首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the NAD(P)H-dehydrogenase complex in adaptationto salt stress was examined in an ndhB-inacti-vated mutant ofthe cyanobacterium Synechocystis sp. PCC 6803. Wild-type cellsand ndhB-inactivated mutant cells grew at similar rates underconditions of low salinity (<0.6M NaCl) and high CO2 (3%).However, when the concentration of NaCl in the culture mediumwas higher than 0.6 M, the mutant cells grew much more slowlythan the wild-type cells. Upon addition of high concentrationsof NaCl, the oxygen-evolving activity was rapidly inhibitedbut then it recovered, with the rate of recovery depending onthe concentration of NaCl. The recovery of the mutant cellswas significantly delayed when the concentration of NaCl wasabove 0.3 M. At 0.9 M NaCl, wild-type cells recovered with ahalf time of about 40 min, while mutant cells did not recover.The kinetics of changes in Chi fluorescence confirmed theseresults. In wild-type cells, input of electrons from the cytosolto PSI via the NAD(P)H-dehy-drogenase complex increased uponsalt shock. It appears, therefore, that the electron flow fromthe cytosol to PSI via NAD(P)H-dehydrogenase is essential forthe adaptation of cyanobacteria to salt shock. (Received June 11, 1997; Accepted September 24, 1997)  相似文献   

2.
To further study mechanisms of coping with osmotic stress-low water activity, mutants of Staphylococcus aureus with transposon Tn917-lacZ-induced NaCl sensitivity were selected for impaired ability to grow on solid defined medium containing 2 M NaCl. Southern hybridization experiments showed that NaCl-sensitive mutants had a single copy of the transposon inserted into a DNA fragment of the same size in each mutant. These NaCl-sensitive mutants had an extremely long lag phase (60 to 70 h) in defined medium containing 2.5 M NaCl. The osmoprotectants glycine betaine and choline (which is oxidized to glycine betaine) dramatically shortened the lag phase, whereas L-proline and proline betaine, which are effective osmoprotectants for the wild type, were ineffective. Electron microscopic observations of the NaCl-sensitive mutant under NaCl stress conditions revealed large, pseudomulticellular cells similar to those observed previously in the wild type under the same conditions. Glycine betaine, but not L-proline, corrected the morphological abnormalities. Studies of the uptake of L-[14C]proline and [14C]glycine betaine upon osmotic upshock revealed that the mutant was not defective in the uptake of either osmoprotectant. Comparison of pool K+, amino acid, and glycine betaine levels under NaCl stress conditions in the mutant and the wild type revealed no striking differences. Glycine betaine appears to have additional beneficial effects on NaCl-stressed cells beyond those of other osmoprotectants. The NaCl stress protein responses of the wild type and the NaCl-sensitive mutant were characterized and compared by labeling with L-[35 S]methionine and two-dimensional gel electrophoresis. The synthesis of 10 proteins increased in the wild type in response to NaCl stress, whereas the synthesis of these 10 proteins plus 2 others increased in response to NaCl stress in the NaCl-sensitive mutant. Five proteins, three of which were NaCl stress proteins, were produced in elevated amounts in the NaCl-sensitive mutant under unstressed conditions compared to the wild type. The presence of glycine betaine during NaCl stress decreased the production of three NaCl stress proteins in the mutant versus one in the wild type.  相似文献   

3.
We have previously reported that a receptor-type adenylyl cyclase (CyaA) of Myxococcus xanthus undergoes an osmosensor mainly during spore germination (Y. Kimura et al., J. Bacteriol. 184:3578-3585, 2002). In the present study, we cloned another receptor-type adenylyl cyclase gene (cyaB) and characterized the function of the cyaB-encoded protein. Disruption of cyaB generates a mutant that showed growth retardation at high ionic (NaCl) or high nonionic (sucrose) osmolarity. When vegetative cells were stimulated with 0.15 M NaCl, the increases in intracellular cyclic AMP levels of cyaB mutant cells were lower than those of wild-type cells. Under nonionic osmostress, the cyaB mutant exhibited reduced spore germination; however, the germination rate of the cyaB mutant was significantly higher than that of the cyaA mutant.  相似文献   

