首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transendothelial passage of horseradish peroxidase, injected intravenously into mice, was studied at the ultrastructural level in capillaries of cardiac and skeletal muscle. Peroxidase appeared to permeate endothelial intercellular clefts and cell junctions. Abnormal peroxidase-induced vascular leakage was excluded. Neutral lanthanum tracer gave similar results. The endothelial cell junctions were considered to be maculae occludentes, with gaps of about 40 A in width between the maculae, rather than zonulae occludentes. Some observations in favor of concurrent vesicular transport of peroxidase were also made. It is concluded that the endothelial cell junctions are most likely to be the morphological equivalent of the small pore system proposed by physiologists for the passage of small, lipid-insoluble molecules across the endothelium.  相似文献   

2.
N J Lane 《Tissue & cell》1979,11(3):481-506
Both rectal pads of the cockroach and rectal papillae of the blowfly possess highly infolded lateral borders; these are associated by desmosomes and septate junctions that maintain the physical integrity of the cell layer at the luminal and basal intercellular regions. Adjacent cells are coupled by gap junctions that allow for cell-to-cell communication and which occur at intervals along the undulating lateral clefts. In rectal pads, occluding basal tight junctions are found as well as extensive scalariform junctions. The latter, like the stacked membrane infoldings of rectal papillae, exhibit intercellular columns and numerous intramembranous P face particles; these are undoubtedly involved in ion transport. In the inter-stack clefts of papillae, reticular septate junctions are encountered which, after freeze-fracture, possess a striking network of PF ridges and EF grooves that are discontinuous and not always complementary. These may serve to regulate the speed and extent of distension of the clefts during solute movement to allow for even and effective fluid flow in this transporting epithelium.  相似文献   

3.
Summary Protein uptake from cerebral ventricles into the epithelium of the choroid plexus, and transport across the epithelium were studied ultrastructurally in rats. Horseradish peroxidase (HRP, MW 40,000) was used as protein tracer. Steady-state ventriculo-cisternal perfusion with subatmospheric pressure (-10cm of water) in the ventricular system was applied. HRP dissolved in artificial CSF was perfused from the lateral ventricles to cisterna magna for various times, and ventriculo-cisternal perfusion, vascular perfusion or immersion fixation with a formaldehyde-glutaraldehyde solution was performed.Coated micropinocytic vesicles containing HRP were seen both connected with the apical, lateral and basal epithelial surface and within the cells. Heavily HRP-labeled vesicles were often fused with the lining membrane of slightly labeled or unlabeled intercellular spaces. Since the apical tight junctions of the epithelium never appeared open or never contained HRP in the spaces between the fusion points, and since the intercellular spaces between adjacent epithelial cells below the junctions only infrequently contained tracer after 5 min, by increasing amounts after 15–60 min of HRP perfusion, a vesicular transport of HRP from the apical epithelial surface to the intercellular spaces, bypassing the tight junctions, is suggested.In addition to the transepithelial transport, micropinocytic vesicles also transported HRP to the lysosomal apparatus of the epithelial cells. With increasing length of exposure to HRP, a sequence of HRP-labeled structures could be evaluated, from slightly labeled apical vacuoles and multivesicular bodies to very heavily labeled dense bodies.  相似文献   

4.
In model experiments with the use of horseradish peroxidase (HRP), two pathways of transport of substances to the adenohypophysis were studied, as well as the distribution of the tracer in the latter organ. The first pathway allows the tracer to penetrate from the intercellular milieu of the median eminence below the meningeal sheath covering the adenohypophysis to the surface of the pituitary gland. The second pathway transports the tracer via the capillaries of the hypophysial portal circulation to the interior of the glandular parenchyma. These results show (i) that the meningeal sheath establishes a barrier between the hemal milieu of the pituitary and the hemal milieu of the general circulation, and (ii) that the tracer reaching the adenohypophysis via both routes is found in the intercellular clefts of the glandular parenchyma only to a limited extent. By means of conventional electron microscopy, intercellular contacts between hormone-producing adenohypophysial cells are observed resembling focal tight junctions. Between the membranes of entwined processes of stellate cells, only small maculae adhaerentes are found. Freeze-etch studies on unfixed adenohypophyses reveal zonulae occludentes between the durafacing layers of the meningeal sheath and focal maculae occludentes between parenchymal cells. Additional tissue-culture experiments with adenohypophysial cells directly exposed to HRP reveal a gradual cessation of the labeling process in the intercellular clefts in accord with the observations from the in-vivo experiments, as well as intercellular focal tight junctions between individual hormone-producing cells.  相似文献   

