首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The percentage of cells that survive freezing and thawing is maximal at a specific cooling rate and lower at rates above or below this critical value. The existence of a survival optimum implies that at least two different factors can cause cell death. To seek a morphological basis of such injury we cooled Chinese hamster tissue-cultured cells at rates that were suboptimal, optimal, and supraoptimal with respect to survival, and then freeze-etched and replicated the cells. Replicas of the cells were examined for structural alterations caused by freezing. Cells cooled at rates at or exceeding the survival optimum showed structural inclusions caused by intracellular ice, while cells cooled at rates far exceeding the survival optimum often show no morphological evidence of freezing damage. Cells cooled at rates somewhat suboptimal with respect to survival appeared dehydrated and showed no direct evidence of intracellular ice, although many of these cells were able to form some ice if they were briefly warmed to high subzero temperatures and then recooled prior to freeze-etching. These results suggest that the presence of intracellular ice is not incompatible with survival and that one cannot necessarily equate good ultrastructural preservation with cell survival.  相似文献   

2.
VISUALIZATION OF FREEZING DAMAGE   总被引:5,自引:0,他引:5       下载免费PDF全文
Freeze-cleaving can be used as a direct probe to examine the ultrastructural alterations of biological material due to freezing. We examined the thesis that at least two factors, which are oppositely dependent upon cooling velocity, determine the survival of cells subjected to freezing. According to this thesis, when cells are cooled at rates exceeding a critical velocity, a decrease in viability is caused by the presence of intracellular ice; but cells cooled at rates less than this critical velocity do not contain appreciable amounts of intracellular ice and are killed by prolonged exposure to a solution that is altered by the presence of ice. As a test of this hypothesis, we examined freeze-fractured replicas of the yeast Saccharomyces cerevisiae after suspensions had been cooled at rates ranging from 1.8 to 75,000°C/min. Some of the frozen samples were cleaved and replicated immediately in order to minimize artifacts due to sample handling. Other samples were deeply etched or were rewarmed to -20°C and recooled before replication. Yeast cells cooled at or above the rate necessary to preserve maximal viability (~7°C/min) contained intracellular ice, whereas cells cooled below this rate showed no evidence of intracellular ice.  相似文献   

3.
We have previously reported high survival in mouse sperm frozen at 21 degrees C/min to -70 degrees C in a solution containing 18% raffinose in 0.25 x PBS (400 mOsm) and then warmed rapidly at approximately 2000 degrees C/min, especially under lowered oxygen tensions induced by Oxyrase, a bacterial membrane preparation. The best survival rates were obtained in the absence of glycerol. The first concern of the present study was to determine the effects of the cooling rate on the survival of sperm suspended in this medium. The sperm were cooled to -70 degrees C at rates ranging from 0.3 to 530 degrees C/min. The survival curve was an inverted "U" shape, with the highest motility occurring between 27 and 130 degrees C/min. Survival decreased precipitously at higher cooling rates. Decreasing the warming rate, however, decreased survivals at all cooling rates. The motility depression with slow warming was especially evident in sperm cooled at the optimal rates. This fact is consistent with our current view that the frozen medium surrounding sperm cells is in a metastable state, perhaps partly vitrified as a result of the high concentrations of sugar. The decimation of sperm cooled more rapidly than optimum (>130 degrees C/min), even with rapid warming, is consistent with the induction of considerable quantities of intracellular ice at these rates. When glycerol was added to the above medium, motilities were also dependent on the cooling rate, but they tended to be substantially lower than those obtained in the absence of glycerol. The minimum temperature in the above experiments was -70 degrees C. When sperm were frozen to -70 degrees C at optimum rates, lowering the temperature to -196 degrees C had no adverse effect.  相似文献   

4.
When cell membranes of Lentinus edodes mycelium were rapidly frozen at either 50 or 160°C/min, viability was lost and this correlated with rupture of the plasmalemma and residual membrane material and with alterations in the organelles. Although with slow cooling (1°C/min) 80% of the samples recovered viability, some cells still showed similar changes to those cooled rapidly, indicating that individual cells of the mycelium do not respond in the same way.  相似文献   

