首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
Microtubules accelerate ADP release by dynein   总被引:4,自引:0,他引:4  
E L Holzbaur  K A Johnson 《Biochemistry》1989,28(17):7010-7016
The effects of microtubules on the phosphate-water oxygen exchange reactions catalyzed by dynein were examined in order to determine the mechanism by which microtubules activate the ATPase. Microtubules inhibited the rate of medium exchange observed during net ATP hydrolysis. Inhibition of the exchange reaction was proportional to the extent of microtubule activation of ATP turnover with no effect on the partition coefficient. These data argue that microtubules do not increase the rate of release of phosphate from dynein; rather, they increase the rate of ADP release. Microtubules markedly inhibited medium phosphate-water exchange reactions observed in the presence of ADP and Pi. With increasing concentrations of ADP, the rate of exchange increased in parallel to the dissociation of dynein from the microtubules, suggesting that only free dynein and not the microtubule-dynein complex catalyzes the exchange reaction. The rates of dynein binding to microtubules in the absence and presence of saturating ADP were 1.6 X 10(6) and 9.8 X 10(5) M-1 s-1, respectively. ADP inhibited the rate of the ATP-induced dissociation of the microtubule-dynein complex with an apparent Kd = 0.37 mM for the binding of ADP to the microtubule-dynein complex. However, the rate of dissociation of ADP from the M.D.ADP complex was quite fast (approximately 1000 s-1). These data support the postulate of a high-energy dynein-ADP intermediate and indicate that microtubules activate the dynein ATPase by enhancing the rate of ADP release.  相似文献   

2.
The effects of vanadate on the kinetics of ATP binding and hydrolysis by Tetrahymena 30 S dynein were examined by presteady state kinetic analysis. Up to a concentration of 400 microM, vanadate did not inhibit the rate or amplitude of the ATP binding-induced dissociation of the microtubule-dynein complex measured by stopped flow light-scattering methods. Chemical quench flow experiments showed that vanadate (80 microM) did not alter the rate or amplitude of the presteady state ATP binding or ATP hydrolysis transients, but the steady state hydrolysis of ATP was blocked immediately after a single turnover of ATP. Preincubation of the enzyme with ADP and vanadate inhibited both presteady state and steady state hydrolysis. These data suggest that vanadate acts as a phosphate analog to form an enzyme-ADP-vanadate complex, analogous to the transition state during catalysis, by the following pathway: (formula; see text) where V represents vanadate and D represents a dynein active site. ADP and vanadate, added together, induced dissociation of the microtubule-dynein complex at a maximum rate of 0.6 S-1. These observations imply that a microtubule-dynein-ADP-vanadate complex was formed which subsequently dissociated as shown below: (formula; see text) where M denotes a microtubule. The ADP plus vanadate-induced dissociation may represent the reverse of the normal forward pathway involving the binding of a dynein-ADP-phosphate complex to a microtubule.  相似文献   

