首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The chemolithoautotroph, Arthrobacter sp.15b oxidizes arsenite to arsenate using a membrane bound arsenite oxidase. The enzyme arsenite oxidase is purified to its homogeneity and identified using MALDI-TOF MS analysis. Upon further characterization, it was observed that the enzyme is a heterodimer showing native molecular mass as ~100 kDa and appeared as two subunits of ~85 kDa LSU and 14 kDa SSU on SDS–PAGE. The V max and K m values of the enzyme was found to be 2.45 μM (AsIII)/min/mg) and 26 μM, respectively. The purified enzyme could withstand wide range of pH and temperature changes. The enzyme, however, gets deactivated in the presence of 1 mM of DEPC suggesting the involvement of histidine at the binding site of the enzyme. The peptide analysis of large sub unit of the enzyme showed close match with the arsenite oxidases of Burkholderia sp. YI019A and arsenite oxidase, Mo-pterin containing subunit of Alcaligenes faecalis. The small subunit, however, differed from other arsenite oxidases and matched only with 2Fe–2S binding protein of Anaplasma phagocytophilum. This indicates that Rieske subunits containing the iron–sulfur clusters present in the large as well as small subunits of the enzyme are integral part of the protein.  相似文献   

2.
Arthrobacter sp. lipase (ABL, MTCC no. 5125) is being recognized as an efficient enzyme for the resolution of drugs and their intermediates. The immobilization of ABL on various matrices for its enantioselectivity, stability, and reusability has been studied. Immobilization by covalent bonding on sepharose and silica afforded a maximum of 380 and 40 IU/g activity, respectively, whereas sol–gel entrapment provided a maximum of 150 IU/g activity in dry powder. The immobilized enzyme displayed excellent stability in the pH range of 4–10 and even at higher temperature, i.e., 50–60°C, compared to free enzyme, which is unstable under extreme conditions. The resolution of racemic auxiliaries like 1-phenyl ethanol and an intermediate of antidepressant drug fluoxetine, i.e., ethyl 3-hydroxy-3-phenylpropanoate alkyl acylates, provided exclusively R-(+) products (∼99% ee, E=646 and 473), compared to cell free extract/whole cells which gave a product with ∼96% ee (E=106 and 150). The repeated use (ten times) of covalently immobilized and entrapped ABL resulted in no loss in activity, thus demonstrating its prospects for commercial applications.  相似文献   

3.
The increasing production of several plastics such as expanded polystyrene, widely used as packaging and building materials, has caused the release of considerable amounts of pentane employed as an expanding agent. Today many microorganisms are used to degrade hydrocarbons in order to minimize contamination caused by several industrial activities. The aim of our work was to identify a suitable microorganism to degrade pentane. We focused our attention on a strain of Arthrobacter sp. which in a shake-flask culture produced 95% degradation of a 10% mixture of pentane in a minimal medium after 42days of incubation at 20°C. Arthrobacter sp. cells were immobilized on a macroporous polystyrene particle matrix that provides a promising novel support for cell immobilization. The method involved culturing cells with the expanded polystyrene in shake-flasks, followed by in situ growth within the column. Scanning electron microscopy analysis showed extensive growth of Arthrobacter sp. on the polymeric surface. The immobilized microorganism was able to actively degrade a 10% mixture of pentane, allowing us to obtain a bioconversion yield of 90% after 36h. Moreover, in repeated-batch operations, immobilized Arthrobacter sp. cells were able to maintain 85–95% pentane degradation during a 2month period. Our results suggest that this type of bioreactor could be used in pentane environmental decontamination.  相似文献   

4.
Cyclohexanone monooxygenase (CHMO), a type of Baeyer-Villiger oxidation, catalyzes the oxidation of cyclohexanone into ɛ-caprolactone, which has been utilized as a building block in organic synthesis. A bacterium that is capable of growth on cyclohexanone as a sole carbon source was recently isolated and was identified as Arthrobacter sp. L661. The strain is believed to harbor a CHMO gene (chnB), considering the high degradablity of cyclohexanone. In order to characterize the CHMO, a chnB gene was cloned from Arthrobacter sp. L661. The deduced amino acids of the chnB gene evidenced the highest degree of homology (90% identity) with the CHMO of Arthrobacter sp. BP2 (accession no. AY123972). The CHMO of L661 was shown to be functionally expressed in Escherichia coli cells, purified via affinity chromatography, and characterized. The specific activity of the purified enzyme was 24.75 μmol/min/mg protein. The optimum pH was 7.0 and the enzyme maintained over 70% of its activity for up to 24 h in a pH range of 6.0 to 8.0 at 4°C. The CHMO of L661 readily oxidized cyclobutanone and cyclopentanone whereas less activity was detected with those of Arthrobacter sp. BP2, Rhodococcus sp. Phi1, and Rhodococcus sp. Phi2, thereby suggesting that the CHMO of L661 evidenced the different substrate specificities compared with other CHMOs. These results can provide us with useful information for the development of biocatalysts applicable to commercial organic syntheses, especially because only a few CHMO genes have been identified thus far.  相似文献   