5.
Armitage WJ  Juss BK 《Cryobiology》2003,46(2):194-196
Cells in monolayers have been reported to be more susceptible to freezing injury than the same cell type frozen in dispersed suspensions. There appears to be an enhanced susceptibility to intracellular freezing in the monolayers, which is thought to be facilitated by the presence of gap junctions allowing the spread of ice between neighbouring cells. MDCK Type II cells do not form gap junctions in monolayer culture. When frozen at rates of 0.2 to 10 degrees C/min, monolayers in 10% (v/v) propane-1,2-diol or dimethyl sulphoxide showed little influence of cooling rate on survival. This suggested that, in the absence of gap junctions, cells in monolayers did not display enhanced susceptibility to intracellular freezing. In contrast, however, monolayers frozen in glycerol showed a marked increase in cell damage when cooled at rates higher than 0.5 degrees C/min. This does not necessarily counter the suggestion that lack of gap junctions mitigates intracellular freezing as there is evidence that glycerol may itself promote intracellular freezing.  相似文献   

6.
This study investigated the interactions among water content, rapid (nonequilibrium) cooling to -196 degrees C using isopentane or subcooled nitrogen, and survival of embryonic axes of Aesculus hippocastanum. Average cooling rates in either cryogen did not exceed 60 degrees C s(-1) for axes containing more than 1.0 g H(2)O g(-1)dw (g g(-1)). Partial dehydration below 0.5 g gg(-1) facilitated faster cooling, averaging about 200 and 580 degrees C s(-1) in subcooled nitrogen and isopentane, respectively. The combination of partial drying and rapid cooling led to increased survival and reduced cellular damage in axes. Electrolyte leakage was 10-fold higher from fully hydrated axes cooled in either cryogen than from control axes that were not cooled. Drying of axes to 0.5 g g(-1), reduced electrolyte leakage of cryopreserved axes to levels similar to those of control material. Axis survival was assayed by germination in vitro. Axes with water contents greater than 1.0 g g(-1), did not survive cryogenic cooling. Between 1.0 and 0.75 g g(-1), axes survived cryogenic exposure but developed abnormally. The proportion of axes developing normally after being cooled in isopentane increased with increasing dehydration below 0.75 g g(-1), reaching a maximum between 0.5 and 0.25 g g(-1) after being cooled at > or =300 degrees C s(-1). Cooling rates attained in subcooled nitrogen did not exceed 250 degrees C s(-1), and normal development of axes was observed only at < or =0.4 g g(-1). These results support the hypothesis that rapid cooling enhances the feasibility of cryopreservation of desiccation-sensitive embryonic axes by increasing the upper limit of allowable water contents and overall survival.  相似文献   