3.
Activation of the dynein adenosinetriphosphatase by microtubules   总被引:6,自引:0,他引:6  
Previous work has indicated that following the rapid adenosine 5'-triphosphate (ATP) induced dissociation of the microtubule-dynein complex, the rate-limiting step in the ATPase cycle is product release [Johnson, K. A. (1983) J. Biol. Chem. 258, 13825-13832], which occurs at a rate of approximately 2-6 s-1. In this report we complete the analysis of the ATPase cycle by examining the effect of microtubules on the rate of product release. For these studies we used repolymerized Tetrahymena axonemal microtubules and microtubule-associated protein (MAP) free bovine brain microtubules which were shown to be free of any measureable ATPase activity. Tetrahymena 22S dynein bound to these microtubules predominantly by the ATP-sensitive site and at a rate giving an apparent second-order rate constant of (0.2-1) X 10(6) M-1 s-1, which is 50-fold greater than the rate observed with brain microtubules containing MAPs. ATP induced the rapid dissociation of the microtubule-dynein complex with an apparent second-order rate constant vs. ATP concentration equal to 1.6 X 10(6) M-1 s-1; this value is only slightly lower than that observed in the presence of MAPs. After the ATP-induced dissociation, the dynein reassociated with the microtubules following a lag period due to the time required to hydrolyze the ATP. The duration of the lag time for reassociation decreased with increasing microtubule concentration, suggesting that microtubules increased the rate of ATP turnover. Direct measurements at steady state showed that the specific activity of the dynein increased with increasing microtubule concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The kinetics of ATP binding and hydrolysis (formation of acid-labile phosphate) by the Tetrahymena 30 S dynein ATPase has been measured by chemical quench flow methods. The amplitude of the ATP-binding transient gave a molecular weight per ATP-binding site of approximately 750,000, suggesting nearly 3 ATP binding sites/2 million Mr dynein molecule (Johnson, K. A., and Wall, J.S. (1983) J. Cell Biol. 96, 669-678). ATP binding occurred at the rate predicted from the apparent second order rate constant of 4.7 X 10(6) M-1 S-1 measured by analysis of the ATP-induced dissociation of the microtubule-dynein complex (Porter, M. E., and Johnson, K. A. (1983) J. Biol. Chem. 258, 6582-6587). Hydrolysis was slower than binding and occurred at a rate of 55 S-1, at 30 and 50 microM ATP. The rate limiting step for steady state turnover (product release) occurred with a rate constant of 8 S-1. These data show that the first two steps of the pathway of coupling ATP hydrolysis to the microtubule-dynein cross-bridge cycle are the same as those described by Lymn and Taylor for actomyosin (Lymn, R. W., and Taylor, E. W. (1971) Biochemistry 10, 4617-4624). Namely, ATP binding induces the very rapid dissociation of dynein from the microtubule and ATP hydrolysis occurs more slowly following dissociation. Moreover, in spite of rather gross structural differences, the kinetic constants for dynein and myosin are quite similar.  相似文献   

5.
The microtubule-dynein complex consisting of 22S dynein from Tetrahymena cilia and MAP-free microtubules was subjected to treatment with various concentrations of 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide (EDC), a zero-length cross-linker, at 28 degrees C for 1 h. Following cross-linking of the microtubule-dynein complex, nearly all of the ATPase activity cosedimented with the microtubules in the presence of ATP. Electron microscopic observation by negative staining revealed that, following treatment with 1 mM EDC, the complex did not dissociate in the presence of ATP, although the dynein decoration pattern was disordered. The complex treated with 3 mM EDC exhibited normal microtubule-dynein patterns even after the addition of ATP. The ATPase activity of the microtubule-dynein complex was enhanced about 30-fold by the treatment with 1-3 mM EDC. These results indicate that the ATPase activation was caused by the close proximity of the dynein ATPase sites to the microtubules and provide further support for the functional interaction of all three dynein heads with the microtubule. The maximal specific activity was 12 mumol min-1 (mg of dynein)-1, corresponding to a turnover rate of 150 s-1, which may be the rate-limiting step at infinite microtubule concentration and may represent the maximum rate of force production in the axoneme.  相似文献   

6.
Kinetic evidence for multiple dynein ATPase sites   总被引:7,自引:0,他引:7  
We have examined the kinetics of ATP-induced dissociation of the microtubule-dynein complex at low ATP concentrations in the presence of vanadate, which inhibits the enzyme after the binding and hydrolysis of a single ATP per site (Shimizu, T., and Johnson, K. A. (1983) J. Biol. Chem. 258, 13833-13840). Four aspects of the dissociation reaction could not be explained by a model of dynein with a single ATP-sensitive microtubule binding site. First, titration of the light-scattering amplitude versus ATP concentration in the presence of vanadate gave Mr = 720,000/ATP binding site, indicating approximately 2.8 sites/2 million molecular weight particle. Second, the dissociation reaction was incomplete at concentrations of less than 2 microM ATP in the absence of vanadate, while the addition of vanadate led to complete dissociation at an increased rate. Third, the time course of dissociation induced by less than or equal to 1 microM ATP in the presence of vanadate was biphasic, with a small but distinct lag. Fourth, the ATP concentration dependence of the rate of dissociation in the absence of vanadate was concave upward at concentrations of ATP less than 5 microM, whereas the plot was linear in the presence of vanadate. These data suggest that dynein has three ATP-sensitive microtubule binding sites and each site must bind ATP for dynein to detach from the microtubule.  相似文献   

