首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic improvement and hybridization in the Populus genus have led to the development of genotypes exhibiting fast growth, high rooting ability and disease resistance. However, while large biomass production is important for bioenergy crops, efficient use of resources including water is also important in sites lacking irrigation and for maintaining ecosystem water availability. In addition, comparison of water use strategies across a range of growth rates and genetic variability can elucidate whether certain strategies are shared among the fastest growing and/or most water use efficient genotypes. We estimated tree water use throughout the second growing season via sapflow sensors of 48 genotypes from five Populus taxa; P. deltoides W. Bartram ex Marshall × P. deltoides (D × D), P. deltoides × P. maximowiczii A. Henry (D × M), P. deltoides × P. nigra L. (D × N), P. deltoides × P. trichocarpa Torr. & Gray (D × T) and P. trichocarpa × P. deltoides (T × D) and calculated average canopy stomatal conductance (GS). We regressed GS and atmospheric vapor pressure deficit (VPD) wherein the slope of the relationship represents stomatal sensitivity to VPD. At the end of the second growing season, trees were harvested, and their dry woody biomass was used to calculate whole tree water use efficiency (WUET). We found that D × D and D × M genotypes exhibited differing water use strategies with D × D genotypes exhibiting high stomatal sensitivity while retaining leaves while D × M genotypes lost leaf area throughout the growing season but exhibited low stomatal sensitivity. Across measured taxa, biomass growth was positively correlated with WUET, and genotypes representing each measured taxa except D × N and T × D had high 2-year dry biomass of above 6 kg/tree. Overall, these data can be used to select Populus genotypes that combine high biomass growth with stomatal sensitivity and WUET to limit the negative impacts of bioenergy plantations on ecosystem water resources.  相似文献   

2.
 We describe a protocol for Agrobacterium tumefaciens-mediated transformation of hybrid cottonwoods (Populus sections Tacamahaca Spach. and Aigeiros Duby). The protocol has allowed routine transformation of several economically important cottonwood hybrids (Populus trichocarpa Torr. & Gray×P. deltoides Bartr. ex. Marsh. and P. deltoides×P. nigra L.) that were previously difficult to transform. The procedure was applied to 11 different hybrid cottonwood genotypes and one P. deltoides genotype using kanamycin as the selection agent. Additional experiments showed a very strong interaction between auxin preculture and the effectiveness of various cytokinins for induction of shoot organogenesis. The data also demonstrated the superiority of Agrobacterium strain EHA105 over C58 and LBA4404 for T-DNA transfer based on transient assays with a reporter gene. Received: 16 June 1998 / Revision received: 5 February 1999 / Accepted: 14 April 1999  相似文献   

3.
Poplars are among the few tree genera that can develop both ectomycorrhizal (ECM) and arbuscular (AM) associations; however, variable ratios of ECM/AM in dual mycorrhizal colonizations were observed in the roots of a variety of poplar species and hybrids. The objective of our study was to analyze the effect of internal and external factors on growth and dual AM and ECM colonization of poplar roots in three 12–15-year-old common gardens in Poland. We also analyzed the abundance of nonmycorrhizal fungal endophytes in the poplar roots. The Populus clones comprised black poplars (Populus deltoides and P. deltoides × Populus nigra), balsam poplars (Populus maximowiczii × Populus trichocarpa), and a hybrid of black and balsam poplars (P. deltoides × P. trichocarpa). Of the three sites that we studied, one was located in the vicinity of a copper smelter, where soil was contaminated with copper and lead. Poplar root tip abundance, mycorrhizal colonization, and soil fungi biomass were lower at this heavily polluted site. The total mycorrhizal colonization and the ratio of ECM and AM colonization differed among the study sites and according to soil depth. The influence of Populus genotype was significantly pronounced only within the individual study sites. The contribution of nonmycorrhizal fungal endophytes differed among the poplar clones and was higher at the polluted site than at the sites free of pollution. Our results indicate that poplar fine root abundance and AM and ECM symbiosis are influenced by environmental conditions. Further studies of different site conditions are required to characterize the utility of poplars for purposes such as the phytoremediation of polluted sites.  相似文献   

4.
5.
6.
Interspecific hybrids of Populus species are known for their superior growth. In this study, we examined the effect of the genetic background and contrasting environmental conditions on growth and searched for quantitative trait loci (QTL) affecting growth traits. To this end, two hybrid poplar families resulting from controlled crosses, Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ (D × N, 180 F1) and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’ (D × T, 182 F1), were grown at two contrasting sites, Northern Italy and Central France. At the end of the second growing season, tree dimensions (stem height, circumference, and volume) were assessed. The performances of both families significantly differed within and between sites. Tree volume was significantly larger at the Italian site as compared to the French site. Genotype by environment interactions were significant but low for both families and for all growth traits. Tight correlations among the individual growth traits indicated that there may be a common genetic mechanism with pleiotropic effects on these growth traits. In line with previous studies, linkage groups I, VII, IX, X, XVI, XVII, and XIX appeared to have genomic regions with the largest effects on growth traits. This study revealed that (1) both families have high potential for selection of superior poplar hybrids due to the pronounced heterosis (hybrid vigor) and the large genetic variability in terms of growth and (2) the choice of site is crucial for poplar cultivation. Dillen and Storme contributed equally to the work. An erratum to this article can be found at  相似文献   