7.
S M Mutetwa  E R James 《Cryobiology》1984,21(5):552-558
Various cooling and warming rates were investigated to determine the optimum conditions for cryopreserving the intraerythrocytic stages of Plasmodium chabaudi. Infected blood, equilibrated in 10% v/v glycerol at 37 degrees C or in 15% v/v Me2SO at 0 degree C for 10 min, was cryopreserved using cooling rates between 1 and 5100 degrees C min-1. After overnight storage in liquid nitrogen the samples were warmed at 12,000 degrees C min-1. Warming rates between 1 and 12,000 degrees C min-1 were investigated using samples previously cooled at 3600 degrees C min-1. After thawing, the glycerol and Me2SO were removed by dilution in 15% v/v glucose-supplemented phosphate-buffered saline. Survival was assayed by inoculation of groups of five mice each with 10(6) infected cells and the time taken to reach a level of 2% parasitemia estimated. The optimum cooling rate was 3600 degrees C min-1 for parasites frozen using either 10% glycerol or 15% Me2SO; the pre-2% patent periods were 0.90 and 1.01 days above control values (representing survival levels of 21 and 17.5%, respectively). The optimum warming rate was 12,000 degrees C min-1; the pre-2% patent periods were 1.01 and 1.32 days above control values, respectively (18 and 10% survival), for glycerol and Me2SO. With ethanediol (5% v/v) and sucrose (15% w/v) as cryoprotectants the optimum warming rates were also 12,000 degrees C min-1 while the optimum cooling rates were 330 and 3600 degrees C min-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The toxicity of several cryoprotective agents was tested at room temperature (23 C) against Tetrahymena pyriformis strain S (Phenoset A) at different stages of the growth cycle. Polyvinylpyrrolidone (PVP-40) at 10% (v/v) concentration was without effect at any stage in the growth cycle, while 1.2 M glycerol immobilized the cells which were disrupted very shortly afterwards. The toxicity of 0.25 M glucose was largely independent of the position of the cells in the growth cycle, but the toxicity of 0.25 M sucrose and 1.4 M dimethylsulfoxide (DMSO) was most marked in late log- and stationary-phase cells. After log-phase cells had been equilibrated with 1.4 M DMSO for 1 hr, the number of cells surviving cooling at defined rates from 0.45 to 12 C/min decreased as the final temperature decreased from –30 to –60 C. A temperature of –53 C was found to be the optimum from which cells cooled at a given rate could be cooled rapidly to –196 C. Nevertheless, when cells were cooled at defined rates to –35, –45, or –53 C and then rapidly to –196 C the optimum rate of cooling to these temperatures was found to be 1 C/min. The optimum rate of cooling to –60 C prior to plunging into liquid nitrogen was found to be 2.7 C/min.  相似文献   

9.
When mammalian cells are cooled at sub-optimal rates to −196 °C in the presence of the cryoprotectants DMSO and glycerol, pretreatment of the cells with colchicine will significantly enhance the survival of these cells as assayed after thawing. This “protection” is observed even if cryoprotectants are not present. Colchicine at the concentrations used is known to disrupt microtubules in cells.  相似文献   

10.
Pregnancy rates with cooled equine semen can be unsatisfactory and show great variation. Information about first cycle pregnancy rates and pregnancy rates per cycle are often lacking from publicly available records. This retrospective cohort study was performed to evaluate the fertility of the Norwegian Coldblooded trotter. The aim of the study was to compare the breeding results after insemination with fresh, extended with those of cooled, shipped semen among Norwegian Coldblooded trotter mares. First cycle pregnancy rate was the main parameter used to measure fertility. Stud-books were collected from four studs from the years 2006–2010. Statistical analyses were done in Stata using Chi square test and multivariable analyses where different models were compared based on Akaike’s information criterion. First cycle pregnancy rate, seasonal pregnancy rate and foaling rate all showed significant differences (P < 0.0001) when comparing mares inseminated at stud with mares inseminated with cooled, shipped semen, favoring artificial insemination (AI) at stud. First cycle pregnancy rate was 55.1 % for mares inseminated at stud with fresh extended semen and 42.2 % for mares inseminated with cooled shipped semen. The overall pregnancy rate per cycle was 84.4 % for AI at stud and 66.9 % for cooled, shipped semen. The parameters stud, mare age, number of inseminations within an estrus cycle and individual stallion were also investigated for influence on fertility. Few retrospective studies include the parameter of first cycle pregnancy rates. Our study does not differ dramatically when comparing seasonal pregnancy rates and foaling rates with similar studies. Fertility parameters for the Norwegian Coldblooded trotter do not differ significantly from most other studies of Coldblooded mares and other mare breeds around the world. But the difference in fertility parameters between AI at stud to AI with cooled semen between our study and others, indicates that higher pregnancy rates in Norwegian Coldblooded trotter may be possible.  相似文献   

