首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gender-related differences in brown adipose tissue (BAT) thermogenesis of 110-day-old rats were studied by determining the morphological and functional features of BAT. The adrenergic control was assessed by studying the levels of beta(3)- and alpha(2A)-adrenergic receptors (AR) and by determining the lipolytic response to norepinephrine (beta(1)-, beta(2)-, beta(3)-, and alpha(2)-AR agonist), isoprenaline (beta(1)-, beta(2)-, and beta(3)-AR agonist), and CGP12177A (selective partial beta(3)-AR agonist but beta(1)- and beta(2)-AR antagonist) together with post-receptor agents, forskolin and dibutyryl cyclic AMP. The female rats that had greater oxygen consumption showed higher UCP1 content, a higher multilocular arrangement, and both longer cristae and higher cristae dense mitochondria in BAT indicating heightened thermogenic capacity and activity; this picture is accompanied by a more sensitive beta(3)-AR to norepinephrine signal (EC(50) 10-fold lower for CGP12177A) and a lower expression of alpha(2A)-AR than male rats. Taken together, our results support the idea that the BAT hormonal environment could be involved in the control of different elements of lipolytic and thermogenic adrenergic pathways. Gender dimorphism is both at receptor (changing alpha(2A)-AR density and beta(3)-AR affinity) and post-receptor (modulating the links involved in the adrenergic signal transduction) levels. These changes in adrenergic control could be responsible, at least in part, both for the important mitochondrial recruitment differences and functional and morphological features of BAT in female rats under usual rodent housing temperatures.  相似文献   

2.
The role of insulin in norepinephrine turnover (NE) and thermogenesis in brown adipose tissue (BAT) after acute cold-exposure was studied using streptozocin (STZ)-induced diabetic rats. NE turnover was estimated by the NE synthesis inhibition technique with alpha-methyl-p-tyrosine. BAT thermogenesis was estimated by measuring mitochondrial guanosine-5'-diphosphate (GDP), cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at an ambient temperature of 22 degrees C and during a six-hour cold-exposure at 4 degrees C. In insulin-deficient diabetic rats, the NE turnover, mitochondrial GDP binding, cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at 22 degrees C were significantly reduced, compared with those of control rats. Treatment of STZ-induced diabetic rats with insulin prevented a decrease in NE turnover and BAT thermogenesis. Acute cold-exposure increased the NE turnover of BAT in insulin-deficient diabetic rats. The BAT thermogenic response to acute cold-exposure, however, did not occur in insulin-deficient diabetic rats. These results suggest that insulin is not essential in potentiating NE turnover in BAT after acute cold-exposure, but is required for cold-induced thermogenesis.  相似文献   

3.
Caloric restriction (CR) studies have shown that females rats conserve energy more efficiently, showing a higher resistance to weight loss and higher protection of vital organs mass than male rats. Gender-dependent inactivation of thermogenesis in brown adipose tissue (BAT) has been proposed as one of these possible energy conserving mechanisms. To study the changes underlying this inactivation in rats, a three month study with 40% CR was undertaken to unravel the effects on BAT recruitment. Under ad libitum conditions female rats had greater BAT recruitment and greater oxygen consumption than their male counterparts. Total and mitochondrial protein, as well as triglyceride and DNA content were more reduced in restricted female rats than in restricted males. Similarly, the levels of key BAT functional proteins (UCP1, LPL, HSL, TFAM) were more reduced in restricted females, whereas no changes were found in mitochondrial DNA levels (mtDNA) and OXPHOS activities in males and females. Furthermore, alpha (2A)/beta (3) adrenergic receptor ratio remained constant in male rats whereas in female rats CR increased 60%. In conclusion, our results suggest that female rats, whose BAT thermogenic activity is higher in ad libitum conditions, is depressed during CR. This inactivation involves the mitochondrial differentiation process and lipolytic system and could be due, at least in part, to the unfavourable adrenergic receptor balance for thermogenic activation.  相似文献   

