共查询到20条相似文献,搜索用时 15 毫秒
1.
In intact rat adipocytes hormone-sensitive lipase has been shown to be phosphorylated on serine residues in two different phosphorylation sites: a regulatory site phosphorylated by cyclic AMP-dependent protein kinase and a basal site, which does not directly affect the enzyme activity, phosphorylated by cyclic AMP-independent protein kinase(s) [(1984) Proc. Natl. Acad. Sci USA 81, 3317-3321]. Cyclic GMP-dependent protein kinase catalyzed the phosphorylation of the same two phosphorylation sites on the isolated enzyme, at serine residues. Both sites were phosphorylated at about the same rate, with the hormone-sensitive lipase activity concomitantly enhanced. 相似文献
2.
Thomas M. Lincoln Stanley L. Keely 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,676(2):230-244
An assay method based on the ability of high concentrations of Mg2+ to stimulate phosphorylation of histone in the presence of low concentrations of ATP was developed for the measurement of cyclic GMP-dependent protein kinase activity ratios (activity -cyclic GMP/activity + cyclic GMP). In tissues which contain only trace amounts of cyclic GMP-dependent protein kinase, the basal activity ratios were high due to interference from a cyclic nucleotide-independent protein kinase. In order to study the regulation of the cardica cyclic GMP-dependent protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal or elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated witth the acetylcholine-induced protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated with the acetylcholine-induced increase in cyclic GMP and the cyclic GMP-dependent protein kinase activity ratio was a reduction in the force of contraction. In contrast, nitroprusside produced little or no increase in the cyclic GMP-dependent protein kinase activity ratio despite increasing the level of cyclic GMP 8–10-fold. Nitroprusside also had no effect on contractile force. In combination, nitroprusside and acetylcholine produced additive effects on cyclic GMP levels, but protein kinase activation and force of contraction were similar to those seen with acetylcholine alone. The results suggest that the cyclic GMP produced by acetylcholine in the rat heart is coupled to activation of the cyclic GMP-dependent protein kinase, while that produced by nitroprusside is not. 相似文献
3.
The vasodilator-stimulated phosphoprotein is regulated by cyclic GMP-dependent protein kinase during neutrophil spreading 总被引:5,自引:0,他引:5
The expression and phosphorylation state of the vasodilator-stimulated phosphoprotein (VASP), a membrane-associated focal adhesion protein, was investigated in human neutrophils. Adhesion and spreading of neutrophils induced the rapid phosphorylation of VASP. The phosphorylation of VASP was dependent on cell spreading, as VASP was expressed as a dephosphorylated protein in round adherent cells and was phosphorylated at the onset of changes in cell shape from round to spread cells. Immunofluorescence microscopy demonstrated that VASP was localized at the cell cortex in round cells and redistributed to focal adhesions at the ventral surface of the cell body during cell spreading. Dual labeling of spread cells indicated that VASP was colocalized with F-actin in filopodia and in focal adhesions, suggesting that the phosphorylation of VASP during cell spreading may be involved in focal adhesion complex organization and actin dynamics. VASP is a prominent substrate for both cGMP-dependent protein kinase (cGK) and cAMP-dependent protein kinase. Evidence suggested that cGK regulated neutrophil spreading, as both VASP phosphorylation and neutrophil spreading were inhibited by Rp-8-pCPT-cGMPS (cGK inhibitor), but not KT5720 (cAMP-dependent protein kinase inhibitor). In contrast, neutrophil spreading was accelerated when cGMP levels were elevated with 8-Br-cGMP, a direct activator of cGK. Furthermore, the same conditions that lead to VASP phosphorylation during neutrophil adherence and spreading induced significant elevations of cGMP in neutrophils. These results indicate that cGMP/cGK signal transduction is required for neutrophil spreading, and that VASP is a target for cGK regulation. 相似文献
4.
Cyclic GMP-dependent protein kinase prepared from calf lung was studied for its binding properties with blue dextran-Sepharose affinity column chromatography. Blue dextran competitively inhibited [3H]cGMP binding to the enzyme. ATP + Mg++ did not prevent cGMP-kinase binding to blue dextran, nor did it facilitate the liberation of blue dextranbound enzyme. Substrate proteins such as histone and protamine dissociated the native enzyme into subunits. Considering all these results, cGMP-kinase seemed to conform with the “dissociation model” proposed for cAMP-kinase but with peculiarities of binding to blue dextran. 相似文献
5.