11.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

12.
Intact adult rat hearts were cooled in the presence of 10% DMSO according to an external cooling program which approximated the optimal external three-step cooling program for the isolated adult heart cells: 20 min at ?20 °C, 0.2 °C/min from ?20 to ?25, ?30, or ?50 °C, and rapid cooling to ?196 °C. Following rapid thawing, cells were isolated after perfusion with a 0.1% collagenase solution. Only cells which originated from the free wall of the right ventricle could be isolated, even after cooling to ?20 °C. Most cells from hearts cooled to ?196 °C did not survive. When the third cooling step was omitted and the end temperature of the second cooling step was ?30 °C, 38% of the cells excluded trypan blue, 29% were morphologically intact, and 30% showed spontaneous contractions after thawing, expressed as percentages of the control, A much lower survival was found after cooling to ?50 °C.Histological and electron microscopical study of the heart immediately after thawing revealed no differences between hearts cooled to ?20, ?30, or ?196 °C. Also no marked differences were observed between the morphological integrity after freezing and thawing of the atrium, the left and right ventricle walls, and the ventricular septum. The survival data suggest the presence of nonmorphologically detectable alterations in cells frozen to ?196 °C, compared to cells frozen to ?30 °C. The morphological investigations indicate no essential differences in resistance of atrial and ventricular cells to the freezing process.Experiments involving neonatal rat hearts cooled to ?196 °C, according to the method which gave optimal preservation of the isolated cells, revealed that after thawing cells are present from which growing and contracting cultures can be derived. It appears that cells in the neonatal rat heart are more resistant to freezing to ?196 °C than cells in the adult rat heart.  相似文献   

13.
Three experiments were designed to analyze the effects of cooling rate on survival of stallion spermatozoa in a milk-based extender, at 0 to 96 hours after reaching the desired temperature. The samples were warmed to 37 degrees C and were evaluated by computer-assisted analysis of sperm motility. In Experiment 1, rate of cooling between 37 and 20 degrees C was evaluated. Sperm motion was not affected by cooling at plunge, -0.42 or -0.28 degrees C/minute. However, storage of spermatozoa at 5 degrees C after slow cooling below 20 degrees C was superior to storage at 20 degrees C. In Experiment 2, 3 cooling rates from 37 degrees to 5 degrees C were evaluated. Cooling at either -0.05 or -0.7 degrees C/minute was superior (P<0.05) to plunging spermatozoa to 5 degrees C. Cooling at -0.05 degrees C/minute rather than -0.7 degrees C/minute maximized the percentage of motile spermatozoa and their curvilinear velocity. In Experiment 3, cooling rates from 20 to 5 degrees C were evaluated, with all samples cooled at -0.7 degrees C/minute from 37 to 20 degrees C. Sperm motion was similar (P>0.05) after cooling below 20 degrees C at -0.012, -0.05 or -0.10 degrees C/minute, and the 2 slower rates were superior (P<0.05) to cooling at -0.3 degrees C/minute. It was concluded that stallion spermatozoa can be cooled rapidly from 37 to 20 degrees C, but should be cooled at 相似文献   

14.
Summary The mechanism of iron uptake by avian erythroid cells was investigated using cells from 7 and 15-day chicken embryos, and chicken serum transferrin and conalbumin (ovotransferrin) labelled with125I and59Fe. Endocytosis of the protein was determined by incubation of the cells with Pronase at 4°C to distinguish internalized from surface-bound protein.Iron was taken up by the cells by receptor-mediated endocytosis of transferrin or conalbumin. The receptors had the same affinity for serum transferrin and conalbumin. Endocytosis of diferric transferrin and conalbumin and exocytosis of apo-protein occurred at the same rates, indicating that iron donation to the cells occurred during the process of intracellular cycling of the protein. The recycling time was approximately 4 min. The rate of endocytosis of diferric protein varied with incubation temperature and at each temperature the rate of endocytosis was sufficient to account for the iron accumulated by the cells. These results and experiments with a variety of inhibitors confirmed the role of endocytosis in iron uptake.The mean cell volumes, receptor numbers and iron uptake rates of 7-day embryo cells were approximately twice those of 15-day embryo cells but the protein recycling times were approximately the same. Hence, the level of transferrin receptors is probably the main determinant of the rate of iron uptake during development of chicken erythroid cells.Transferrins from a variety of mammalian species were unable to donate iron to the chicken cells, but toad (Bufo marinus) transferrin could do so at a slow rate. The mechanism of iron uptake by developing chicken erythroid cells appears to be similar to that described for mammalian cells, although receptor numbers and iron uptake rates are lower than those reported for mammalian cells at a similar stage of development.Abbreviations BSS Hanks balanced salt solution - PBS phosphate buffered saline - MCV mean corpuscular volume - CCCP carbonyl cyanide-M-chlorophenyl hydrazone  相似文献   

