wedge (deflection) angle anddirection (of deflection) angle. The procedures described provedto be very convenient as tools for investigation of a relationshipbetween overall DNA curvature and its gel electrophoretic mobility.All parameters of the model had been estimated from experimentaldata. Using these wedge parameters the program takes, as input,any DNA sequence and calculates the likely degree of curvatureat each point along the molecule. This information is displayedboth graphically and in the form of simplified representationsof curved double helices. The Software, CURVATURE, can thusbe used to investigate possible roles of curvature in modulationof gene expression and for location of curved portions of DNA,which may play an important role in sequence-specific protein-DNAinteractions.  相似文献   

5.
Kanaori K  Tamura Y  Wada T  Nishi M  Kanehara H  Morii T  Tajima K  Makino K 《Biochemistry》1999,38(49):16058-16066
The duplex structures of the stereoregulated phosphorothioate DNAs, [R(p),R(p)]- and [S(p),S(p)]-[d(GC(ps)T(ps)ACG)] (ps, phosphorothioate; PS-DNA), with their complementary RNA have been investigated by combined use of (1)H NMR and restrained molecular dynamics calculation. Compared to those obtained for the unmodified duplex structures (PO-DNA.RNA), the NOE cross-peak intensities are virtually identical for the PS-DNA.RNA hybrid duplexes. The structural analysis on the basis of the NOE restraints reveals that all of the three DNA.RNA duplexes take a A-form conformation and that there is no significant difference in the base stacking for the DNA.RNA hybrid duplexes. On the other hand, the NOE cross-peak intensities of the protons around the central T(ps)A step of the PS-DNA.DNA duplexes are apparently different from those of PO-DNA. DNA. The chemical shifts of H8/6 and H1' at the T(ps)A step are also largely different among PS-DNA.DNAs and PO-DNA.DNA, suggesting that the DNA.DNA structure is readily changed by the introduction of the phosphorothioate groups to the central T(p)A step. The structure calculations indicate that all of these DNA.DNA duplexes are B-form although there exist some small differences in helical parameters between the [R(p),R(p)]- and [S(p),S(p)]PS-DNA.DNA duplexes. The melting temperatures (T(m)) were determined for all of the duplexes by plotting the chemical shift change of isolated peaks as a function of temperature. For the PS-DNA.RNA hybrid duplexes, the [S(p),S(p)] isomer is less stable than the [R(p),R(p)] isomer while this trend is reversed for the PS-DNA.DNA duplexes. Consequently, although the PS-DNA.RNA duplexes take the similar A-form structure, the duplex stability is different between PS-DNA.RNA duplexes. The stability of the DNA.RNA duplexes may not be governed by the A-form structure itself but by some other factors such as the hydration around the phosphorothioate backbone, although the T(m) difference of the DNA.DNA duplexes could be explained by the structural factor.  相似文献   

6.
Popular programs for characterizing DNA structure include Curves 5.1 (Lavery, R. and Sklenar, H., J. Biomol. Struct. Dyn. 6, 63-91, 1988; Lavery, R. and Sklenar, H., J. Biomol. Struct. Dyn. 6, 655-67, 1989) and Freehelix98 (Dickerson, R. E., Nucleic Acids Res. 26, 1906-1926, 1998), along with the more recent 3DNA (X. J. Lu, Z. Shakked and W. K. Olson., J. Mol. Biol. 300, 819-840 (2000). Given input of structural coordinates, all of these programs return values of the local helical parameters, such as roll, tilt, twist, etc. The first two programs also provide characterization of global curvature. Madbend (Strahs, D. and Schlick, T., J. Mol. Biol. 301, 643-663, 2000), a program that computes global curvature from local roll, tilt, and twist parameters, can be applied to the output of all three structural programs. We have compared the curvature predicted by the three programs with and without the use of Madbend. Global bend magnitudes and directions as well as values of helical kinks were calculated for four high-resolution DNA structures and four model DNA helices. Global curvature determined by Curves 5.1 without Madbend was found to differ from values obtained using Freehelix98 with or without Madbend or 3DNA and Curves 5.1 with Madbend. Using model helices, this difference was attributed the fact that Curves 5.1 is the only program sensitive to changes in axial displacement, such as shift and slide. Madbend produced robust values of bend magnitude and direction, and displayed little sensitivity to axis displacement or the source of local helical parameters. Madbend also appears to be the method of choice for bending comparisons of high-resolution structures with results from cyclization kinetics, a method that measures DNA curvature as a vectorial sum of local roll and tilt angles.  相似文献   