7.
The phosphorothioate analog of ATP has a sulfur atom replacing a non-bridging oxygen atom of the triphosphate moiety of ATP. Due to the tetrahedral nature of the phosphorus atom, stereoisomers are known to exist, designated as the Sp and Rp isomers. We have reported [Shimizu & Furusawa (1986) Biochemistry 25, 5787] on the hydrolytic activity of the 22S dynein from Tetrahymena cilia towards the phosphorothioate analogs of ATP. In this paper, we extend our study and report on the microtubule-dynein dissociation by these analogs and on their ability to support sea urchin flagellar dynein enzymatic activity as well as ciliary or flagellar motility. It has been shown that the microtubule--22S-dynein complex is dissociated by the binding of ATP to the dynein enzymatic sites [Porter & Johnson (1983) J. Biol. Chem. 258, 6575]. We studied the dissociation by adenosine 5'-[alpha-thio]triphosphate (ATP[alpha S]), Sp or Rp, by light-scattering stopped-flow methods. The dissociation by (Sp)ATP[alpha S] was rapid and the rate of the light-scattering change by (Sp)ATP[alpha S] was a hyperbolic function of the nucleotide concentration, indicating that dissociation was a two-step process. On the other hand, (Rp)ATP[alpha S] up to 2 mM induced only slow and partial dissociation of the complex, while, in the presence of vanadate, it induced complete dissociation with a slightly higher rate (0.5 s-1). The adenosine 5'-[beta-thio]triphosphate (ATP[beta S]) isomers did not induce dissociation. The hydrolytic activity of the outer arm dynein from sea urchin sperm flagella towards these analogs was similar to that of 22S dynein. The ratios of Vmax (nmol.mg protein-1.min-1)/apparent Km (microM) of this dynein were 400-720, 53, 9.7, 0.62 and 0.028 for ATP, ATP[alpha S] (Sp or Rp), ATP[beta S] (Sp or Rp), respectively, in the presence of Mg2+ as the supporting cation. This dynein exhibited the same stereospecificity at beta phosphate as the 22S dynein or myosin. The detergent models of Tetrahymena or sea urchin spermatozoa were reactivated only by ATP or (Sp)ATP[alpha S] while other analogs were ineffective. The maximal beat frequency of the cilia or flagella reactivated by (Sp)ATP[alpha S] was one-quarter to one-half of that produced by ATP reactivation.  相似文献   

8.
Foster KA  Gilbert SP 《Biochemistry》2000,39(7):1784-1791
Ncd is a kinesin-related motor protein which drives movement to the minus-end of microtubules. The kinetics of Ncd were investigated using the dimeric construct MC1 (Leu(209)-Lys(700)) expressed in Escherichia coli strain BL21(DE) as a nonfusion protein [Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A., and Endow, S. A. (1993) J. Biol. Chem. 268, 9005-9013]. Acid chemical quench flow methods were used to measure directly the rate of ATP hydrolysis, and stopped-flow kinetic methods were used to determine the kinetics of mantATP binding, mantADP release, dissociation of MC1 from the microtubule, and binding of MC1 to the microtubule. The results define a minimal kinetic mechanism, M.N + ATP M.N.ATP M.N.ADP.P N. ADP.P N.ADP + P M.N.ADP M.N + ADP, where N, M, and P represent Ncd, microtubules, and inorganic phosphate respectively, with k(+1) = 2.3 microM(-1) s(-1), k(+2) =23 s(-1), k(+3) =13 s(-1), k(+5)= 0.7 microM(-)(1) s(-)(1), and k(+6) = 3.7 s(-)(1). Phosphate release (k(+4)) was not measured directly although it is assumed to be fast relative to ADP release because Ncd is purified with ADP tightly bound at the active site. ATP hydrolysis occurs at 23 s(-)(1) prior to Ncd dissociation at 13 s(-)(1). The pathway for ATP-promoted detachment (steps 1-3) of Ncd from the microtubule is comparable to kinesin's. However, there are two major differences between the mechanisms of Ncd and kinesin. In contrast to kinesin, mantADP release for Ncd at 3.7 s(-)(1) is the slowest step in the pathway and is believed to limit steady-state turnover. Additionally, the burst amplitude observed in the pre-steady-state acid quench experiments is stoichiometric, indicating that Ncd, in contrast to kinesin, is not processive for ATP hydrolysis.  相似文献   