15.
Pharmacological studies carried out on protoscoleces in vitro to standardize conditions that would permit a preliminary estimate of the efficacy of drugs with potential activity against Echinococcus granulosus are reported. Media such as PBS and Hanks solution, maintenance temperature, different pH values and concentrations of various solvents have been tested to check the effects on protoscolex survival in tubes in vitro. Mebendazole has been used as the pharmacological standard reference. Changes in the viability of protoscoleces have been used to demonstrate pharmacological activity. Best conditions were obtained employing Hanks solution and propylene glycol at low concentrations. Mebendazole was not completely effective at the concentrations achievable in human therapy. Linear, reproducible results demonstrated that Hanks solution provides an ideal medium for pharmacological studies. Among tested solvents, propylene glycol and dimethyl sulphoxide showed no lethal activity at low concentrations. At concentrations similar to those normally obtained in human sera, mebendazole, as in vivo, demonstrated only partial lethality for protoscoleces. The present study represents a new experimental approach to chemotherapy of hydatid disease.  相似文献   

16.
The "two-step" low-temperature microscopy (equilibrium and dynamic) freezing methods and a differential scanning calorimetry (DSC) technique were used to assess the equilibrium and dynamic cell volumes in Rana sylvatica liver tissue during freezing, in Part I of this study. In this study, the experimentally determined dynamic water transport data are curve fit to a model of water transport using a standard Krogh cylinder geometry (Model 1) to predict the biophysical parameters of water transport: L(pg) = 1.76 microm/min-atm and E(L(p)) = 75.5 kcal/mol for control liver cells and L(pg)[cpa] = 1.18 microm/min-atm and E(L(p))[cpa] = 69.0 kcal/mol for liver cells equilibrated with 0.4 M glucose. The DSC technique confirmed that R. sylvatica cells in control liver tissue do not dehydrate completely when cooled at 5 degrees C/min but do so when cooled at 2 degrees C/min. Cells also retained twice as much intracellular fluid in the presence of 0.4 M glucose than in control tissue when cooled at 5 degrees C/min. The ability of R. sylvatica liver cells to retain water during fast cooling (>/=5 degrees C/min) appears to be primarily due to its liver tissue architecture and not to a dramatically lower permeability to water, in comparison to mammalian (rat) liver cells which do dehydrate completely when cooled at 5 degrees C/min. A modified Krogh model (Model 2) was constructed to account for the cell-cell contact in frog liver architecture. Using the same biophysical permeability parameters obtained with Model 1, the modified Krogh model (Model 2) is used in this study to qualitatively explain the experimentally measured water retention in some cells during freezing on the basis of different volumetric responses by cells directly adjacent to vascular space versus cells at least one cell removed from the vascular space. However, at much slower cooling rates (1-2 degrees C/h) experienced by the frog in nature, the deciding factor in water retention is the presence of glucose and the maintenance of a sufficiently high subzero temperature (>/=-8 degrees C).  相似文献   

17.
Red blood cells are cooled in buffered solutions containing 10, 15, 20, 30, or 35% (ww) 1,2-propanediol or glycerol. Cell survival is measured after cooling to ?196 °C at rates between 1 and 3500 °C/min, followed by rewarming rapidly, except in a few cases. At low cooling rates, where the injuries are due to solution effects, for the same (ww) concentrations of 15 or 20% (ww), 1,2-propanediol protects erythrocytes better than glycerol. Differences are still observed when the two cryoprotectants are compared on a mole-fraction basis. At high cooling rates the survival passes through a minimum and then increases again. For the same concentrations, the minimum occurs at much lower cooling rates with 1,2-propanediol than with glycerol, in agreement with the better glassforming tendency of 1,2-propanediol solutions. These cooling rates almost coincide with those at which the quantity of ice crystallized begins to decrease in the corresponding solutions. Thus, survival seems to be closely related to the glass-forming tendency at the survival minimum, and at higher cooling rates. After the fastest cooling rates, the warming rates necessary to avoid damage on warming are much smaller than those necessary to avoid devitrification. Therefore, in the present experiments the survivals are not related to the stability of the wholly amorphous state. However, injury follows the presumed transition from cubic to hexagonal ice, in erythrocytes as well as in other kinds of cells.  相似文献   