7.
By a combination of distance constraints obtained from NMR spectra and molecular mechanics calculations we have determined the three dimensional structure of the self-complementary decanucleotide d(CGCGTm6ACGCG). Methylation of an adenine at a position 3' to T induces significant conformational changes relative to B-DNA. This arises from the close proximity of the four methyl groups in the large groove in the centre of the sequence. The helical twist between the two T.m6A base pairs is found to be 45 degrees, as for D-DNA, and is accompanied by a high negative value of the wedge roll angle between these base pairs. The overall nonzero wedge roll observed shows that the helix is bent. These constraints appear to be material for the absence of the sequence T-m6A in natural DNAs.  相似文献   

8.
Employing high-resolution (13)C solution NMR and circular dichroism (CD) spectroscopic techniques, the distinctive influence of two intimately related hexafluoro solvents, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and hexafluoroacetone trihydrate (HFA), on the structural characteristics of Bombyx mori (B. mori) silk fibroin, the chymotrypsin precipitate (C(p)) fraction, and two synthetic peptides, (AGSGAG)(5) and (AG)(15), is described. The observed (13)C solution NMR and CD spectra of these polypeptides in HFIP and HFA revealed a distinctive influence on their conformational characteristics. The (13)C NMR spectra, as analyzed from the unique chemical shifts of C(alpha) and C(beta) resonances of constituent residues revealed that fibroin largely assumes helical conformation(s) in both solvents. However, the peak shifts were greater for the samples in HFIP, indicating that the types of helical structure(s) may be different from the one populated in HFA. Similar structural tendencies of these polypeptides were reflected in CD spectra. The observed CD patterns, i.e., a strong positive band at approximately 190 nm and negative bands at approximately 206 and 222 nm, have been attributed to the preponderance of helical structures. Of the two prevalent helical structures, alpha-helix and 3(10)-helix, the evidence emerged for the fibroin protein in favor of 3(10)-helical structure stabilization in HFIP and its significant disruption in HFA, as deduced from the characteristic R1 (=[theta](190)/[theta](202)) and R2 (=[theta](222)/[theta](206)) ratios, determined from the CD data. Conversely, the native polypeptides and synthetic peptide fragments derived from highly crystalline regions of the silk fibroin protein sustained predominantly an unordered structure in HFA solvent.  相似文献   

9.
Energy minimization has been carried out on three poly(purine).poly(pyrimidine) sequences--d(G)10.d(C)10, d(A)10.d(T)10, and d(AG)5.d(CT)5--using the molecular mechanics program AMBER (Assisted Model Building and Energy Refinement). In order to extensively scan the conformational space available, five different helical models were studied, three of them being right-handed helices while the other two were left helical. For all three sequences the right-handed A- and B-type helices are energetically slightly preferred over the left helices, but the energy difference between the various right-handed helices is only marginal. A detailed analysis has been carried out to characterize the local structural variability in the refined structures, both in terms of torsion angles as well as other parameters such as base-pair tilt, wedge roll, and wedge tilt, etc. All three sequences exhibit similar structural features for a particular form, but both the forms A and B show significant deviations from fiber models. In particular, the A-form structures have higher unit rise (2.7 A), and lower unit twist (31 degrees) and base-pair tilt (12 degrees), compared to the fiber model, which has corresponding values of 2.56 A, 32.7 degrees, and 20 degrees, respectively. All these changes indicate that the refined models are closer to the A-form structure observed in crystals of oligonucleotides. In the refined B-for models, the helical parameters are close to the fiber B-form, although the torsion angles show considerable variations. None of the three sequences examined, including the d(A)n.d(T)n sequence, show any pronounced curvature for the B-form structure.  相似文献   