4.
To establish whether the diurnal decrease in the density of alpha 1 receptors observed in the medial preoptic nucleus (MPN) of estrogen (E2)-treated rats is related to the concomitant diurnal increase in norepinephrine (NE) turnover rates, we quantitated the density of [3H]-Prazosin binding to alpha 1 receptors after blockade of NE turnover with alpha-methyl-paratyrosine (alpha MPT). A series of preliminary studies was performed to rule out an interference of this drug with [3H]-Prazosin binding to alpha 1 adrenergic receptors in vitro and in vivo. Incubation of brain slices with alpha MPT produced a dose-dependent inhibition of [3H]-Prazosin binding to alpha 1 adrenergic receptors with an IC50 of approximately 6 mM. Scatchard analysis demonstrated that alpha MPT exhibited a simple competitive interaction with [3H]-Prazosin binding sites as shown by an increase in the apparent dissociation constant (Kd) of the ligand and no change in the number of alpha 1 receptors (Bmax). In contrast, preincubation of brain slices with alpha MPT and prior in vivo administration of alpha MPT did not affect [3H]-Prazosin binding to alpha 1 adrenergic receptors. Once we established that alpha MPT could be used to suppress NE turnover without interfering with the measurement of alpha 1 receptor densities, we repeatedly injected this drug to ovariectomized (OVX) and E2-implanted rats. The density of alpha 1 adrenergic receptors in MPN was quantitated autoradiographically. Blockade of NE turnover with alpha MPT only partially prevented the reduction in alpha 1 receptor density observed in the E2-treated rats, suggesting that the decrease in the level of [3H]-Prazosin binding sites cannot be completely ascribed to increased NE turnover rates.  相似文献   

5.
Animals reared at 18 degrees C exhibit enhanced innervation of brown adipose tissue (BAT) and greater cold tolerance as adults, yet gain more weight when fed an enriched diet compared with rats reared at 30 degrees C. To explore this paradox, sympathoadrenal activity was examined using techniques of [(3)H]norepinephrine ([(3)H]NE) turnover and urinary catecholamine excretion in male and female rats reared until 2 mo of age at 18 or 30 degrees C. Gene expression in BAT was also analyzed for several sympathetically related proteins. Although [(3)H]NE turnover in heart did not differ between groups, [(3)H]NE turnover in BAT was consistently elevated in the 18 degrees C-reared animals, even 2 mo after removal from the cool environment. Gene expression for uncoupling proteins 1 and 3, GLUT-4, leptin, and the alpha(1A)-adrenergic receptor was more abundant in BAT and the increase in epinephrine excretion with fasting suppressed in 18 degrees C-reared animals. These studies demonstrate that obesity consequent to exposure to 18 degrees C in early life occurs despite tonic elevation of sympathetic input to BAT. Diminished adrenal epinephrine responsiveness to fasting may play a contributory role.  相似文献   

6.
Go AG  Chow KH  Hwang IS  Tang F 《Peptides》2007,28(4):920-927
Male Sprague-Dawley rats were subcutaneously injected with 2.5mg/kg phenylephrine or 2.5mg/kg isoproterenol or both (2.5mg/kg for each drug) for 4 days, twice a day. Samples of scapular brown adipose tissue (BAT) and epididymal white adipose tissue (WAT) were collected for the measurement of adrenomedullin (AM) levels and the gene expression of preproAM, calcitonin receptor like receptor (CRLR) and its activity modifying proteins (RAMPs) by radioimmunoassay and RT-PCR. These values were compared with those in the rats that received 0.9% saline. The gene expression of AM and AM receptor components in BAT are much less than that in epididymal WAT. In BAT there were an increase in AM peptide level after a combined treatment of alpha(1) and beta adrenoceptor agonists and increases in preproAM mRNA levels for rats treated with alpha(1) and beta receptor agonists alone or in combination. Both CRLR and RAMP2 mRNA levels of alphabeta group were increased significantly. In WAT, AM peptide level, RAMP1 and RAMP2 mRNA expression levels were augmented in the alpha group while CRLR mRNA level was enhanced in the beta group. The levels of AM, its receptor and RAMPs are much less in BAT than in WAT but adrenergic stimulation has a greater effect on the AM and its receptor components in BAT than those in WAT. AM stimulates lipolysis and increases the level of uncoupling protein-1 (UCP-1) in BAT. It may therefore enhance thermogenesis by increasing the availability of free fatty acids substrate as well as the UCP-1 level on the mitochondrial membrane.  相似文献   