4.
5.
A preincubation of fission yeast cells with hyperosmotic solution improved the electro-transformation efficiency. The efficiency increased approximately five-fold when the cells were preincubated with 2.0 M sorbitol and 1.5 M NaCl at 30 degrees C for 60 min before an applied high electric pulse. Losses in the efficiency of the cells after hyperosmotic stress above 2.5 M sorbitol and 2.0 M NaCl were directly related to the marked reduction of viability. The efficiency at 2.0 M sorbitol gradually increased until 60 min of the preincubation period, but longer exposure resulted in a gradual decrease. On the other hand, when the cells of the osmotic-sensitive mutant were preincubated with isosmotic solution of 0.5 M sorbitol, the efficiency was also dramatically increased by approximately 15-fold. These improvements in efficiency were observed in sublethal conditions of osmotic stress regardless of osmoticums and strains.  相似文献   

6.
The agp gene encoding the ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis and glucosylglycerol formation. By in vitro DNA recombination technology, a mutant with partial deletion of agp gene in the cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutant could not synthesize glycogen or the osmoprotective substance glucosylglycerol. In the mutant cells grown in the medium containing 0.9 M NaCl for 96 h, no glucosylglycerol was detected and the total amount of sucrose was 29 times of that of in wild-type cells. Furthermore, the agp deletion mutant could tolerate up to 0.9 M salt concentration. Our results suggest that sucrose might act as a similar potent osmoprotectant as glucosylglycerol in cyanobacterium Synechocystis sp. PCC 6803.  相似文献   

7.
Changes in polyol production and the intracellular amino acid pool were followed during the growth cycle of Debaryomyces hansenii in 4 mM and 2.7 M NaCl media. The intracellular levels of polyols were markedly enhanced by high salinity, the dominant solutes being glycerol in log phase cells and arabinitol in stationary phase cells. At low salinity arabinitol was the most prominent intracellular solute throughout the growth cycle. There were no major changes in the composition of the total amino acid pool with changes in cultural salinity. The amount of total free amino acids related to cell dry weight was 15–50% lower in cells cultured in 2.7 M NaCl as compared to 4 mM NaCl media.After subtraction of contributions from intracellular polyols the calculated cellular C/N ratio was found to be unaffected by cultural age and salinity during the late log and early stationary phase. On prolonged incubation of stationary phase cells, this ratio decreased, particularly at high salinity. The sensitivity of cells towards exposure to high salinity was measured in terms of the length of the lag phase after transference to 2.7 M NaCl media. This lag phase decreased with increasing intracellular polyol concentrations. At a given polyol content, stationary phase cells were considerably less sensitive than were log phase cells.When cultured at high salinity the mutant strain, 26-2b, grew more slowly and retained less of the total polyol produced during the early growth stages than did the wildtype. Exogenously supplied mannitol, arabinitol, and glycerol stimulated the growth of the mutant in saline media. Erythritol was without effect.Abbreviations GLC gas-liquid chromatography - TCA trichloroacetic acid  相似文献   

8.
A respiration-deficient (RD) mutant was isolated from the petite-negative, salt-tolerant yeast Zygosaccharomyces rouxii. One strain among sixteen glycerol-non-utilizing mutants exhibited vigorous liberation of CO2 but no uptake of O2. Furthermore, this strain lacked cytochrome aa3 and had a reduced level of cytochrome b. The few mitochondria found in cells of this strain contained few or no cristae. Salt tolerance and intracellular accumulation of glycerol by the RD strain were almost equal to that of the wild-type strain in media containing NaCl up to 2.5 M. In media with more than 3 M NaCl, the growth of the RD mutant was retarded and the intracellular accumulation of glycerol was depressed in spite of ample production.  相似文献   