Cyclic GMP-dependent protein kinase from bovine lung and cyclic AMP-dependent protein kinase from bovine heart are inactivated by Nα-tosyl-L-lysine chloromethylketone (TLCK) in the presence of cyclic GMP and cyclic AMP, respectively. The inactivation of both protein kinases is pseudo-first order, suggesting the rate limiting step is beyond the binding of TLCK. Cyclic GMP-dependent protein kinase is inactivated less than as rapidly as cyclic AMP-dependent protein kinase, although it shows a higher apparent affinity for TLCK. Cyclic AMP stimulated the rate of inactivation of cyclic AMP-dependent protein kinase 10-fold but cyclic GMP stimulated the rate of inactivation of cyclic GMP-dependent protein kinase only 1.5-fold. The rate of inactivation of cyclic GMP-dependent protein kinase by TLCK is sufficiently rapid (half-time of about 30 min at 37°C with 2 mM TLCK) to account for the effects of TLCK on cell growth observed by others. 相似文献
6.
7.
Characterization of cyclic GMP-binding sites of cyclic GMP-dependent protein kinase by rapid filtration assay. 下载免费PDF全文
The kinetics of cyclic [3H]GMP binding to the purified cyclic GMP-dependent protein kinase (cG kinase) were studied by using the rapid filtration assay method with polyethyleneimine-treated glass filters (method A), and the data were compared with those of the (NH4)2SO4 precipitation procedure (method B), which has been used for many previous studies on cyclic GMP binding to cG kinase. Each method gave a similar stoichiometry of approx. 2 mol of cyclic GMP/mol of cG kinase subunit; however, other binding kinetics obtained with these two methods were different. The dissociation of bound cyclic [3H]GMP from the kinase showed a single slow component when method A was used, whereas rapid and slow dissociation components were observed with method B. The Scatchard plot of cyclic [3H]GMP binding with method A was linear with a Kd value of 11 +/- 2 nM, suggesting that the two intrachain binding sites have similar high affinity for cyclic GMP. Results obtained on cyclic nucleotide analogue specificity of the two intrachain cyclic GMP-binding sites were also different between these two methods. These findings suggest that cG kinase has two high-affinity cyclic GMP-binding sites per subunit in the native state, and that when (NH4)2SO4 is added, ostensibly to stop the binding reaction, one low-affinity site is created from one high-affinity site. 相似文献
8.
M Nakamura K Ichikawa M Ito B Yamamori T Okinaka N Isaka Y Yoshida S Fujita T Nakano 《Cellular signalling》1999,11(9):671-676
Cyclic GMP-dependent protein kinase (PKG) phosphorylated, in vitro, the large (MYPT1) and small (M20) regulatory subunits of myosin phosphatase (MP) with maximum stoichiometries of 1.8 and 0.6 mol of phosphate/mol subunit, respectively. The phosphorylation of these subunits by PKG did not affect the phosphatase activity towards the 20 kDa myosin light chain. However, phosphorylation of the MP holoenzyme decreased the binding of MP to phospholipid. The phosphorylation of the serine residue of the C-terminal part of MYPT1 was crucial for these interactions. These results suggest that the phosphorylation of MP by PKG is not a direct mechanism in activating MP activity, and that other indirect mechanisms, including the interaction between MP and phospholipids, might be candidates for Ca2+ desensitization via cGMP in smooth muscle. 相似文献
9.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC. 相似文献
10.
The autophosphorylation reaction of purified cGMP-dependent protein kinase has been studied. Apparent initial rates of autophosphorylation in the absence of cyclic nucleotides and in the presence of cGMP and cAMP are 0.006, 0.04, 0.4 mol Pi incorp./min-1. mol cGMP-kinase subunit-1. In the presence of cGMP and cAMP approximately 1 and 2 mol Pi are incorporated/mol enzyme subunit. These values are independent of the enzyme concentration. Stimulation of autophosphorylation by cAMP is not due to activation of a contaminating cAMP-dependent protein kinase since: (a) addition of the heatstable inhibitor protein of cAMP-kinase does not inhibit autophosphorylation; and (b) catalytic subunit of cAMP-kinase added at a 10-fold excess over cGMP-kinase does not phosphorylate cGMP-kinase. 相似文献
11.
12.
The level of cyclic GMP-dependent protein kinase in the nucleus of rat liver was shown to increase 80% at 3 hr following partial hepatectomy while cyclic AMP-binding activity decreased 28%. Subnuclear fractionation demonstrated that the increase in cyclic GMP-dependent protein kinase was localized to the nucleolus and nucleoplasm, with no change in the extranucleolar particulate material. Cyclic AMP-binding activity was decreased in all subnuclear fractions under these conditions. At 16 hr following partial hepatectomy, the level of cyclic GMP-dependent protein kinase was not changed in the nucleolus but was significantly increased in the nucleoplasm, while cyclic AMP-binding activity was slightly increased in the nucleolus and decreased in the nucleoplasm. 相似文献
13.