7.
Qualitative resistance to Melampsora larici-populina leaf rust inherited from North American species Populus deltoides did not allow for durable control of this pathogen in interspecific hybrid cultivars. Despite significant levels of strain-specificity, quantitative resistance would exert lower selection pressures on the pathogen populations, and hence could be more durable. Previous studies restricted to a large P. × interamericana (i.e., P. deltoides × Populus trichocarpa) F1 family revealed that the presence of R1, a segregating defeated qualitative resistance gene inherited from P. deltoides, had major beneficial effects on quantitative resistance. The present study was based on 14 F1 families from a 4 × 5 P. deltoides × P. trichocarpa factorial mating design where at least four defeated qualitative resistances segregate 1:1. Even though quantitative resistance assessments were conducted in the laboratory with a M. larici-populina strain able to overcome these qualitative resistances, their presence had a significant effect on the mean level and on the genetic variability for quantitative resistance. One unprecedented result is the identification of a defeated qualitative resistance which presence is associated with lower levels of quantitative resistance. Possible inferences on the nature of the genetic relationship between both resistance types are discussed.  相似文献   

8.
The aim was to investigate how short rotation coppice (SRC) on arable soil in Northern Germany altered the concentrations of soil lipids, and thus, soil organic matter (SOM) quality. The concentrations of organic C and aliphatic lipids were determined in the litter and underlying soil layers under two willow (Salix caprea × viminalis clone 6, S. viminalis clone 78–183) and two poplar (Populus trichocarpa × deltoides cv. Beaupré, P. nigra × maximowiczii cv. Max 4) clones at a 14-year-old SRC and a permanent arable reference site. High organic C concentrations in the topsoil under S. viminalis and P. trichocarpa × deltoides agreed with high concentrations of long C-chain saturated n-alkanoic acids, n-alkanols and n-alkanes. These disproportionally higher concentrations of long C-chain saturated n-alkanoic acids (factor 3.6) and n-alkanols (factor 3.8) under S. viminalis and of n-alkanols (factor 3.9) under P. trichocarpa × deltoides than in an arable reference treatment indicated a lower microbial decomposability and, thus, a clone-specific accumulation of these SOM constituents. The clone-specific enrichments in long C-chain saturated n-alkanoic acids, n-alkanols and n-alkanes indicate that clone selection may be an approach to additional long-term storage of atmosphere CO2 in the form of stable SOM under SRC.  相似文献   

9.
Soil acidity and aluminum (Al) toxicity are major factors limiting crop yield and forest productivity worldwide. Hybrid poplar (Populus spp.) was used as a model to assess genotypic variation in Al resistance and physiological stress responses to Al in a woody tree species. Eight hybrid crosses of P. trichocarpa, P. deltoides and P. nigra were exposed to Al in solution culture. Resistance to Al varied by genotype and hybrid cross, with P. trichocarpa × P. deltoides crosses being most resistant, P. trichocarpa × P. nigra being intermediate and P. deltoides × P. nigra being most sensitive to Al. Total root Al accumulation was not a good indicator of Al resistance/sensitivity. However, the partitioning of Al into apoplastic and symplastic fractions indicated that differences in sensitivity among genotypes were associated with Al uptake into the symplasm. Aluminum treatment increased callose and pectin concentrations of root tips in all genotypes, but more prominently in Al sensitive genotypes/hybrids. In Al sensitive genotypes, higher levels of symplastic Al accumulation correlated with elevated concentrations of citrate, malate, succinate or formate in root tips, whereas organic acid accumulation was not as pronounced in Al resistant genotypes. These findings suggest that exclusion of Al from the symplast is associated with Al resistance. Further screening of Al tolerant poplar genotypes could yield successful candidates to be utilized for sustainable reforestation/reclamation and carbon sequestration projects where soil acidity may limit tree growth.  相似文献   

10.
Abstract Previous work with clones of Populus trichocarpa demonstrated that the water vapour conductance of leaves from well-watered cuttings of this species does not decline with loss of turgor from the bulk leaf. In the present study, stomatal responses to water potential in Populus were examined with detached epidermal strips. Stomata in epidermal strips from well-watered plants of P. trichocarpa did not close at low water potentials which led to plasmolysis of the guard cells. In contrast, stomata of P. deltoides and a P. trichocarpa×deltoides hybrid closed when the guard cells lost turgor. A period of water stress preconditioning resulted in modified stomatal responses in P. trichocarpa such that stomata of stressed and re-watered plants nearly closed when guard cell turgor was lost.  相似文献   