9.
Overproduction of animal cell death suppressors Bcl-xL and Ced-9 conferred enhanced resistance to UV-B and paraquat treatment in tobacco plants [Mitsuhara et al. (1999) CURR: Biol. 9: 775]. We report here that the progeny could germinate in 0.2 M NaCl or at 10 degrees C under light, while control plants could not. Suspension-cultured Bcl cells resisted NaCl treatment maintaining an active mitochondrial membrane potential for longer than control cells. When intracellular pH was determined by in vivo (31)P-NMR, immediate cytoplasmic acidification by 0.3 M NaCl treatment in control cells was found to be suppressed in transgenic cells. Monitoring of cytoplasmic and vacuolar pHs in control cells indicated the vacuole was disrupted 40 min after 0.5 M NaCl treatment, while the compartment between the cytoplasm and vacuole was likely to remain intact in Bcl cells for 100 min. Enhanced shoot regeneration from cut leaf pieces and more vigorous rooting from cut stem ends were found in transgenic plants. The Bcl protein was abundant in all subcellular fractions. Based on the results in transgenic plants carrying a mutant bcl-xL gene, Bcl-xL is thought to suppress cell death and enhance the viability of plants in stressful environments by contributing to the maintenance of the homeostasis of organella.  相似文献   

10.
11.
The joint effects of 0.5 M NaCl and light of different intensities on the activity of the photosynthetic apparatus and ATP content in cells of the katG mutant of cyanobacterium Synechocystis sp. PCC 6803 have been studied. The mutant demonstrated a higher photoinhibition rate and a slower rate of recovery compared with the wild type, as shown by measurements of the CO2-dependent O2 production and delayed fluorescence of Chl a. The presence of 0.5 M NaCl in the incubation medium caused equal photoinhibition of the photosynthetic apparatus at I = 1200 μE m−2 s−1 in the mutant and wild-type cells. At I = 2400 μE m−2 s−1, we observed stronger inhibition and slower recovery of the photosynthetic apparatus in the katG mutant than in wild-type cells. The data obtained evidence an important role of catalase-peroxidase in the system of reparation of the photosynthetic apparatus damaged by high-intensity light, especially at the background of NaCl stress.  相似文献   

12.
The effect of medium osmolarity on the morphology and growth of Methanosarcina barkeri, Methanosarcina thermophila, Methanosarcina mazei, Methanosarcina vacuolata, and Methanosarcina acetivorans was examined. Each strain was adapted for growth in NaCl concentrations ranging from 0.05 to 1.0 M. Methanosarcina spp. isolated from both marine and nonmarine sources exhibited similar growth characteristics at all NaCl concentrations tested, demonstrating that these species are capable of adapting to a similar range of medium osmolarities. Concomitant with the adaptation in 0.4 to 1.0 M NaCl, all strains disaggregated and grew as single cells rather than in the characteristic multicellular aggregates. Aggregated cells had a methanochondroitin outer layer, while disaggregated single cells lacked the outer layer but retained the protein S-layer adjacent to the cell membrane. Synthesis of glucuronic acid, a major component of methanochondroitin, was reduced 20-fold in the single-cell form of M. barkeri when compared with synthesis in aggregated cells. Strains with the methanochondroitin outer cell layer exhibited enhanced stability at low (<0.2 M NaCl) osmolarity and grew at higher temperatures. Disaggregated cells could be converted back to aggregated cells by gradually readapting cultures to lower NaCl (<0.2 M) and Mg2+ (<0.005 M) concentrations. Disaggregated Methanosarcina spp. could also be colonized and replica plated with greater than 95% recovery rates on solidified agar basal medium that contained 0.4 to 0.6 M NaCl and either trimethylamine, methanol, or acetate as the substrate. The ability to disaggregate and grow Methanosarcina spp. as viable, detergent-sensitive, single cells on agar medium makes these species amenable to mutant selection and screening for genetic studies and enables cells to be gently lysed for the isolation of intact genetic material.  相似文献   

13.
Escherichia coli is able to grow at increased NaCl concentrations that provides an increase in medium osmolarity and cellular Na+ content. The addition of 0.5 M NaCl to the growth medium led to a substantial decrease in growth rate during anaerobic fermentation on glucose at pH of 7.3 or 9.0. This inhibitory effect of 0.5 M NaCl was at least threefold stronger than that seen under aerobic conditions, and stronger than equivalent concentrations of sucrose, KCl, or potassium glutamate under anaerobic conditions. Further, proline was found to stimulate the growth rate at high NaCl concentration under anaerobic and to a lesser extent, under aerobic conditions. Wild-type cells and mutants having a functional NhaA or ChaA alone grown under anaerobic conditions at pH 9.0 and subsequently loaded with Na+ were shown to extrude Na+ at a rate that were lower than the extrusion rate reported for appropriate aerobically grown bacteria (Sakuma et al. [1998] Biochim Biophys Acta 1363:231–237). The growth rate and Na+ extrusion activity of a mutant having a functional NhaA were similar to that of the wild type and higher than that of a mutant with an active ChaA. A mutant defective for both NhaA and ChaA was unable to grow under anaerobic conditions at pH 9.0 in the presence of 0.15 M Na+. It is suggested that the observed strong inhibition in the growth of E. coli during fermentation under anaerobic conditions in the presence of increased NaCl concentration could be due to a decrease in Na+ extrusion activity. Received: 18 September 1998 / Accepted: 2 April 1999  相似文献   