7.
Continuous exposure of DDT1 MF-2 smooth muscle cells to 10-100 microM norepinephrine results in a dramatic attenuation of the ability of norepinephrine to stimulate inositol phospholipid hydrolysis via alpha 1-adrenergic receptors (alpha 1-AR). In addition to the functional desensitization, norepinephrine exposure also reduces the number of accessible cell surface alpha 1-AR as assayed by [3H]prazosin binding at 4 degrees C. Desensitization of the cells with norepinephrine results in an increase in the phosphorylation of the Mr 80,000 alpha 1-AR ligand binding peptide (2.4 +/- 0.2 mol of 32P per mol of alpha 1-AR; n = 5) when compared to control cells (1.1 +/- 0.1 mol of 32P per mol of alpha 1-AR; n = 5). The time courses of these three processes are all comparable being half-maximal within 1-2 min. These norepinephrine-promoted effects can be prevented by the alpha 1-AR receptor antagonist phentolamine indicating that they are mediated via the alpha 1-AR. Treatment of cells with the vasoactive peptide bradykinin (10 microM) induces desensitization of alpha 1-AR function similar to that induced by tumor-promoting phorbol ester treatment (Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., DeBernardis, J. F., Lefkowitz, R. J., and Caron, M. G. (1985) Proc. Natl. Acad. Sci. USA 82, 5651-5655). Both treatments also result in phosphorylation of the alpha 1-AR, with stoichiometries of 1.7 +/- 0.1 (bradykinin; n = 5) and 3.6 +/- 0.1 (PMA; n = 5) mol of 32P/mol of alpha 1-AR. However, neither phorbol esters nor bradykinin reduce the number of accessible cell surface alpha 1-AR. Similar phosphopeptide maps are obtained from tryptic phosphopeptides generated from phosphorylated alpha 1-AR derived from cells treated with norepinephrine, phorbol 12-myristate 13-acetate, and bradykinin. Phosphoamino acid analysis reveals that the various agents induce phosphorylation on both serine and threonine residues. Thus, phosphorylation of receptors linked to the inositol phospholipid/Ca2+ signaling pathway may represent an important mechanism of regulation of receptor responsiveness.  相似文献   

8.
The thermogenic activity of brown adipose tissue (BAT) largely depends on the mitochondrial uncoupling protein 1 (UCP1), which is up-regulated by environmental alterations such as cold. Recently, CIDEA (cell death-inducing DNA fragmentation factor-α-like effector A) has also been shown to be expressed at high levels in the mitochondria of BAT. Here we examined the effect of cold on the mRNA and protein levels of CIDEA in interscapular BAT of conscious rats with regard to the sympathetic nervous system. Cold exposure (4 °C for 3 h) elevated the plasma norepinephrine level and increased norepinephrine turnover in BAT. Cold exposure resulted in down-regulation of the mRNA and protein levels of CIDEA in BAT, accompanied by up-regulation of mRNA and protein levels of UCP1. The cold exposure-induced changes of CIDEA and UCP1 were attenuated by intraperitoneal pretreatment with propranolol (a non-selective β-adrenoreceptor antagonist) (2 mg/animal) or SR59230A (a selective β3-adrenoreceptor antagonist) (2 mg/animal), respectively. These results suggest that acute cold exposure resulted in down-regulation of CIDEA in interscapular BAT by sympathetically activated β3-adrenoreceptor-mediated mechanisms in rats.  相似文献   

9.
《Tissue & cell》2016,48(5):452-460
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT.  相似文献   

10.
The mechanism of agonist-induced desensitization of the beta adrenergic receptor coupled adenylate cyclase has been studied in a smooth muscle cell line, BC3H-1, which expresses both alpha and beta adrenergic receptors and nicotinic receptors. beta receptors have been investigated in intact cells using as radioligand 3HCGP-12177, an hydrophilic compound which labels only surface receptors. The treatment of BC3H-1 cells with the agonist Isoproterenol, at 37 degrees but not at 4 degrees, induced a dose dependent internalization of the beta adrenergic receptor. Agonist-induced internalization was very rapid, in the order of few minutes. beta adrenergic receptor internalization was very specific: the alpha adrenergic agonist Phenylefrine had almost no effect on beta receptor levels, while Isoproterenol treatment had no effect on the number of alpha adrenergic or nicotinic receptors expressed at the cell surface of these cells. beta adrenergic receptor internalization is probably the major mechanism responsible for catecholamine desensitization in smooth muscle cells.  相似文献   