5.
Dose-dependent contractions of the in vitro swine coronary artery were induced by application of histamine and acetylcholine, but not of angiotensin II, ergonovine, noradrenaline, prostaglandin F2 alpha and serotonin. Ultrastructural changes especially of the tunica intima during the contractions were observed at 2, 5 and 30 min after application of histamine and acetylcholine. The intimal gutter spirally running along the longitudinal axis of the vessel was obscured, and the intimal surface became extensively indented. Exclusively in the histamine-treated samples, the increase in number and size of the intracellular vacuoles and the dilation of the intercellular clefts to the extent of the intercellular vacuoles were observed in the endothelium. Moreover, the enhancement of the endothelial permeability was indicated by the marker experiments using horseradish peroxidase. Such endothelial cell damages and the enhancement of the endothelial permeability may amplify the coronary artery contraction.  相似文献   

6.
Summary The middle ear capillaries of the guinea pig have fenestrated endothelium, and the intercellular clefts are closed by tight junctions. Intracardially injected horseradish peroxidase penetrates the fenestrae of the endothelium and gains access to the extra-cellular space beneath the epithelium, and the intercellular clefts of the epithelium.  相似文献   

7.
The permeability of the alveolar-capillary membrane to a small molecular weight protein, horseradish peroxidase (HRP), was investigated by means of ultrastructural cytochemistry. Mice were injected intravenously with HRP and sacrificed at varying intervals. Experiments with intranasally instilled HRP were also carried out. The tissue was fixed in formaldehyde-glutaraldehyde fixative. Frozen sections were cut, incubated in Graham and Karnovsky's medium for demonstrating HRP activity, postfixed in OsO4, and processed for electron microscopy. 90 sec after injection, HRP had passed through endothelial junctions into underlying basement membranes, but was stopped from entering the alveolar space by zonulae occludentes between epithelial cells. HRP was demonstrated in pinocytotic vesicles of both endothelial and epithelial cells, but the role of these vesicles in net protein transport appeared to be minimal. Intranasally instilled HRP was similarly prevented from permeating the underlying basement membrane by epithelial zonulae occludentes. Pulmonary endothelial intercellular clefts stained with uranyl acetate appeared to contain maculae occludentes rather than zonulae occludentes. HRP did not alter the ultrastructure of these junctions.  相似文献   

8.
Estimates of capillary permeability for hydrophilic solutes are generally interpreted in terms of Pappenheimer's pore theory. The intercellular clefts of the capillary endothelium are considered a likely structural equivalent to the postulated system of small hydrophilic pores. However, correlation of permeabilities and cleft structure requires more knowledge of the detailed structure of the tight junctions which appear to obliterate the clefts. In this study the organization of tight junctions in endothelium of rat heart capillaries has been investigated by serial-section electron microscopy. Cross-sectioned intercellular clefts were photographed in a series of 190 consecutive sections (average thickness approximately equal to 40 nm) and in a series of 16 consecutive sections (average thickness approximately equal to 12.5 nm). Seventy-one junctional segments, each extending over 5-32 consecutive sections, were reconstructed. The endothelial junctions were organized as irregular networks of lines of contact between neighboring cells. Six pathways circumventing the lines of contact were followed through the entire junctional region of the clefts providing a tortuous pathway connecting the luminal and abluminal aspects of the clefts. Moreover, the individual lines of contact were provided with discrete discontinuities, apparently 4 nm wide. The observations support the notion that the paracellular pathway in capillary endothelium is permeable not only to small solutes but also to certain macromolecules.  相似文献   

9.
Summary Eyes of vervets were fixed by several methods, and the iris capillaries were studied by electron microscopy. The capillaries have a continuous endothelium without fenestrae. Tight junctions are always present in intercellular clefts of the endothelium, and marginal folds are frequent. A rather thick basement membrane is present, similar to what is found in the human iris. Pericytes are frequent, and specialized areas of membrane contact between endothelium and pericytes are described. Peculiar marginal vacuoles are found in the endothelium after perfusion with hypertonic fixative.  相似文献   