14.
The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.  相似文献   

15.
The gene cluster involved in the choline-glycine betaine conversion pathway was cloned from chromosomal DNA of the Gram-positive moderate halophile Halobacillus dabanensis D-8(T). Nucleotide sequence analysis revealed four genes, designated gbsT, gbsI, gbsA, and gbsB, which are clustered in a 5.1-kb fragment. After heterologous expression of gbsAB in the Escherichia coli mutant strain PD141, the transformed cells were able to grow in a selective M63 medium containing 0.7 M NaCl and 1 mM choline, in contrast to the mutant strain. Glycine betaine biosynthesis was restored and its accumulation was confirmed by using (13)C nuclear magnetic resonance spectroscopy.  相似文献   

16.
A somatic cell genetic approach has been used to evaluate the role of cyclic AMP-dependent protein kinase in ACTH action on adrenal steroidogenesis. A mutant clone, 8BrcAMPr-1, previously was isolated from an ACTH-sensitive adrenocortical tumor cell line (clone Y1) following mutagenesis and selective growth in 8-bromoadenosine 3′, 5′-monophosphate. This study demonstrates that the 8BrcAMP4-1 cells have an altered cyclic AMP-dependent protein kinase. The protein kinase in the cytosol of the mutant characteristically requires, for half-maximal activity, concentrations of cyclic AMP 7-fold higher than those required by the enzyme in preparations from the parent. The cytosolic cyclic AMP-dependent protein kinases of Y1 and 8BrcAMPr-1 cells chromatograph similarly on columns of DEAE-cellulose. From each cell line, a major peak of activity (≥ 70% of recovered activity), designated as Peak I, elutes with 0.04–0.06 M NaCl; a second peak of activity, designated as Peak II, elutes with 0.12–0.14 M NaCl. Protein kinase activity in the Peak I fraction of mutant cells has a decreased apparent affinity (4-fold) for cyclic AMP relative to the corresponding fraction of parental Y1 cells. The protein kinase activities present in Peak II fractions from Y1 and mutant cells are indistinguishable. The protein kinase mutant exhibits poor steroidogenic responses to added ACTH and cyclic AMP; and as shown previously does not display the growth arrest and morphological changes produced in Y1 by these agents. These results suggest that cyclic AMP-dependent protein kinase is important in the regulation of adrenal steroidogenesis, morphology and growth by ACTH.  相似文献   

17.
A thalium chloride-resistant (TlCl(r)) mutant strain and a sodium chloride-resistant (NaCl(r)) mutant strain of the diazotrophic cyanobacterium Anabaena variabilis have been isolated by spontaneous and chemical mutagenesis by using TlCl, a potassium (K(+)) analog, and nitrosoguanidine (NTG), respectively. The TlCl(r) mutant strain was found to be defective in K(+) transport and showed resistance against 10 microM TlCl. However, it also showed sensitivity against NaCl (LD(50), 50 m M). In contrast, neither wild-type A. variabilis nor its NaCl(r) mutant strain could survive in the presence of 10 microM TlCl and died even at 1 microM TlCl. The TlCl(r) mutant strain exhibited almost negligible K(+) uptake, indicating the lack of a K(+) uptake system. High K(+) uptake was, however, observed in the NaCl(r) mutant strain, reflecting the presence of an active K(+) uptake system in this strain.DCMU, an inhibitor of PS II, inhibited the K(+) uptake in wild-type A. variabilis and its TlCl(r) and NaCl(r) mutant strains, suggesting that K(+) uptake in these strains is an energy-dependent process and that energy is derived from photophosphorylation. This contention is further supported by the inhibition of K(+) uptake under dark conditions. Furthermore, the inhibition of K(+) uptake by KCN, DNP, and NaN(3) also suggests the involvement of oxidative phosphorylation in the regulation of an active K(+) uptake system.The whole-cell protein profile of wild-type A. variabilis and its TlCl(r) and NaCl(r) mutant strains growing in the presence of 50 m M KCl was made in the presence and absence of NaCl. Lack of transporter proteins in TlCl(r) mutant strain suggests that these proteins are essentially required for the active transport and accumulation of K(+) and make this strain NaCl sensitive. In contrast, strong expression of the transporter proteins in NaCl(r) mutant strain and its weak expression in wild-type A. variabilis is responsible for their resistance and sensitivity to NaCl, respectively. Therefore, it appears that the increased salt tolerance of the NaCl(r) mutant strain was owing to increased K(+) uptake and accumulation, whereas the salt sensitivity of the TlCl(r) mutant strain was owing to the lack of K(+) uptake and accumulation.  相似文献   