10.
We have analyzed predicted helical twist angles in the 21-bp repeat region of the SV40 genome, using a semi-empirical model previously shown to accurately predict backbone conformations. Unexpectedly, the pattern of twist angles characteristic of the six GC-boxes is repeated an additional five times at positions that are regularly interspersed with the six GC-box sequences. These patterns of helical twist angles are associated with a second, imperfectly-repeated sequence motif, the TR-box 5'-RRNTRGG. Unrelated DNA sequences that interact with trans-acting factors (p53 and GABP) exhibit similar twist angle patterns, due to elements of the general form 5'-RRRYRRR that occur as interspersed arrays with a spacing of 10-11 bp and an offset of 4-6 bp. Arrays of these elements, which we call pyrimidine sandwich elements (PSEs), may play an important role in the interaction of trans-acting factors with DNA control regions. In 13 human proto-oncogenes analyzed, we identified 31 PSE arrays, 11 of which were in the 5'-flanking regions of the genes. The most extensive array was found in the promoter region of the K-ras gene. Extending over 80 bp of DNA, it contained 16 PSEs that showed an average deviation from the SV40 criterion pattern of angles of only 1.2 degrees.  相似文献   

11.
F Livolant  M F Maestre 《Biochemistry》1988,27(8):3056-3068
Two highly condensed structures of DNA have been analyzed in the circular dichroism (CD) microscope: the cholesteric liquid-crystalline phase of DNA and the nucleus of a dinoflagellate (Prorocentrum micans). In both cases, the DNA shows a helical cholesteric organization, but the helical pitch equals about 2500 nm in the first case and 250 nm in the second one. Since the absorption band of DNA is located at 260 nm, the reflection and absorption bands are well separated in the cholesteric phase of DNA and are overlapping in the dinoflagellate nucleus. However, both structures give a very strong negative CD signal at 265 nm. We show that this very strong signal cannot correspond to a Borrmann effect, i.e., to a superposition of the absorption and reflection bands, but is a differential absorption of left versus right circularly polarized light. This anomalous differential absorption is probably due to a significant scattering of light, inside of the structure, which produces a resonance phenomenon in the absorption band of the chromophore. Therefore, for any helical structure containing a chromophore, the apparent CD can be expressed as CD = [(epsilon L - epsilon R)cl] + (psi L - psi R) + (SL - SR) The first term is true absorption and is located in the absorption band of the chromophore, and the last term is true scattering and is observed at the wavelength corresponding to the helical pitch of the structure. The second term (psi L - psi R) corresponds to the anomalous differential absorption observed in dense superhelical structures of DNA. It superimposes to the first term in the absorption band of the chromophore. psi L - psi R is a measure of the perfection of the helical structure and of the density of chromophores in the material. Intercalative dyes [ethidium bromide and meso-tetrakis(4-N-methylpyridyl)porphine (H2TMpyP-4) and its nickel(II) derivative (NiIITMpyP-4)] were inserted in the dinoflagellate chromatin. The CD signal recorded in their absorption band mimics the signal observed in the absorption band of DNA. In both structures, the negative sign of the CD at 265 nm indicates that the twist occurring between DNA. In both structures, the negative sign of the CD at 265 nm indicates that the twist occurring between DNA molecules is left-handed, and we show that this situation is the most frequently encountered in vivo and vitro.  相似文献   

12.
The helical twist of poly d(A-s4T) was determined from the periodicity of the cleavage patterns of the double stranded polydeoxynucleotide adsorbed on calcium phosphate and found to be 14 bp per turn. Both cleavage patterns and 31P NMR spectra indicate a mononucleotide structure rather than an alternating B DNA like poly d(A-T). The failure of nucleosome formation excludes a B type structure. The discrepancy of the mononucleotide structure found in 31P NMR spectra and the dinucleotide structure given by X ray fiber diffraction is explained by an alternating tilt of the planes of the base pairs (base roll) as a consequence of a strong propeller twist. The importance of interstrand stacking interactions of adjacent 4-thiothymidines for the helical stability is discussed.  相似文献   