11.
Summary Interspecific pollen competition among Populus deltoides, P. nigra and P. maximowiczii in fertilizing P. deltoides ovules was studied by using a pollen mixture technique, allozymes and leaf morphology. The frequencies of F1 seedlings of different paternities in pollen-mix crosses showed highly significant (P<0.01) departures from the 11 ratio expected if pollen selection was random. P. deltoides pollen was the most competitive. The mean percentages of F1 seedlings of P. deltoides paternity in crosses with pollen mixes P. deltodes + P. nigra, P. deltoides + P. maximowiczii, and P. deltoides + P. nigra + P. maximowiczii were 95.0, 92.5, and 84.8, respectively. P. maximowiczii pollen was more competitive than P. nigra pollen, which was at a selective disadvantage. An average of 83.6% of F1 progenies of the eight crosses with P. nigra + P. maximowiczii pollen showed P. maximowiczii paternity. Also, in four crosses with P. deltoides + P. nigra + P. maximowiczii pollen, the relative proportion of P. deltoides × P. maximowiczii seedlings (13.4%) was higher than that of P. deltoides × P. nigra seedlings (1.8%). Pollen proportions in the pollen mixes and pollen size did not significantly affect the competitive ability of the pollen. The relative pollen competitive ability indicated reproductive affinities among the species.  相似文献   

12.
Summary The inheritance of chloroplast (cp) DNA was examined in F1 hybrid progenies of two Populus deltoides intraspecific controlled crosses and three P. deltoides × P. nigra and two P. deltoides × P. maximowiczii interspecific controlled crosses by restriction fragment analysis. Southern blots of restriction digests of parental and progeny DNAs were hybridized to cloned cpDNA fragments of Petunia hybrida. Sixteen enzymes and five heterologous cpDNA probes were used to screen restriction fragment polymorphisms among the parents. The mode of cpDNA inheritance was demonstrated in progenies of P. deltoides × P. nigra crosses with 26 restriction fragment polymorphisms of cpDNA differentiating P. deltoides from P. nigra, as revealed by 12 enzyme-probe combinations, and in progenies of P. deltoides × P. maximowiczii crosses with 12 restriction fragment polymorphisms separating P. deltoides from P. maximowiczii, as revealed by 7 restriction enzyme-probe combinations. In all cases, F1 offspring of P. deltoides × P. nigra and P. deltoides × P. maximowiczii crosses had cpDNA restriction fragments of only their maternal P. deltoides parent. The results clearly demonstrated uniparental-maternal inheritance of the chloroplast genome in interspecific hybrids of P. deltoides with P. nigra and P. maximowiczii. Intraspecific P. deltoides hybrids also had the same cpDNA restriction fragments as their maternal parent. Maternal inheritance of the chloroplast genome in Populus is in agreement with what has been observed for most other angiosperms.  相似文献   

13.
Restriction fragment analysis was conducted to determine interspecific chloroplast DNA (cpDNA) variation and genetic relationships among Populus deltoides, P. nigra, P. x canadensis (P. deltoides x P. nigra), and P. maximowiczii. Total cellular DNAs of these poplars were digested with 16 restriction endonucleases, and Southern blots of the restriction digests were probed with six different cloned cpDNA fragments from Petunia. P. deltoides, P. nigra, and P. maximowiczii each had a distinct chloroplast genome, separated by many restriction-site and restriction-fragment-length mutations, predominantly in the large single-copy region of the genome. P. x canadensis shared the same cpDNA restriction fragment patterns as P. deltoides var. deltoides. P. nigra was most diverged from P. deltoides, and P. deltoides showed close cpDNA relationships to P. maximowiczii. Nucleotide substitutions per site in cpDNA were 0.0036 between P. deltoides and P. maximowiczii, 0.0071 between P. nigra and P. maximowiczii, and 0.0077 between P. deltoides and P. nigra. We suggest that P. nigra should be classified in a new separate section, the Nigrae.  相似文献   