9.
The kinetics of ATP-induced dissociation of dynein from the dynein-microtubule complex has been investigated by stopped flow light scattering methods. The addition of ATP to the dynein-microtubule complex induced a large, rapid decrease in light scattering followed by a smaller and much slower decrease. The fast light scattering change was shown to be a measure of the ATP-induced dissociation of dynein from the dynein-microtubule complex and was distinguished from microtubule disassembly by several criteria. (i) The fast reaction occurred over a period of milliseconds and the rate was a function of the ATP concentration, whereas, the slow reaction occurred over a period of several seconds and was independent of ATP concentration; (ii) the amplitude of the fast reaction was directly proportional to the amount of dynein bound to the microtubule lattice; and (iii) only the slow phase was inhibited by the addition of the microtubule-stabilizing drug, taxol. The rate of ATP-induced dissociation of dynein from the microtubule increased linearly with increasing ATP concentration to give an apparent second order rate constant for ATP binding equal to k1 = 4.7 X 10(6) M-1 s-1 according to the following pathway: (formula; see text) where M X D represents the dynein-microtubule complex and D represents dynein. The loss of signal amplitude at high ATP concentration provided a minimum estimate for the rate of dissociation of the ternary complex (M X D X ATP) equal to kd greater than 1000 s-1. Thus, the dynein-microtubule system is similar to actomyosin in that ATP induces an extremely rapid dissociation of dynein from the microtubule.  相似文献   

10.
Eg5/KSP is a homotetrameric, Kinesin-5 family member whose ability to cross-link microtubules has associated it with mitotic spindle assembly and dynamics for chromosome segregation. Transient-state kinetic methodologies have been used to dissect the mechanochemical cycle of a dimeric motor, Eg5-513, to better understand the cooperative interactions that modulate processive stepping. Microtubule association, ADP release, and ATP binding are all fast steps in the pathway. However, the acid-quench analysis of the kinetics of ATP hydrolysis with substrate in excess of motor was unable to resolve a burst of product formation during the first turnover event. In addition, the kinetics of P(i) release and ATP-promoted microtubule-Eg5 dissociation were observed to be no faster than the rate of ATP hydrolysis. In combination the data suggest that dimeric Eg5 is the first kinesin motor identified to have a rate-limiting ATP hydrolysis step. Furthermore, several lines of evidence implicate alternating-site catalysis as the molecular mechanism underlying dimeric Eg5 processivity. Both mantATP binding and mantADP release transients are biphasic. Analysis of ATP hydrolysis through single turnover assays indicates a surprising substrate concentration dependence, where the observed rate is reduced by half when substrate concentration is sufficiently high to require both motor domains of the dimer to participate in the reaction.  相似文献   

11.
In this work, we show that adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) is a substrate for yeast inorganic pyrophosphatase (PPase) (EC 3.6.1.1) and further, using chirally labeled [gamma-17O,18O]ATP gamma S, that enzyme-catalyzed hydrolysis to produce chiral inorganic thio[17O,18O]phosphate proceeds with inversion of configuration. Both the synthesis of chiral ATP gamma S and the determination of inorganic thiophosphate configuration were carried out as described by Webb [Webb, M. R. (1982) Methods Enzymol. 87, 301-316]. We also show in a single turnover experiment performed in H2(18)O that 1 mol each of 18O16O3P and 16O4P is produced per mol of inorganic pyrophosphate hydrolyzed, a strong indication that oxygen uptake to form inorganic phosphate on PPase catalysis of inorganic pyrophosphate hydrolysis comes directly from H2O. These two results provide strong evidence for the conclusion that PPase catalyzes inorganic pyrophosphate hydrolysis via a single-step direct phosphoryl transfer to water and does not involve formation of a phosphorylated enzyme intermediate.  相似文献   