13.
Supercoiling of a closed circular DNA rod may result from an application of terminal twist to the DNA rod by cutting the rod, rotating one of the cut faces as the other being fixed and then sealing the cut. According to White's formula, DNA supercoiling is probably accompanied by a writhe of the DNA axis. Deduced from the elastic rod model for DNA structure, an intrinsically straight closed circular DNA rod does not writhe as subject to a terminal twist, until the number of rotation exceeds a rod-dependent threshold. By contrast, a closed circular DNA rod with intrinsic curvature writhes instantly as subject to a terminal twist. This noteworthy character in fact belongs to many intrinsically curved DNA rods. By solving the dynamic equations, the linearization of the Euler–Lagrange equations governing intrinsically curved DNA rods, this paper shows that almost every clamped-end intrinsically curved DNA rod writhes instantly when subject to a terminal twist (clamped-end DNA rods include closed circular DNA rods and topological domains of open DNA rods). In terms of physical quantities, the exceptions are identified with points in ℝ6 whose projections onto ℝ5 (through ignoring the total energy density of a rod) form a subset of a quadratic hypersurface. This paper also suggests that the terminal twist induced writhe is due to the elasticity and the clamped-end boundary conditions of the DNA rods. To my sister for her 50th birthday.  相似文献   

14.
The carboxy terminus of the human DNA polymerase-alpha contains a zinc finger motif. Three-dimensional structures of this motif containing 38 amino acid residues, W L I C E E P T C R N R T R H L P L Q F S R T G P L C P A C M K A T L Q P E, were determined by nuclear magnetic resonance (NMR) spectroscopy. The structures reveal an alpha-helix-like domain at the amino terminus, extending 13 residues from L2 through H15 with an interruption at the sixth residue. The helix region is followed by three turns (H15-L18, T23-L26 and L26-A29), all of which involve proline. The first turn appears to be type III, judging by the dihedral angles. The second and third turns appear to be atypical. A second, shorter helix is formed at the carboxy terminus extending from C30 through L35. A fourth type III turn starting at L35 was also observed in the structure. Proline serves as the third residue of all the turns. Four cysteine residues, two located at the beginning of the helix at the N-terminus and two at the carboxy end, are coordinated to Zn(II), facilitating the formation of a loop. One of the cysteines at the carboxy terminus is part of the atypical turn, while the other is the part of the short helix. These structural features are consistent with the circular dichroism (CD) measurements which indicate the presence of 45% helix, 11% beta turns and 19% non-ordered secondary structures. The zinc finger motif described here is different from those observed for C(4), C(2)H(2), and C(2)HC modules reported in the literature. In particular, polymerase-alpha structures exhibit helix-turn-helix motif while most zinc finger proteins show anti-parallel sheet and helix. Several residues capable of binding DNA, T, R, N, and H are located in the helical region. These structural features imply that the zinc finger motif is most likely involved in binding DNA prior to replication, presumably through the helical region. These results are discussed in the context of other eukaryotic and prokaryotic DNA polymerases belonging to the polymerase B family.  相似文献   

15.
16.
In eukaryotes, Rad51 protein is responsible for the recombinational repair of double-strand DNA breaks. Rad51 monomers cooperatively assemble on exonuclease-processed broken ends forming helical nucleo-protein filaments that can pair with homologous regions of sister chromatids. Homologous pairing allows the broken ends to be reunited in a complex but error-free repair process. Rad51 protein has ATPase activity but its role is poorly understood, as homologous pairing is independent of adenosine triphosphate (ATP) hydrolysis. Here we use magnetic tweezers and electron microscopy to investigate how changes of DNA twist affect the structure of Rad51-DNA complexes and how ATP hydrolysis participates in this process. We show that Rad51 protein can bind to double-stranded DNA in two different modes depending on the enforced DNA twist. The stretching mode is observed when DNA is unwound towards a helical repeat of 18.6 bp/turn, whereas a non-stretching mode is observed when DNA molecules are not permitted to change their native helical repeat. We also show that the two forms of complexes are interconvertible and that by enforcing changes of DNA twist one can induce transitions between the two forms. Our observations permit a better understanding of the role of ATP hydrolysis in Rad51-mediated homologous pairing and strand exchange.  相似文献   