14.
Summary While constructing a genetic linkage map of a hybrid poplar genome (Populus trichocarpa x P. deltoides), we identified several restriction fragment length polymorphismus (RFLPs) for which the parental trees are heterozygous. Although 8 of the 11 F1 hybrid offspring inherited, as expected, single RFLP alleles from each parent, 3 F1 trees in the mapping pedigree inherited both maternal alleles along with a single paternal allele at some loci. Aneuploidy or polyploidy in these 3 F1 trees due to partial or complete nondisj unction during female gametogenesis is the simplest explanation for this finding. Of the 3 f1 offspring with supernumerary RFLP alleles 2 have triploid nuclear DNA contents as measured by fluorescence flow cytometry; the 3rd F1 with supernumerary alleles has a sub-triploid nuclear DNA content and is probably aneuploid. Among the tri/aneuploid hybrids, leaf quantitative traits either are skewed toward those values characteristic of the P. trichocarpa female parent (adaxial stomate density, petiole length: blade length ratio; abaxial color) or show transgressive variation (epidermal cell size). Abaxial leaf color was used to screen a large population of P. trichocarpa x P. deltoides hybrids for further evidence of tri/aneuploidy. In each case where a white abaxial leaf surface was observed and the nuclear DNA content measured, the hybrid proved to be tri/aneuploid. All sexually mature female triploids examined were sterile, although the inflorescences completed their development in the absence of embryo formation. The (probably) aneuploid F1 hybrid is a fertile female. Of 15 female P. trichocarpa parents used in crosses to P. deltoides, 10 produced one or more tri/aneuploid hybrid offspring. In an intraspecific cross using a P. trichocarpa female that had produced triploid hybrids with five different P. deltoides males, no tri/aneuploid offpsring were found.  相似文献   

15.
Trees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large‐scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC). Pure natives (P. balsamifera and P. deltoides spp. deltoides), native hybrids (P. deltoides × P. balsamifera), and exotic hybrids (trees bearing Populus nigra and P. maximowiczii genetic components) were screened for reproductive biomass, yield, seed germination, and fungal disease susceptibility. Exotic hybrids expressed fitness traits intermediate to pure species and were not significantly different from native hybrids. They formed fully viable seed and backcrossed predominantly with P. balsamifera. These data show that exotic hybrids were not unfit and were capable of establishing and competing within the native stand. Future research will seek to examine the impact of exotic gene regions on associated biotic communities to fully quantify the risk exotic poplars pose to native poplar forests.  相似文献   

16.
The n‐alkane composition in the leaf cuticular waxes of natural populations of Bosnian pine (Pinus heldreichii), Austrian pine (P. nigra), and Macedonian pine (P. peuce) was compared for the first time. The range of n‐alkanes was wider in P. nigra (C16 – C33) than in P. heldreichii and P. peuce (C18 – C33). Species also diverged in abundance and range of dominant n‐alkanes (P. heldreichii: C23, C27, and C25; P. nigra: C25, C27, C29, and C23; P. peuce: C29, C25, C27, and C23). Multivariate statistical analyses (PCA, DA, and CA) generally pointed out separation of populations of P. nigra from populations of P. heldreichii and P. peuce (which were, to a greater or lesser extent, separated too). However, position of these species on the basis of n‐alkane composition was in accordance neither with infrageneric classification nor with recent molecular and terpene investigations.  相似文献   

17.
Species‐specific microsatellite markers were obtained for the unambiguous recognition of five poplar species of ecological and commercial importance to eastern North America: the native species Populus balsamifera and Populus deltoides, the exotic species Populus maximowiczii, Populus nigra, Populus trichocarpa and their interspecific hybrids. Forty‐four of 71 tested primer pairs amplified simple sequence repeat (SSR) loci for all five taxa. Six of these loci showed non‐overlapping allelic diversity between species, including fixed differences. Together, they were useful to identify unambiguously the five taxa and to validate parental contributions in a group of hybrid progeny. These markers will be invaluable to detect gene flow from plantations of exotic poplar into adjacent stands of native species and between the two potentially hybridizing native species P. balsamifera and P. deltoides.  相似文献   

18.
We examined intraspecific chloroplast (cp) DNA variation within Populus deltoides, P. nigra, and P. maximowiczii by restriction fragment analysis using 16 restriction endonucleases and six heterologous probes of cloned Petunia cpDNA fragments. All three Populus species showed intraspecific cpDNA variation, which was intra- and inter-varietal in P. deltoides, intervarietal in P. nigra, and origin-specific in P. maximowiczii. Two varieties of P. deltoides, var deltoides and var occidentalis, showed distinct cp genomes/DNA. Three distinct cp genomes/DNA, separated by a loss or gain of 1 EcoRV restriction site and/or 1 restriction fragment length polymorphism (RFLP), were observed among the individuals of P. deltoides var deltoides. Within P. nigra, cpDNA of var italica was distinct from that of vars nigra and plantierensis by one RFLP and by a loss or gain of one BamHI restriction site. Populus maximowiczii clones of Chinese origin were separated from those of Japanese origin by a gain or loss of one ClaI restriction site in their cpDNA. The estimate of nucleotide substitutions per site in cpDNA was 0.07% between two varieties of P. deltoides, 0.05% between var italica and var nigra or plantierensis of P. nigra, and 0.01% between Japanese and Chinese accessions of P. maximowiczii.  相似文献   

19.
Genome-wide comparison of two poplar genotypes with different growth rates   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号