10.
Endogenous albumin was revealed over cellular structures of rat ascendent aorta endothelia and mesothelium, with high resolution and specificity, by applying the protein A-gold immunocytochemical approach. This approach allows albumin distribution to be studied under steady-state conditions. The cellular layers evaluated were the aortic endothelium, the capillary endothelium (vasa vasorum), and the mesothelium externally lining the aorta at this level. Gold particles, revealing albumin antigenic sites, were preferentially located over plasmalemmal vesicles and intercellular clefts of endothelial and mesothelial cells, though with different labeling intensities. The interstitial space was also labeled. Morphometrical evaluation of plasmalemmal vesicles demonstrated a higher surface density for these structures in capillary endothelial cells (12%) compared with those in aortic endothelial (5%) and mesothelial cells (2%). Quantitation of gold labeling intensities over these structures revealed a higher labeling over plasmalemmal vesicles of capillary endothelium than over those of aortic endothelium and mesothelium. This result, together with the higher surface density of plasmalemmal vesicles found in capillary endothelium, suggest an important role of these structures in the transendothelial passage of endogenous albumin, particularly for capillary endothelium. On the other hand, labeling densities over mesothelial clefts were found to be higher than those of capillary and aortic endothelia. Results from this study concur with the proposal of a differential passage of albumin according to the cell lining considered, and suggest to a role for mesothelial intercellular clefts in contributing to the presence of albumin in interstitial spaces.  相似文献   

11.
Certain junctions between ependymal cells, between astrocytes, and between some electrically coupled neurons have heretofore been regarded as tight, pentalaminar occlusions of the intercellular cleft. These junctions are now redefined in terms of their configuration after treatment of brain tissue in uranyl acetate before dehydration. Instead of a median dense lamina, they are bisected by a median gap 20–30 A wide which is continuous with the rest of the interspace. The patency of these "gap junctions" is further demonstrated by the penetration of horseradish peroxidase or lanthanum into the median gap, the latter tracer delineating there a polygonal substructure. However, either tracer can circumvent gap junctions because they are plaque-shaped rather than complete, circumferential belts. Tight junctions, which retain a pentalaminar appearance after uranyl acetate block treatment, are restricted primarily to the endothelium of parenchymal capillaries and the epithelium of the choroid plexus. They form rows of extensive, overlapping occlusions of the interspace and are neither circumvented nor penetrated by peroxidase and lanthanum. These junctions are morphologically distinguishable from the "labile" pentalaminar appositions which appear or disappear according to the preparative method and which do not interfere with the intercellular movement of tracers. Therefore, the interspaces of the brain are generally patent, allowing intercellular movement of colloidal materials. Endothelial and epithelial tight junctions occlude the interspaces between blood and parenchyma or cerebral ventricles, thereby constituting a structural basis for the blood-brain and blood-cerebrospinal fluid barriers.  相似文献   

12.
Summary The avascular ventral nerve cord of the moth, Manduca sexta, possesses an extensive dorsal mass of connective tissue in which lie fibroblasts that produce a collagen-like protein. The lateral and ventral surfaces of the nerve cord are ensheathed by an acellular neural lamella. Beneath this lies a layer of microtubule-laden perineurial cells which are separated from one another at their peripheral borders by lacunae containing electron-opaque material to which the cells are attached by hemi-desmosomes. Beyond these spaces, narrow intercellular clefts occur between the interdigitating perineurial plasma membranes; these are then connected by both gap and tight junctions. The axons beneath are surrounded by glia which also contain many microtubules and which are linked to one another by desmosomes and tight junctions.When intact nerve cords are incubated in horseradish peroxidase, reaction product is subsequently found within the neural lamella as well as in the lacunae and clefts between perineurial cells, but not beyond this level. Desheathed preparations, however, contain peroxidase within the cytoplasm of the exposed glial cells. Lanthanum penetrates the neural lamella and the lacunae, clefts and gap junctions between adjacent perineurial cells, but no further. It therefore appears that the tight junctions in the perineurium may be the site of restriction to the entry of ions and molecules, the existence of which has been suggested previously by electrophysiological investigations.I am grateful to Miss Yvonne R. Carter for her invaluable technical assistance and to Dr. J.E. Treherne and Dr. D.B. Sattelle for helpful discussions.  相似文献   

13.
The permeability of the alveolar-capillary membrane of newborn and adult mice to horseradish peroxidase (HRP) and catalase was studied by means of ultrastructural cytochemistry, and the permeability to ferritin was studied by electron microscopy. The influence of varying volumes of intravenously injected fluid on the rate of leakage of the tracers from pulmonary capillaries was examined. The tracers were injected intravenously and the mice were sacrificed at timed intervals. Experiments on newborn mice with intranasally instilled HRP were also done. The tissues were fixed in formaldehyde-glutaraldehyde fixative. Chopped sections were incubated in Graham and Karnovsky's medium for peroxidase and in a modification of this medium for catalase. Tissues were postfixed in OsO4 and processed for electron microscopy. In both newborn and adult mice, the ready passage of peroxidase through endothelial clefts was dependent on the injection of the tracer in large volumes of saline. When the tracer was injected in small volumes of saline, its passage through endothelial clefts was greatly reduced. Endothelial junctions of newborn mice were somewhat more permeable to HRP than those of adult mice. In all animals, alveolar epithelial junctions were impermeable to HRP. Catalase and ferritin did not pass through endothelial junctions. Intranasally instilled HRP in newborn mice was taken up by pinocytotic vesicles and tubules of flat alveolar cells.  相似文献   