17.
Unrestrained 5-20-ns explicit-solvent molecular dynamics simulations using the Cornell et al. force field have been carried out for d[GCG(N)11GCG]2 (N, purine base) considering guanine*cytosine (G*C), adenine*thymine (A*T), inosine*5-methyl-cytosine (I*mC), and 2-amino-adenine*thymine (D*T) basepairs. The simulations unambiguously show that the structure and elasticity of N-tracts is primarily determined by the presence of the amino group in the minor groove. Simulated A-, I-, and AI-tracts show almost identical structures, with high propeller twist and minor groove narrowing. G- and D-tracts have small propeller twisting and are partly shifted toward the A-form. The elastic properties also differ between the two groups. The sequence-dependent electrostatic component of base stacking seems to play a minor role. Our conclusions are entirely consistent with available experimental data. Nevertheless, the propeller twist and helical twist in the simulated A-tract appear to be underestimated compared to crystallographic studies. To obtain further insight into the possible force field deficiencies, additional multiple simulations have been made for d(A)10, systematically comparing four major force fields currently used in DNA simulations and utilizing B and A-DNA forms as the starting structure. This comparison shows that the conclusions of the present work are not influenced by the force field choice.  相似文献   

18.
Molecular dynamics (MD) simulations of the DNA duplex d(CCAACGTTGG)(2) were used to study the relationship between DNA sequence and structure. Two crystal simulations were carried out; one consisted of one unit cell containing two duplexes, and the other of two unit cells containing four duplexes. Two solution simulations were also carried out, one starting from canonical B-DNA and the other starting from the crystal structure. For many helicoidal parameters, the results from the crystal and solution simulations were essentially identical. However, for other parameters, in particular, alpha, gamma, delta, (epsilon - zeta), phase, and helical twist, differences between crystal and solution simulations were apparent. Notably, during crystal simulations, values of helical twist remained comparable to those in the crystal structure, to include the sequence-dependent differences among base steps, in which values ranged from 20 degrees to 50 degrees per base step. However, in the solution simulations, not only did the average values of helical twist decrease to approximately 30 degrees per base step, but every base step was approximately 30 degrees, suggesting that the sequence-dependent information may be lost. This study reveals that MD simulations of the crystal environment complement solution simulations in validating the applicability of MD to the analysis of DNA structure.  相似文献   

19.
Nuclear magnetic resonance (NMR) spectroscopy, combining correlated spectroscopy (COSY) coupling constant measurements with nuclear Overhauser effect spectroscopy (NOESY) interatomic distances, should make it possible to determine an averaged solution structure for DNA oligomers. However, even if such data could be obtained with high accuracy, it is not clear which structural parameters of DNA would be determined. Here, the relationships between measurable internucleotide distances and helical parameters are systematically studied through molecular modelling. Investigations are carried out using four representative sequences, (ACGT)n, (TCGA)n, (AGCT)n and (TGCA)n, composed of repeated tetranucleotides belonging to oligomers previously studied by NMR. Correlations between interatomic distances become evident and strong connections between distances and inter-base helical parameters are observed. Results imply that twist, roll, shift and slide values can be accurately determined from NMR data. Sequence independent mechanical coupling which link backbone and sugar conformations to helical twist are also described.  相似文献   

20.
Hoechst dye 33258 is a planar drug molecule that binds to the minor groove of DNA, especially where there are a number of A.T base pairs. We have solved the structure of the Hoechst dye bound to the DNA dodecamer d(CGCGATATCGCG) at 2.3 A. This structure is compared to that of the same dodecamer with the minor-groove-binding drug netropsin bound to it, as well as to structures that have been solved for this Hoechst dye bound to a DNA dodecamer containing the central four base pairs with the sequence AATT. We find that the position of the Hoechst drug in this dodecamer is quite different from that found in the other dodecamer since it has an opposite orientation compared to the other two structures. The drug covers three of the four A.T base pairs and extends its piperazine ring to the first G.C base pair adjacent to the alternating AT segment. Furthermore, the drug binding has modified the structure of the DNA dodecamer. Other DNA dodecamers with alternating AT sequences show an alternation in the size of the helical twist between the ApT step (small twist) and the TpA step (large twist). In this structure the alternation is reversed with larger twists in the ApT steps than in the TpA step. In addition, there is a rotation of one of the thymine bases in the DNA dodecamer that is associated with hydrogen bonding to the Hoechst drug. This structure illustrates the considerable plasticity found in the DNA molecule when it binds to different planar molecules inserted into the minor groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号