5.
Arthrobacter sp. GLP-1 can utilize a wide range of organophosphonates as its sole source of phosphorus. The in-situ formation of sarcosine and methane from glyphosate and methanephosphonic acid respectively was studied. These two processes are differentially induced during phosphorus-deprivation. Methanephosphonic acid strongly inhibits glyphosate degradation (I50 10 M), but glyphosate has very little effect on methane generation (I50 150 mM). The pattern of inhibition by other organophosphonates and organophosphonate analogues is also very different for the two systems. Degradation of glyphosate and methanephosphonic acid therefore represent distinct processes.Abbreviations f.wt. fresh weight - MP-lyase methanephosphonate lyase  相似文献   

6.
An organophosphate-degrading soil isolate of Pseudomonas sp. A3, immobilized at 5% (wet wt/v) cell mass in 3% (w/v) sodium alginate beads, detoxified 99% of 1 mm methylparathion in 48 h. The beads were re-usable for five batches, the sixth batch only giving 73% methylparathion removal.  相似文献   

7.
Sapunova  L. I.  Lobanok  A. G.  Parakhnya  E. V.  Kazakevich  I. O. 《Microbiology》2003,72(3):352-355
The study of the xylose/glucose isomerase–containing Arthrobacter sp. B-5 cells immobilized in cobalt hydroxide gel showed that immobilization increases the substrate affinity of the enzyme, its thermo- and pH-optima of action and stability, and makes the addition of stabilizing cobalt ions to the isomerization medium unnecessary.  相似文献   

8.
4-Chlorobenzoate:CoA ligase, the first enzyme in the pathway for 4-chlorobenzoate dissimilation, has been partially purified from Arthrobacter sp. strain TM-1, by sequential ammonium sulphate precipitation and chromatography on DEAE-Sepharose and Sephacryl S-200. The enzyme, a homodimer of subunit molecular mass approximately 56 kD, is dependent on Mg2+-ATP and coenzyme A, and produces 4-chlorobenzoyl CoA and AMP. Besides Mg2+, Mn2+, Co2+, Fe2+ and Zn2+ are also stimulatory, but not Ca2+. Maximal activity is exhibited at pH 7.0 and 25 degrees C. The ligase demonstrates broad specificity towards other halobenzoates, with 4-chlorobenzoate as best substrate. The apparent Michaelis constants (Km) of the enzyme for 4-chlorobenzoate, CoA and ATP were determined as 3.5, 30 and 238 microM respectively. 4-Chlorobenzoyl CoA dehalogenase, the second enzyme, has been purified to homogeneity by sequential column chromatography on hydroxyapatite, DEAE-Sepharose and Sephacryl S-200. It is a homotetramer of 33 kD subunits with an isoelectric point of 6.4. At pH 7.5 and 30 degrees C, Km and kcat for 4-CBCoA are 9 microM and 1 s(-1) respectively. The optimum pH is 7.5, and maximal enzymic activity occurs at 45 degrees C. The properties of this enzyme are compared with those of the 4-chlorobenzoyl CoA dehalogenases from Arthrobacter sp. strain 4-CB1 and Pseudomonas sp. strain CBS-3, which differ variously in their N-terminal amino acid sequences, optimal pH values, pI values and/or temperatures of maximal activity.  相似文献   

9.
李敏  王桂莲  马璐  张琇 《微生物学通报》2021,48(5):1550-1559
[背景]蓄积在土壤中的阿魏酸类化感自毒物质对农作物生长产生危害,利用有益微生物分解该类物质是一项有效的治理措施.[目的]从自然界土壤分离获得能高效降解阿魏酸的菌株,并评估典型环境因子对降解效能的影响,以期为该菌在阿魏酸类自毒物质降解领域中的应用提供理论依据.[方法]采用一次性投加高浓度化合物的驯化方法分离筛选得到能有效...  相似文献   