12.
M A Geeves 《Biochemistry》1989,28(14):5864-5871
The equilibrium and dynamics of the interaction between actin, myosin subfragment 1 (S1), and ADP have been investigated by using actin which has been covalently labeled at Cys-374 with a pyrene group. The results are consistent with actin binding to S1.ADP (M.D) in a two-step reaction, A + M.D K1 equilibrium A-M.D K2 equilibrium A.M.D, in which the pyrene fluorescence only monitors the second step. In this model, K1 = 2.3 X 10(4) M-1 (k+1 = 4.6 X 10(4) M-1 s-1) and K2 = 10 (k+2 less than or equal to 4 s-1); i.e., both steps are relatively slow compared to the maximum turnover of the ATPase reaction. ADP dissociates from both M.D and A-M.D at 2 s-1 and from A.M.D at greater than or equal to 500 s-1; therefore, actin only accelerates the release of product from the A.M.D state. This model is consistent with the actomyosin ATPase model proposed by Geeves et al. [(1984) J. Muscle Res. Cell Motil. 5, 351]. The results suggest that A-M.D cannot break down at a rate greater than 4 s-1 by dissociation of ADP, by dissociation of actin, or by isomerizing to A.M.D. It is therefore unlikely to be significantly occupied in a rapidly contracting muscle, but it may have a role in a muscle contracting against a load where the ATPase rate is markedly inhibited. Under these conditions, this complex may have a role in maintaining tension with a low ATP turnover rate.  相似文献   

13.
E L Holzbaur  K A Johnson 《Biochemistry》1989,28(13):5577-5585
The kinetics of the product release steps in the pathway of ATP hydrolysis by dynein were investigated by examining the rate and partition coefficient of phosphate-water 18O exchange under equilibrium and steady-state conditions. Dynein catalyzed both medium and intermediate phosphate-water oxygen exchange with a partition coefficient of 0.30. The dependence of the rate of loss of the fully labeled phosphate species on the concentration of ADP was hyperbolic, with an apparent Kd for the binding of ADP to dynein of 0.085 mM. The apparent second-order rate constant for phosphate binding to the dynein-ADP complex was 8000 M-1 s-1. The time course of medium phosphate-water oxygen exchange during net ATP hydrolysis was examined in the presence of an ATP regeneration system. The observed rate of loss of P18O4 was comparable to the rate observed at saturating ADP which implies that ADP release is rate limiting for dynein in the steady state. Product inhibition of the dynein ATPase was also examined. ADP inhibited the enzyme competitively with a Ki of 0.4 mM. Phosphate was a linear noncompetitive mixed-type inhibitor with a Ki of 11 mM. These data were fit to a model in which phosphate release is fast and is followed by rate-limiting release of ADP, allowing us to define each rate constant in the pathway. A discrepancy between the total free energy calculated compared to the known free energy of ATP hydrolysis suggests that there is an additional step in the pathway, perhaps involving a change in conformation of the enzyme-ADP state preceding ADP release.  相似文献   

14.
15.
An important challenge is to understand the functional specialization of dynein heavy chains. The ciliary outer arm dynein from Tetrahymena thermophila is a heterotrimer of three heavy chains, called alpha, beta and gamma. In order to dissect the contributions of the individual heavy chains, we used controlled urea treatment to dissociate Tetrahymena outer arm dynein into a 19S beta/gamma dimer and a 14S alpha heavy chain. The three heavy chains remained full-length and retained MgATPase activity. The beta/gamma dimer bound microtubules in an ATP-sensitive fashion. The isolated alpha heavy chain also bound microtubules, but this binding was not reversed by ATP. The 19S beta/gamma dimer and the 14S alpha heavy chain could be reconstituted into 22S dynein. The intact 22S dynein, the 19S beta/gamma dimer, and the reconstituted dynein all produced microtubule gliding motility. In contrast, the separated alpha heavy chain did not produce movement under a variety of conditions. The intact 22S dynein produced movement that was discontinuous and slower than the movement produced by the 19S dimer. We conclude that the three heavy chains of Tetrahymena outer arm dynein are functionally specialized. The alpha heavy chain may be responsible for the structural binding of dynein to the outer doublet A-tubule and/or the positioning of the beta/gamma motor domains near the surface of the microtubule track.  相似文献   