11.
To establish a functional link between the ventromedial hypothalamus (VMH) and brown adipose tissue (BAT), effects of electrical stimulation of the VMH and the lateral hypothalamus (LH) on norepinephrine (NE) turnover in the interscapular BAT were examined in rats. Stimulation of the VMH elicited about 3-fold increase in the rate of NE turnover in BAT, whereas stimulation of the LH had no appreciable effects. The effect of VMH stimulation was abolished after sympathetic ganglion blockade or by surgical sympathetic denervation of BAT. It was concluded that there is a sympathetic nerve-mediated connection between the VMH and BAT, and that stimulation of the VMH induces metabolic activation and heat production in BAT through an increase in sympathetic nerve activity.  相似文献   

12.
Mitochondrial fusion and fission events, collectively known as mitochondrial dynamics, act as quality control mechanisms to ensure mitochondrial function and fine‐tune cellular bioenergetics. Defective mitofusin 2 (Mfn2) expression and enhanced mitochondrial fission in skeletal muscle are hallmarks of insulin‐resistant states. Interestingly, Mfn2 is highly expressed in brown adipose tissue (BAT), yet its role remains unexplored. Using adipose‐specific Mfn2 knockout (Mfn2‐adKO) mice, we demonstrate that Mfn2, but not Mfn1, deficiency in BAT leads to a profound BAT dysfunction, associated with impaired respiratory capacity and a blunted response to adrenergic stimuli. Importantly, Mfn2 directly interacts with perilipin 1, facilitating the interaction between the mitochondria and the lipid droplet in response to adrenergic stimulation. Surprisingly, Mfn2‐adKO mice were protected from high‐fat diet‐induced insulin resistance and hepatic steatosis. Altogether, these results demonstrate that Mfn2 is a mediator of mitochondria to lipid droplet interactions, influencing lipolytic processes and whole‐body energy homeostasis.  相似文献   

13.
Although it is clear that adrenergic nervous system control of cardiac function decreases with age and that the effector organ fails to adjust to this decreased control, it is not completely evident which of the many mechanisms operant at the adrenergic-cardiac neuroeffector junction contribute to this state. Prejunctionally, it appears that norepinephrine content decreases with age and that adrenergic axonal degeneration occurs. Also, evidence is available to suggest that modulation by prejunctional alpha adrenergic receptors of norepinephrine release is altered with increasing age, as is neuronal uptake of norepinephrine. Postjunctionally, it appears that beta-adrenergic receptor sensitivity to agonists undergoes age-related alterations, and possibly post receptor mechanisms involved in receptor-response coupling. Other mechanisms, such as those involved in transmitter uptake into extraneuronal sites, adrenergic neuronal responsiveness to stimulation, transmitter release and turnover, calcium and prejunctional receptor modulation of transmitter release, postjunctional receptor development of supersensitivity or subsensitivity, need further elucidation in order to have an understanding of the factors that contribute to the breakdown of homeostatic mechanisms that regulate the heart.  相似文献   

14.
In many tissues, norepinephrine appears to inhibit its own release through an interaction at alpha adrenergic receptors. We have developed an assay for measuring the release of endogenous norepinephrine based on HPLC and have studied the regulation of release in the rat submandibular gland by alpha adrenergic antagonists. The method uses electrochemical detection to quantitate norepinephrine released from tissue slices and does not require preloading of the tissue with [3H]norepinephrine. Yohimbine, an alpha-2 adrenergic antagonist, potentiates by 50% the release caused by potassium induced depolarization with an EC50 of 0.14 microM. Prazosin, an alpha-1 antagonist, has a similar effect, but is less potent with an EC50 of 0.77 microM. Thus, the alpha adrenergic receptor mediating the regulation of norepinephrine release is of the alpha-2 subtype. The observed equal efficacies and lack of additivity of release potentiation by yohimbine and prazosin at maximal doses suggest that both drugs act at the same receptor. The five-fold difference in potency between prazosin and yohimbine is consistent with the recent observations indicating species differences between rodent and non-rodent alpha-2 adrenergic receptors.  相似文献   