18.
Babesia rodhaini parasites in murine blood containing 1.5 m DMSO were frozen at two rates, as judged by the duration of the “freezing plateau”, then cooled to ?196 °C and rewarmed at two rates to detect interactions between the duration of the plateau and rates of subsequent cooling and rewarming. Infectivity tests showed that fast and slow freezing (plateau times of about 1 sec and 30 sec, respectively) had similar effects on parasite survival when cooling was at 130 °C/min and warming was at 800 °C/min. However, when either the cooling rate was increased to 3500 °C/min or the warming rate was decreased to 2.3 °C/min, fast freezing decreased parasite survival more than did slow freezing. It is suggested that fast freezing accentuated the damaging effects of fast cooling and slow warming by increasing intracellular ice formation.  相似文献   

19.
Hochi S  Semple E  Leibo SP 《Theriogenology》1996,46(5):837-847
The effect of cooling and warming rates during cryopreservation on subsequent embryo survival was studied in 607 bovine morulae and 595 blastocysts produced by in vitro maturation, fertilization and culture (IVM/IVF/IVC). Morulae and blastocysts were prepared by co-culturing presumptive zygotes with bovine oviductal epithelial cells (BOEC) in serum-free TCM199 medium for 6 and 7 d, respectively. The embryos in 1.5 M ethylene glycol in plastic straws were seeded at -7 degrees C, cooled to -35 degrees C at each of 5 rates (0.3 degrees, 0.6 degrees , 0.9 degrees, 1.2 degrees, or 1.5 degrees C/min) and then immediately plunged into liquid nitrogen. The frozen embryos were warmed either rapidly in a 35 degrees C water bath (warming rate > 1,000 degrees C/min) or slowly in 25 degrees to 28 degrees C air (< 250 degrees C/mm). With rapid warming, 42.1% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts. The proportions of rapidly wanned morulae that hatched decreased with increasing cooling rates (30.4, 19.0, 15.8 and 8.9% at 0.6 degrees , 0.9 degrees, 1.2 degrees and 1.5 degrees C/min, respectively). With slow warming 25.9% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts, while <10% of the morulae that had been cooled faster developed. The hatching rate of blastocysts cooled at 0.3 degrees C/min and warmed rapidly (96.3%) was higher than those cooled at 06 degrees and 0.9 degrees C/min (82.7 and 84.6%, respectively), and was also significantly higher than those warmed slowly after cooling at 0.3 degrees, 0.6 degrees or 0.9 degrees C/min (69.1, 56.6 and 51.8%, respectively). Cooling blastocysts at 1.2 degrees or 1.5 degrees C/min resulted in lowered hatching rates either with rapid (71.2 or 66 0%) or slow warming (38.2 or 38.9%). These results indicate that the survival of in vitro-produced bovine morulae and blastocysts is improved by very slow cooling during 2-step freezing, nevertheless, slow warming appears to cause injuries to morulae and blastocysts even after very slow cooling.  相似文献   

20.
Tumor necrosis factor (TNF) may cause apoptosis or necrosis and induces mitochondrial changes that have been proposed to be central to cytotoxicity. We report similar patterns of TNF-induced mitochondrial morphological alterations and autophagy in cell types with differing sensitivity to TNF-induced cytotoxicity. Specific ligation of TNFR-I or TNFR-II induces different rates of apoptosis and mitochondrial morphological change, but similar rates of autophagy. These changes do not invariably lead to cell death, and survival or progression to apoptosis or necrosis following TNF exposure may depend in part on the extent of mitochondrial damage and/or the autophagic capacity of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号