16.
Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end to the A subfiber and form bridges at the other end to the B subfiber of an adjacent doublet. Recombined arms retain an ATPase activity that remains coupled to potential generation of interdoublet sliding forces. To examine important aspects of the dynein- tubulin interaction that we presume are directly related to the dynein force-generating cross-bridge cycle, a simple and quantitative spectrophotometric assay was devised for monitoring the associations between isolated 30S dynein and the B subfiber. Utilizing this assay, the binding of dynein to B subfibers was found to be dependent upon divalent cations, saturating at 3 mM Mg2+. Micromolar concentrations of MgATP2- cause the release of dynein from the B subfiber; however, not all of the dynein bound under these conditions is released by ATP. ATP- insensitive dynein binding results from dynein interactions with non-B- tubule sites on outer-doublet and central-pair microtubules and from ATP-insensitive binding to sites on the B subfiber. Vanadate over a wide concentration range (10(-6)-10(-3) M) has no effect on the Mg2+- induced binding of dynein or its release by MgATP2-, and was used to inhibit secondary doublet disintegration in the suspensions. In the presence of 10 microM vanadate, dynein is maximally dissociated by MgATP2- concentrations greater than or equal to 1 microM with half- maximal release at 0.2 microM. These binding properties of isolated dynein arms closely resemble the cross-bridging behavior of in situ dynein arms reported previously, suggesting that quantitative studies such as those presented here may yield reliable information concerning the mechanism of force generation in dynein-microtubule motile systems. The results also suggest that vanadate may interact with an enzyme- product complex that has a low affinity for tubulin.  相似文献   

17.
Dynein was obtained by high salt extraction of Tetrahymena cilia and purified by DEAE-Sephacel chromatography. This fraction consisted of a mixture of 30 S dynein (80%) and the 14 S ATPase (15%). The column purification effectively removed tubulin and adenylate kinase. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the 30 S dynein was composed of a major heavy chain (approximately 400 kD, three copies), three intermediate chains (70, 85, and 100 kD), and a group of light chains (approximately 20 kD). The binding of the column-purified dynein to bovine brain microtubules was characterized as follows. (i) Titration of the dynein with microtubules showed a linear increase in turbidity up to an equivalence point of 2.7 mg of dynein/mg of tubulin with apparently tight binding; (ii) the addition of ATP caused the turbidity of the solution of decrease to a level equal to the sum of free dynein plus microtubules; (iii) transmission electron microscopy indicated that microtubules were decorated with dynein arms spaced at a 24-nm longitudinal repeat and that the dynein decoration was removed upon addition of ATP; (iv) cross-section images of microtubules that were saturated with dynein showed six to seven dynein arms around a microtubule consisting of 14 protofilaments, corresponding to a molar ratio of one dynein/six tubulin dimers; (v) the dynein arms were bound primarily by their broader end which corresponds to the end normally bound to the B-subfiber in vivo. Experiments with purified 30 and 14 S dyneins indicated that the dynein-microtubule binding activity and the ATP-induced dissociation were the properties of the 30 S dynein alone. These studies demonstrate that the 30 S dynein under our conditions (50 mM PIPES, pH 6.96, 4 mM MgSO4) interacts with bovine brain microtubules through the ATP-sensitive site of the dynein arm.  相似文献   