10.
Li W  Wang MD  Chen H  Chen JM  Shi Y 《Biotechnology letters》2006,28(15):1175-1179
A new isolate, identified as Gordonia sp. ZD-7 by 16S rDNA sequence analysis, grew in n-hexadecane containing dibenzothiophene (DBT) which was degraded from 2.8 mM to 0.2 mM within 48 h. Biodesulfurization could be repeatedly performed for more than 190 h, with average desulfurization rates of 5 mmol DBT kg cells (dry wt)−1 h−1.  相似文献   

11.
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (kcat/Km) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in kcat, but not due to variations in Km, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pKa of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pKa. Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme.  相似文献   

12.
A strictly anaerobic, homoacetogenic bacterium was enriched and isolated from anoxic sewage sludge with polyethylene glycol (PEG) 1000 as sole source of carbon and energy, and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The new isolate fermented ethylene glycol and PEG's with molecular masses of 106 to 1000 to acetate and small amounts of ethanol. The PEG-degrading activity was not destroyed by proteinase K treatment of whole cells. In cell-free extracts, a diol dehydratase and a PEG-degrading (ether-cleaving) enzyme activity were detected which both formed acetaldehyde as reaction product. The diol dehydratase enzyme was oxygen-sensitive and was stimulated 10–14 fold by added adenosylcobalamine. This enzyme was found mainly in the cytoplasmic fraction (65%) and to some extent (35%) in the membrane fraction. The ether-cleaving enzyme activity reacted with PEG's of molecular masses of 106 to more than 20000. The enzyme was measurable optimally in buffers of high ionic strength (4.0), was extremely oxygen-sensitive, and was inhibited by various corrinoids (adenosylcobalamine, cyanocobalamine, hydroxocobalamine, methylcobalamine). This enzyme was found exclusively in the cytoplasmic fraction. It is concluded that PEG is degraded by this bacterium inside the cytoplasm by a hydroxyl shift reaction, analogous to a diol dehydratase reaction, to form an unstable hemiacetal intermediate. The name polyethylene glycol acetaldehyde lyase is suggested for the responsible enzyme.Abbreviations EG ethylene glycol - DiEG diethylene glycol - TriEG triethylene glycol - TeEG tetraethylene glycol - PEG polyethylene glycol (molecular mass indicated)  相似文献   

13.
Colonization and degradation of rubber pieces by Nocardia sp.   总被引:1,自引:0,他引:1  
The growth of a Nocardia sp. occurs essentially on the insoluble rubber substrate and the cells are tightly bound to the rubber in the initial stage of the growth in spite of vigorous stirring of the cultures. The colonization of rubber pieces was followed by staining with Schiff reagent, and it was revealed that not only the thickness of rubber pieces, but also their length and width greatly influenced microbial colonization and degradation of natural rubber products. Among rubber pieces of various shapes, long strips were most rapidly covered by many microbial colonies and experienced the highest rate of rubber degradation. The rate of degradation (expressed by % weight loss) of the long strips of rubber was a linear function of surface area per unit weight of rubber. Thin and wide films of rubber were also rapidly colonized and degraded, while the colonization and degradation of short and narrow pieces were substantially slower and less extensive.  相似文献   

14.
In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii. Strain YF9E(T) was most closely related to C. azyma and strain YWZH3C(T) to C. sorbophila and C. spandovensis. Strain YYF2A(T) was clustered in a clade containing small-spored Metschnikowia species and related anamorphic Candida species. The new strains differed from their closely related described species by more than 10% mismatches in the D1/D2 domain. No sexual states were observed for the four strains on various sporulation media. The new species are therefore assigned to the genus Candida and described as Candida alocasiicola sp. nov. (type strain, YF9E(T) = AS 2.3484(T) = CBS 10702(T)), Candida hainanensis sp. nov. (type strain, YYF2A(T) = AS 2.3478(T) = CBS 10696(T)), Candida heveicola sp. nov. (type strain, YJ2E(T) = AS 2.3483(T) = CBS 10701(T)) and Candida musiphila sp. nov. (type strain, YWZH3C(T) = AS 2.3479(T) = CBS 10697(T)).  相似文献   