14.
The blood-brain barrier in a reptile, Anolis carolinensis   总被引:1,自引:0,他引:1  
An electron microscopic study was made of the ultrastructure and permeability of the capillaries in the cerebral hemispheres of the lizard, Anolis carolinensis. The brain of Anolis is vascularized by a loop-type pattern consisting exclusively of arteriovenous capillary loops. The ultrastructure of the endothelium and the arrangement of the various layers from the capillary lumen to the central nervous tissue is similar to that of mammals. The endothelial cells form a continuous layer around the lumen and are joined by tight interendothelial junctions. The basal lamina of the endothelium is also continuous and encloses pericyte processes. The cells of the nervous tissue rest directly on the basal lamina of the capillary and are separated from each other by a 200 Å space. Intravenously injected horseradish peroxidase (MW 40,000) and ferritin (MW 500,000) were used to study the permeability of the capillaries. The entry of horseradish peroxidase and ferritin into the intercellular spaces of the brain is restricted by the tightness of the interendothelial junctions. No vesicular transport of either tracer occurs; however, ferritin does enter the endothelial cells in vacuoles. No tracer molecules are present in the basal lamina, pericytes, or nervous tissue. The different responses of the endothelial cell to the tracers used in this study suggest that endocytotic activities of endothelial cells involve different processes. Vacuoles formed by marginal folds, vacuoles formed by endothelial surface projections or deep invaginations of the plasma membrane, 600–800 Å vesicles, and coated vesicles all seem to differ in the nature of the substances which they endocytose.  相似文献   

15.
The role of actin filaments in the development of cellular shape in the mesenteric mesothelium of the bullfrog was studied by using a simple, new technique for making en face preparations of mesothelial sheets. By using these mesothelial cell preparations, the distribution of actin was determined by means of fluorescence microscopy with 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin and that of myosin by means of immunofluorescence microscopy. Although fluorescence produced by both NBD-phallacidin and antimyosin staining was found exclusively along the margins of the cells, its intensity was altered in correspondence with changes in cell shape. For instance, tadpole-type mesothelial cells with either an irregular or very slender cell shape showed very weak fluorescence. On the other hand, frog-type mesothelial cells with a polygonal shape showed intense fluorescence at their margins and had circumferential bundles of actin filaments at their apices. Furthermore, intercellular junctions between the mesothelial cells developed as the cell shape became polygonal during metamorphosis. The present study showed that development of circumferential bundles of actin filaments and intercellular junctions may serve to establish and maintain the definitive polygonal cellular pattern in the mesenteric mesothelium of the bullfrog.  相似文献   

16.
The Onychophora are a rare group of primitive invertebrates, relatively little investigated. Tissues from a range of their digestive, secretory and excretory organs have been examined to establish the features of their intercellular junctions. Glutaraldehyde-fixed cells from the midgut and rectum, as well as the renal organ, mucous gland, salivary gland, epidermis, CNS and testis from specimens of Peripatus acacioi, have been studied by thin section and freeze-fracture electron microscopy. Adjacent cells in the epithelia of all these tissues are joined by apical zonulae adhaerentes, associated with a thick band of cytoskeletal fibrils. These are followed by regular intercellular junctional clefts, which, in thin sections, have the dense, relatively unstriated, appearance of smooth septate junctions (SSJ). However, freeze-fracture reveals that only the midgut has what appear to be characteristic SSJs with parallel alignments of closely-packed rows of intramembranous particles (IMPs); these IMPs are much lower in profile than is common in such junctions elsewhere. The mucous gland, testis, rectal and renal tissues exhibit, after freeze-fracture, the characteristic features of pleated septate junctions (PSJ) with undulating rows of aligned but separated junctional particles. Suggestions of tricellular septate junctions are found in replicas at the interfaces between 3 cells. In addition, renal tissues exhibit scalariform junctions in the basal regions of their cells. Between these basal scalariform and apical septate junctions, other junctions with reduced intercellular clefts are observed in these renal tissues as well as the rectum, but these appear not to be gap junctions. Such have not been unequivocally observed in any of the tissues studied from this primitive organism; the same is true of tight junctions.  相似文献   