18.
Monastrol inhibition of the mitotic kinesin Eg5   总被引:1,自引:0,他引:1  
Monastrol is a small, cell-permeable molecule that arrests cells in mitosis by specifically inhibiting Eg5, a member of the Kinesin-5 family. We have used steady-state and presteady-state kinetics as well as equilibrium binding approaches to define the mechanistic basis of S-monastrol inhibition of monomeric human Eg5/KSP. In the absence of microtubules (Mts), the basal ATPase activity is inhibited through slowed product release. In the presence of microtubules, the ATPase activity is also reduced with weakened binding of Eg5 to microtubules during steady-state ATP turnover. Monastrol-treated Eg5 also shows a decreased relative affinity for microtubules under equilibrium conditions. The Mt.Eg5 presteady-state kinetics of ATP binding and the subsequent ATP-dependent isomerization are unaffected during the first ATP turnover. However, monastrol appears to stabilize a conformation that allows for reversals at the ATP hydrolysis step. Monastrol promotes a dramatic decrease in the observed rate of Eg5 association with microtubules, and ADP release is slowed without trapping the Mt.Eg5.ADP intermediate. We propose that S-monastrol binding to Eg5 induces a stable conformational change in the motor domain that favors ATP re-synthesis after ATP hydrolysis. The aberrant interactions with the microtubule and the reversals at the ATP hydrolysis step alter the ability of Eg5 to generate force, thereby yielding a nonproductive Mt.Eg5 complex that cannot establish or maintain the bipolar spindle.  相似文献   

19.
Binding of 21 S dynein ATPase isolated from Tetrahymena cilia to B subfibers of microtubule doublets was used as a model system to study dynein-tubulin interactions and their relationship to the microtubule-based sliding filament mechanism. Binding of 21 S dynein to both A and B microtubule subfibers is supported by monovalent as well as divalent ions. Monovalent cation chlorides support dynein binding to B subfibers with the specificity Li greater than Na congruent to K congruent to Rb congruent to Cs congruent to choline. The corresponding sodium or potassium halides follow the order F greater than Cl greater than Br greater than I. However, an optimal binding concentration of 40 mM KCl supports only 55% of the protein binding which takes place in 3 mM MgSO4 and does not stabilize dynein cross-bridges when whole axonemes are fixed for electron microscopy. Divalent metal ion chlorides (MgCl2, CaCl2, SrCl2, and BaCl2) have nearly equivalent effects at a concentration of 6 mM; all support about 140% of the binding observed in 6 mM MgSO4. The binding data suggest negative cooperativity or the presence of more than one class of dynein binding sites on the microtubule lattice. Low concentrations of MgATP2- induce dissociation of dynein bound to B subfibers in either 6 mM MgSO4 or 40 mM KCl. ADP, Pi, PPi, and AMP-PCH2P are unable to induce dynein dissociation, while AMP-PNHP and ATP4- both cause dynein release from B subfiber sites. The half-maximal sensitivities of the tubulin-dynein complex to MgATP2-, ATP4-, and adenylyl-imidodiphosphate (AMP.PNP) are 1.3 X 10(-8) M, 3.6 X 10(-5) M, and 4.7 X 10(-4) M respectively. Incubation of doublets or 21 S dynein in N-ethylmaleimide (NEM), which can inhibit active sliding, has no effect on either association of dynein with the B subfiber or on dissociation of the resulting dynein-B subfiber complex by MgATP2-.  相似文献   

20.
Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models of dynein heavy chain have fostered the hypothesis that the energy derived from hydrolysis at P-loop 1 acts through adjacent P-loop domains to effect changes in the attachment state of the microtubule-binding domain. However, to date, the functional significance of the P-loop domains adjacent to the ATP hydrolytic site has not been demonstrated. Our results provide a mutational analysis of P-loop function within the first and third AAA domains of the Drosophila cytoplasmic dynein heavy chain. Here we report the first evidence that P-loop-3 function is essential for dynein function. Significantly, our results further show that P-loop-3 function is required for the ATP-induced release of the dynein complex from microtubules. Mutation of P-loop-3 blocks ATP-mediated release of dynein from microtubules, but does not appear to block ATP binding and hydrolysis at P-loop 1. Combined with the recent recognition that dynein belongs to the family of AAA ATPases, the observations support current models in which the multiple AAA domains of the dynein heavy chain interact to support the translocation of the dynein motor down the microtubule lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号