Various histone fractions from several sources differ markedly in their degree of dependence on protein kinase stimulatory modulator for maximum phosphorylation by rat liver cyclic GMP-dependent protein kinase in the presence of cyclic GMP. DEAE-cellulose and QAE-Sephadex chromatography of arginine-rich and mixed histones resulted in the histones displaying increased dependence on the modulator. This increased dependence was apparently due to the removal of contaminating modulator as heat-stable modulator activity could be eluted from the DEAE-cellulose column. Lysine-rich histone was not markedly dependent on the modulator before or after QAE-Sephadex chromatography. 相似文献
14.
Munhoz CD Kawamoto EM de Sá Lima L Lepsch LB Glezer I Marcourakis T Scavone C 《Cell biochemistry and function》2005,23(2):115-123
Excessive excitatory action of glutamate and nitric oxide (NO) has been implicated in degeneration of striatal neurons. Evidence had been provided that Na+K+-ATPase might be involved in this process. Here we investigated whether glutamate-regulated messengers, such as NO and cyclic GMP, could modulate the activity of membrane Na+K+-ATPase. Our results demonstrated that NO donors sodium nitroprusside (SNP at 30 and 300 microM) and S-nitroso-N-acetylpenicillamine (SNAP at 200 microM) increased alpha2,3Na+K+-ATPase activity which was blocked by the NO chelator, haemoglobin and was independent of [Na+]. This regulation was associated with cGMP synthesis and mimicked by glutamate (300 microM) and 8-Br-cyclic GMP (4 mM). 8-Br-cGMP-induced stimulation of Na+K+-ATPase activity could be blocked by KT5823 (an inhibitor of cGMP-dependent protein kinase, PKG), but not by KT5720 (an inhibitor of cAMP-dependent protein kinase, PKA). N-Methyl-D-aspartate (NMDA) receptors appeared to be involved in the effect of glutamate, since MK-801 (NMDA receptor antagonist) produced a partial reduction in glutamate-induced activation of the enzyme. MK-801 was not synergistic to L-NAME (NOS inhibitor), suggesting that glutamate stimulates the NMDA-NOS pathway to activate alpha2,3 Na+K+-ATPase in rat striatum. This regulation was associated with cyclic GMP (but not cyclic AMP) synthesis. These data indicate the existence, in vitro, of a regulatory pathway by which glutamate, acting through NO and cGMP, can cause alterations in striatal alpha2,3 Na+K+-ATPase activity. 相似文献
15.
Inositol 1,4,5-trisphosphate receptor is phosphorylated by cyclic AMP-dependent protein kinase at serines 1755 and 1589. 总被引:3,自引:0,他引:3
C D Ferris A M Cameron D S Bredt R L Huganir S H Snyder 《Biochemical and biophysical research communications》1991,175(1):192-198
IP3 activates intracellular calcium release by binding to an intracellular ligand gated calcium permeable channel which has been shown to be regulated by protein kinase A phosphorylation. Two consensus sequences for protein kinase A phosphorylation are predicted by the recently isolated cDNA of the mouse and rat. In the present study we have isolated and sequenced the two peptides in the rat IP3 receptor which are phosphorylated by protein kinase A and demonstrate protein kinase A phosphorylation on S-1755 and S-1589. 相似文献
16.
Calmodulin purified from bovine brain markedly stimulated cyclic GMP-dependent protein kinase from pig lung in the presence of cyclic GMP. This stimulation by calmodulin did not require Ca2+ and was dose-dependent up to optimal amounts, but the extent of stimulation decreased at concentrations over the optimal condition. The concentrations of cyclic GMP and cyclic AMP producing half-maximal stimulation were 4.5 × 10?8 M and 5.0 × 10?6 M respectively, under optimal conditions. Calmodulin increased maximum velocity without altering the Km for ATP. These effects of calmodulin on cyclic GMP-dependent protein kinase were similar to those of the stimulatory modulator described by Kuo and Kuo (J. Biol. Chem. , 4283–4286, 1976). Ouf findings indicate that calmodulin regulates enzyme activity both Ca2+-dependently and independently. 相似文献
17.