18.
19.
The growth of thermosensitive Bacillus subtilis lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants (lysS1 and trypS1) (l-lysine:transfer ribonucleic acid [tRNA] ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) was terminated when exponential phase cells were shifted from 30 to 43 C in a rich medium. Under these conditions, the temperature-inhibited cells undergo thermal death; they rapidly lose their ability to form colonies at 30 C. Another lysyl-tRNA synthetase mutant (lysS2) is refractory to thermal death even though its growth is inhibited at 43 C. The thermal death response of the lysS1 mutant is affected by the stage of cell development. At periods in spore outgrowth and sporogenesis these cells become refractory to thermal death. The refractory state does not result from the production of an inhibitor, or from the degradation of an activator of thermal death. However, culture medium composition does modify the thermal death response. Rich media enhance the effect, and no thermal death occurs in the lysS1 strain grown in a minimal medium. Temperature-sensitive cells can grow in a lysine- (0.25 mM) or tryptophan- (0.25 mM) supplemented minimal medium at 43 C, but amino acid concentrations of 25 mM only transiently protect trypS1 and lysS1 cells from thermal death in a rich medium. Osmotic agents such as sucrose (0.5 M) and NaCl (0.34 M) completely prevent thermal death in the lysS1 strain, although growth is still arrested. On solid media, sucrose stabilized lysS1 cells can form colonies at the restrictive temperature, but neither sucrose (0.5 M) nor NaCl (0.34 M) stabilized the lysS1 enzyme in vitro. Chloramiphenicol increased the rate of thermal death of the lysS1 strain but decreased the thermal death response of the trypS1 mutant. Considering the nature of the enzyme defect in the lysS1 strain, the common genetic origin of the spore and vegetative lysyl-tRNA synthetase, and the protective effects exerted by lysine and osmotic agents, it is tentatively concluded that thermal death results from irreversible inactivation of the mutant gene product. According to this hypothesis, either the lysS1 enzyme is altered during sporogenesis or some physiological or structural aspect of this developmental phase can stabilize the mutant phenotype and thereby rescue cells from thermal death.  相似文献   

20.
Phase-partitioning studies of the euryhaline bacterium Halomonas elongata demonstrated that the hydrophobic-hydrophilic nature of the cell surface changed as the bacterium grew in different NaCl concentrations. Mid-log-phase cells grown in a high (3.4 M) NaCl concentration were more hydrophilic than were cells grown in a low (0.05 M) NaCl concentration. Mid-log-phase cells from defined medium containing 3.4 M NaCl normally produced a hydrophobicity reading of only 14 (hexadecane hydrophobicity = 100), while corresponding cells from defined medium containing 0.05M NaCl gave a hydrophobicity reading of 90. Compared with cells grown in low salt concentrations, cells grown in high salt concentrations were more hydrophilic at all stages of growth. Rapid suspension of log-phase cells grown in 1.37 M NaCl into a 0.05 or 3.4 M NaCl solution produced no detectable rapid changes in surface hydrophobicity. These data suggest that as H. elongata adapts to different NaCl concentrations, it alters the affinity of its outermost cell surface to water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号