17.
Horseradish peroxidase was administered to mice by intravenous injection, and its distribution in cerebral cortex studied with a recently available technique for localizing peroxidase with the electron microscope. Brains were fixed by either immersion or vascular perfusion 10–60 min after administration of various doses of peroxidase. Exogenous peroxidase was localized in the lumina of blood vessels and in some micropinocytotic vesicles within endothelial cells; none was found beyond the vascular endothelium. Micropinocytotic vesicles were few in number and did not appear to transport peroxidase while tight junctions between endothelial cells were probably responsible for preventing its intercellular passage. Our findings therefore localize, at a fine structural level, a "barrier" to the passage of peroxidase at the endothelium of vessels in the cerebral cortex. The significance of these findings is discussed, particularly with reference to a recent study in which similar techniques were applied to capillaries in heart and skeletal muscle.  相似文献   

18.
Organization of cell junctions in the peritoneal mesothelium   总被引:5,自引:1,他引:4       下载免费PDF全文
Intercellular junctions in the mesothelium of the visceral (mesentery and omentum), and parietal (diaphragm, pre-aortic, and iliac region) peritoneum were examined in rats and mice by using freeze-cleaved preparations. In addition to usual intercellular junctions (cell body junctions), special junctions are found between cell processes and the surface of the neighboring cell (cell process junctions). Cell body junctions are provided with tight junctions and communicating (gap) junctions. The former consist of one to two junctional strands which show a characteristic staggered arrangement, and focal discontinuities. In cell process junctions, the strands form loops or appear as short, free-ending elements; their polymorphism suggests considerable lability, probably in connection with their assembly and disassembly. The existence of free-ending strands indicates that such structures can be used as attachment devices without being concomitantly involved in the formation of occluding zonules. In both types of junctions, the strands can be resolved into bars, approximately 80- 100nm long, frequently provided with terminal enlargements and intercalated particles which occur singly or in small clusters. These particles are morphologically similar to those present in communicating (gap) junctions. The mesothelium is also provided with isolate composite macular junctions. Throughout the mesothelium, the cleavage plane follows the outer contour of junctional strands and particles, suggesting that strand-to-strand interactions in the apposed membranes are weaker than interactions between each strand and underlying cytoplasmic structures. In their general geometry and cleavage characteristics, the mesothelial junctions resemble the junctions found in the venular endothelium.  相似文献   

19.
A mathematical model is presented herein to determine the effect of convection on macromolecular transport across an artery wall due to transmural or osmotic pressure differences. The model is based on an extension of the leaky junction-cell turnover model of Weinbaum et al. (1985) to take into account a combined transport mechanism of convection and diffusion and also to provide the leaky junctions in the model with a finite resistance, thus allowing the results to be extended to intercellular clefts with a retarding extracellular matrix or to macromolecules whose dimensions are nearly the same as the junctional width. The results from this improved model show that the effect of pressure on transarterial macromolecular transport is important especially for cell turnover rates greater than 1% and that significant changes in the equilibrium balance of the cholesterol carrying LDL molecules in the arterial wall can occur due to a very small fraction of leaky junctions. At very high turnover rates (large fraction of leaky junctions) the effect of convection on macromolecular transport becomes dramatic and explains the very large increases in uptake observed experimentally after artificially inducing extensive endothelial damage.  相似文献   

20.
Summary The ability of osteoclasts to take up protein by endocytosis was examined using peroxidase as a tracer. 5 minutes after intravenous injection the tracer was located around the osteoclast and in the space between its ruffled border and the bone. Inside the cell peroxidase was located in some cytoplasmic vacuoles behind the ruffled border and along the cell membrane. 40 minutes after injection there was a large increase in the number of membrane limited cytoplasmic structures containing reaction product, these being distributed in general throughout the cell but with a high concentration behind the ruffled border. These structures which were filled throughout with peroxidase represented either vacuoles or bodies.The study demonstrates, first that the osteoclast is able to absorb peroxidase, second that a transport of material occurs from the periphery towards the central part of the cell. From the extensive endocytosis along the ruffled border, where the bone resorption takes place, it is suggested that also organic components of the bone may be taken up by the osteoclast under bone resorption in a manner similar to that for peroxidase.This research was supported by the Danish Research Council. Grant. no. 512-819. I wish to thank Mrs. Ruth Nielsen for skilful technical assistance during this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号