15.
Interaction of cirazoline, an imidazoline derivative, with alpha 1-adrenoceptor coupled inositol phospholipid hydrolysis was characterized in rat brain cortical slices. Norepinephrine, a full alpha 1-agonist, and phenylephrine, a partial alpha 1-agonist, on inositol phospholipid hydrolysis were included for comparison. Norepinephrine produced a fourfold stimulation of inositol phospholipid hydrolysis, whereas cirazoline and phenylephrine caused only submaximal responses (40-60%) when compared with norepinephrine. The stimulation of inositol phospholipid hydrolysis by cirazoline was completely blocked by the alpha 1-adrenoceptor antagonist prazosin, but not by selective alpha 2- or beta-adrenoceptor antagonists. Furthermore, the norepinephrine dose-response curve was shifted to the right in the presence of cirazoline, without affecting the maximal response. These results suggest that cirazoline behaves as a partial agonist at brain alpha 1-adrenoceptors linked to inositol phospholipid hydrolysis.  相似文献   

16.
17.
The effects of norepinephrine in interaction with adrenergic blocking compounds were studied on membrane adenosine triphosphatase (ATPase) activities of human lymphocytes and lymphoblasts. Sodium-potassium ion exchange pump activity was assayed by 86-Rb uptake and ATPase activity of membrane fractions was assayed by ADP and inorganic phosphate generation. The results of these studies indicate that norepinephrine acts by an alpha adrenergic mechanism to enhance membrane sodium-potassium ion exchange pump activity and ATPase activity. The pharmacologic and ionic dissection of the adrenergic sensitivity of ATPase activity indicates that this alpha adrenergic mechanism is related to membrane ATPase activities in addition to that associated with the ion exchange pump. Analysis of fractions obtained by sucrose gradients indicates that the action of norepinephrine is localized in the plasma membrane. Beta adrenergic stimulation was observed to inhibit ATPase activity. The complexity of adrenergic effects on membrane ATPase suggests interactions of hormone modulation of membrane nucleotide cyclases and transport-related ATPase enzymes.  相似文献   

18.
A further investigation of the lipolysis induced by medium-chain triglyceride (MCT) was conducted on C57BL/6J mice fed with a diet containing 2% MCT or 2% long-chain triglyceride (LCT). Blood norepinephrine, body fat and blood lipid variables, and the protein or mRNA expression of the genes relevant to lipolysis were measured and analyzed in the white and brown adipose tissue (WAT, BAT). Decreased body fat and improved blood lipid profiles attributable to MCT were confirmed. A higher level of blood norepinephrine was observed with the MCT diet. The adipose triglyceride lipase (ATGL) activity and its mRNA expression, the expression of protein and mRNA of the beta 3 adrenergic receptor (β3-AR) in both WAT and BAT, and the hormone-sensitive lipase (HSL) activity and its mRNA expression in BAT were significantly increased in the mice with MCT feeding. The lipolysis induced by MCT might be partially mediated by increasing norepinephrine, thereafter signaling the up-regulation of β3-AR, ATGL, and HSL in WAT and BAT.  相似文献   

19.
Thermogenesis of brown adipose tissue (BAT) of genetically obese mice, KKAY mice, was examined by measuring the BAT mitochondrial guanosine diphosphate (GDP) binding as an index of thermogenesis and comparing it with that of normal C57BL mice. No great difference in GDP binding was observed in KKAY and C57BL mice fed a stock diet. However, when they were given a sucrose solution, the increase in BAT mitochondrial GDP binding of KKAY mice (+22%) was much lower than that of C57BL mice (+106%). A high fat diet increased BAT mitochondrial GDP binding in KKAY mice to the same extent (+82%) as in C57BL mice. When the mice were fasted for 48 h, BAT mitochondrial GDP binding of C57BL mice decreased by 70%, while that of KKAY mice showed no change. Both acute exposure to cold and norepinephrine injections increased GDP binding in KKAY mice by 90% and 131%, respectively. These results indicate that low BAT thermogenesis in response to sucrose intake may be a cause of obesity in KKAY mice, and this may be brought about by defects in the central nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号