15.
Four novel yeast species are described, two from decaying mushrooms, viz. Candida cretensis and Candida vadensis, and two from rotten wood, viz. Blastobotrys robertii and Candida scorzettiae. Accession numbers for the CBS and ARS Culture Collections, and GenBank accession numbers for the D1/D2 domains of the large subunit of ribosomal DNA are: B. robertii CBS 10106T, NRRL Y-27775, DQ839395; C. cretensis CBS 9453T, NRRL Y-27777, AY4998861 and DQ839393; C. scorzettiae CBS 10107T, NRRL Y-27665, DQ839394; C. vadensis CBS 9454T, NRRL Y-27778, AY498863 and DQ839396. The GenBank accession number for the ITS region of C. cretensis is AY498862 and that for C. vadensis is AY498864. C. cretensis was the only species of the four that displayed fermentative activity. All four type strains grew on n-hexadecane. C. scorzettiae is the only one of the new species that assimilates some phenolic compounds, viz. 3-hydroxy derivatives of benzoic, phenylacetic and cinnamic acids, but not the corresponding 4-hydroxy acids. This is indicative of an operative gentisate pathway.  相似文献   

16.
The taxonomic positions of soil isolates known as Streptomyces groups A, B and C were clarified. Comparative 16S rDNA sequence studies indicated that representatives of all three taxa formed distinct phyletic lines within the Streptomyces tree though the group A strains were shown to be related to Streptomyces griseus and associated validly described species. The taxonomic integrity of all three groups was highlighted by DNA:DNA relatedness and ribotype data though the group A strains encompassed a higher degree of genetic variation than the group B and C strains. In light of these and earlier phenotypic data it is proposed that Streptomyces groups A, B and C be given species status as Streptomyces sanglieri sp. nov., Streptomyces aureus sp. nov. and Streptomyces laceyi sp. nov., respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The catalase gene of Psychrobacter sp. T-3 was cloned, and the gene product (PktA) was overexpressed in Escherichia coli. The specific activity of the purified PktA was slightly lower than that of the native purified enzyme obtained from Psychrobacter sp. T-3. Spectrophotometric measurements of the purified enzymes suggested that the recombinant PktA contains a mixture of heme b and d, although the native enzyme contains the sole heme b. An addition of the heme precursor 5-aminolevulinic acid (ALA) to the medium increased the heme b content of the recombinant PktA, and the resulting enzyme showed higher specific activity than the native enzyme. This is the first report that shows the heme content of overproduced catalase altered by the host cell growth conditions.  相似文献   

18.
Methylomonas sp. GYJ3 is a methanotrophic bacterium containing methane monooxygenase (MMO), which catalyses the epoxidation of propene to epoxypropane. In this study, the cell suspension of Methylomonas sp. GYJ3 has been used for epoxypropane biosynthesis from propene. When propene is epoxidized, the product epoxypropane is not further metabolized and accumulates extracellularly. Unfortunately, continuous production of epoxypropane is usually difficult due to exhaustion of reductant and the accumulation of toxic products. Hence, in order to address these problems, batch experiments were performed to explore the possibility of producing epoxypropane by a co-oxidation process. Methane was chosen as the most suitable electron-donating co-substrate since it did not result in molecular toxicity and provided abundant reductant for epoxidation. It was found that the maximum production of epoxypropane occurred in an atmosphere of 30% methane. Batch experiments also indicated that continuous removal of product was necessary to overcome the inhibition of epoxypropane. In continuous experiments, optimum mixed gaseous substrates were continuously circulated through the stirred tank bioreactor to remove product from the cell suspension. Initial epoxypropane productivity was 268 mol/day. The bioreactor has been allowed to operate continuously for 12 days without obvious loss of epoxypropane productivity, and more than 96% of initial MMO activity was retained.  相似文献   

19.
Arthrobacter oxydans CECT386 is a Gram-positive bacterium able to use either phenylacetic acid or phenylacetaldehyde as the sole carbon and energy source for aerobic growth. Genes responsible for the catabolism of these compounds have been located at two chromosomal regions and were organized in one isolated paaN gene and two putative paa operons, one consisting of the paaD, paaF, tetR and prot genes, and one consisting of the paaG, paaH, paaI, paaJ, paaK and paaB genes. The identity of the paaF and paaN genes was supported by functional complementation experiments. A comparison with the paa catabolic genes and/or gene clusters of other bacteria that degrade these aromatic compounds is presented. The results of this study broaden the knowledge regarding the range of metabolic potential of this strain and eventually make it attractive for environmental applications.  相似文献   

20.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号