The smooth muscle 132 kDa cyclic GMP-dependent protein kinase substrate is not myosin light chain kinase or caldesmon. 总被引:1,自引:0,他引:1 下载免费PDF全文
Atrial natriuretic peptide (ANP) stimulates the phosphorylation of three cyclic GMP-dependent protein kinase substrate proteins of 225, 132, and 11 kDa (P225, P132 and P11 respectively) in the particulate fraction of cultured rat aortic smooth muscle cells [Sarcevic, Brookes, Martin, Kemp & Robinson (1989) J. Biol. Chem. 264, 20648-20654]. Vrolix, Raeymaekers, Wuytack, Hofmann & Casteels [(1988) Biochem. J. 255, 855-863] have reported the presence of a 130 kDa cyclic GMP-dependent protein kinase substrate protein in the membrane fraction of pig aorta or stomach, and suggested that it may be myosin light chain kinase (MLCK). The aim of the present study was to determine whether P132 from rat aorta was MLCK or caldesmon. Although P132 co-migrates with purified chicken gizzard MLCK on SDS/polyacrylamide gels, it is distinct from rat aortic MLCK. Partially purified MLCK from rat aorta migrated as a 145 kDa protein on SDS/polyacrylamide gels. Immunoblotting the partially purified rat aortic MLCK with antibody to bovine tracheal MLCK identified rat aortic MLCK (145 kDa) and a corresponding 145 kDa protein in the particulate fraction of cultured rat aortic smooth muscle cells, but did not detect the 132 kDa protein. Phosphopeptide maps of purified rat aortic MLCK prepared by digestion with Staphylococcus aureus V8 protease were distinct from those of P132. P132 was not caldesmon, since antibodies to caldesmon cross-reacted with 136 and 76 kDa proteins in the particulate fraction of rat aortic cells, but not with P132. Furthermore, caldesmon was partially extracted from the particulate into the soluble fraction by heating at 90 degrees C, whereas P132 was not. These results demonstrate that the ANP-responsive cyclic GMP-dependent protein kinase substrate of 132 kDa from rat aortic smooth muscle cells is not MLCK or caldesmon. 相似文献
18.
Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP-dependent protein kinase 总被引:14,自引:0,他引:14
M Nishikawa P de Lanerolle T M Lincoln R S Adelstein 《The Journal of biological chemistry》1984,259(13):8429-8436
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. 相似文献
19.
Platelet glycoprotein Ib beta is phosphorylated on serine 166 by cyclic AMP-dependent protein kinase 总被引:6,自引:0,他引:6
M R Wardell C C Reynolds M C Berndt R W Wallace J E Fox 《The Journal of biological chemistry》1989,264(26):15656-15661
Platelet responses are inhibited by agents such as prostaglandin E1 that increase the cytoplasmic concentration of cyclic AMP. Inhibition is thought to result from phosphorylation of specific proteins. One protein that becomes phosphorylated is glycoprotein (GP) Ib beta, a component of the GP Ib.IX complex. We have suggested that phosphorylation of GP Ib beta inhibits the collagen-induced polymerization of actin. The aim of the present study was to identify the amino acid(s) in GP Ib beta that is phosphorylated. Purified GP Ib.IX complex was phosphorylated by the catalytic subunit of purified bovine cyclic AMP-dependent protein kinase in the presence of [gamma-32P]ATP. Phosphoamino acid analysis showed that in GP Ib beta, [32P]phosphate was incorporated only into serine and was in a single tryptic peptide. Amino acid sequencing showed that this peptide was from the cytoplasmic domain of GP Ib beta and encompassed residues 161-175. A single serine residue, serine 166, contained the radiolabel. To determine whether the same residue was phosphorylated in intact platelets, GP Ib beta was isolated from 32P-labeled platelets before or after their exposure to prostaglandin E1. In both cases, radiolabel was present in phosphoserine and was in a single tryptic peptide. This peptide was the same as that which was phosphorylated in the purified GP Ib.IX complex, as shown by its identical mobility on two-dimensional tryptic maps, the presence of a positively charged residue in the fourth position, and the presence of the radiolabel in the sixth position of the peptide. This study shows that when cyclic AMP concentrations rise in platelets, the cytoplasmic domain of GP Ib beta is phosphorylated on serine 166, probably by cyclic AMP-dependent protein kinase. We suggest that phosphorylation of this residue may contribute to the inhibitory actions of cyclic AMP by inhibiting collagen-induced polymerization of actin. 相似文献
20.
Ciuman M Siednienko J Czyzyk R Witwicka H Kołosionek E Kobiałka M Gorczyca WA 《Biochimica et biophysica acta》2006,1760(11):1618-1623
The nitric oxide/soluble guanylyl cyclase/cGMP-dependent protein kinase (NO/sGC/PKG) cascade has been shown to affect important functions of circulating neutrophils. We demonstrate that neutrophils isolated from rats treated intraperitoneally with peptone protease cannot use this signaling pathway. Although PKG was detected at both the mRNA and protein levels in peripheral blood neutrophils (PBNs) of control rats, it was expressed neither in PBNs nor in peritoneal exudate neutrophils (PENs) of provoked rats. Also, mRNA of the alpha and beta chains of heterodimeric sGC was present in PBNs, but absent in PENs. Consistently, PBNs responded to activators of sGC with cGMP synthesis, while PENs did not. These results showed that neutrophils recruited by a provoking agent lost PKG and, in the case of PENs, also sGC and thus the capacity to respond to NO with cGMP signaling. We speculate that such downregulation of the sGC/PKG pathway is likely a result of the high activity of inducible NO synthase observed in inflammatory neutrophils. 相似文献