首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate Metabolism During Ascospore Development in Yeast   总被引:54,自引:16,他引:54       下载免费PDF全文
Carbohydrate metabolism, under sporulation conditions, was compared in sporulating and non-sporulating diploids of Saccharomyces cerevisiae. Total carbohydrate was fractionated into trehalose, glycogen, mannan, and an alkali-insoluble fraction composed of glucan and insoluble glycogen. The behavior of three fractions was essentially the same in both sporulating and non-sporulating strains; trehalose, mannan, and the insoluble fraction were all synthesized to about the same extent regardless of a strain's ability to undergo meiosis or sporulation. In contrast, aspects of soluble glycogen metabolism depended on sporulation. Although glycogen synthesis took place in both sporulating and non-sporulating strains, only sporulating strains exhibited a period of glycogen degradation, which coincided with the final maturation of ascospores. We also determined the carbohydrate composition of spores isolated from mature asci. Spores contained all components present in vegetative cells, but in different proportions. In cells, the most abundant carbohydrate was mannan, followed by glycogen, then trehalose, and finally the alkali-insoluble fraction; in spores, trehalose was most abundant, followed by the alkali-insoluble fraction, glycogen, and mannan in that order.  相似文献   

2.
Streptomyces antibioticus accumulated glycogen and trehalose in a characteristic way during growth on solid medium. Glycogen storage in the substrate mycelium took place during development of the aerial mycelium. The concentration of nitrogen source in the culture medium influenced the time at which accumulation started as well as the maximum levels of polysaccharide stored. Degradation of these glycogen reserves was observed near the beginning of sporulation. The onset of sporogenesis was always accompanied by a new accumulation of glycogen in sporulating hyphae. During spore maturation the accumulated polysaccharide was degraded. No glycogen was observed in aerial non-sporulating hyphae or in mature spores. Trehalose was detected during all phases of colony development. A preferential accumulation was found in aerial hyphae and spores, where it reached levels up to 12% of the cell dry weight. The possible roles of both carbohydrates in the developmental cycle of Streptomyces are discussed.  相似文献   

3.
A S Rudolph 《Cryobiology》1988,25(4):277-284
In this report, the ability of carbohydrates (trehalose, sucrose, and glucose) to preserve the blood substitute liposome-encapsulated hemoglobin (LEH) in the freeze-dried state is examined. The water-free stabilization of individual components of this blood substitute and LEH is reported. Lyophilization of hemoglobin solutions in the absence of carbohydrates results in significant oxidative degradation of Hb as measured by a large increase (approximately 60%) in methemoglobin. Hb samples lyophilized in increasing carbohydrate concentrations show reduced levels of methemoglobin, and at 0.5 M trehalose, sucrose, or glucose, these levels are reduced to nearly the same levels as unlyophilized controls. Storage of lyophilized Hb samples following rehydration at 4 degrees C shows the same rate of methemoglobin formation regardless of whether carbohydrates are present. This suggests that carbohydrates prevent Hb oxidation in the dry state but are less effective at retarding oxidative damage to Hb in solution. The addition of 0.25 M trehalose or sucrose to LEH results in the maintenance of liposomal size following lyophilization. In these experiments, glucose was least effective at inhibiting dehydration-induced LEH fusion. Lyophilization of LEH in 0.25 M trehalose or sucrose also results in significantly greater retention of the encapsulated hemoglobin following lyophilization and rehydration. These results suggest that the long-term stabilization of LEH in the dry state is a realizable goal.  相似文献   

4.
The physiology of the actinomycete Micromonospora echinospora was examined during growth. Biphasic accumulation of glycogen occurred, initially during the early exponential growth phase, and again following the onset of sporulation at 120 h. Lipid levels increased during growth eventually representing 25% of the cell mass. A significant proportion of the lipid was found to be in the form of triacylglycerols, which were found to accumulate markedly during the sporulation phase. The disaccharide trehalose was also found to accumulate during growth with levels rising to 5% of the dry weight during the mycelial production phase, then remaining constant during sporulation. Antibiotic was produced transiently by the cultures over the period preceding sporulation.  相似文献   

5.
Aspergillus sydowi (Bain. & Start.) Thom & Church grew and sporulated best at 30°C. The best pH for growth and sporulation was 5.5. Light was stimulatory to sporulation but inhibitory to growth. Among the carbon sources employed, sucrose supported the best growth and sporulation. Nitrate, ammonium and asparagine were good nitrogen sources for growth and sporulation. During utilization of sucrose, the carbohydrates found in the mycelium included dulcitol, inositol, mannitol, arabinose, trehalose and galactose.  相似文献   

6.
Total carbohydrates of Aphelenchoides sp., harvested from 10-week-old cultures, ranged from 2.54 to 4.38% with a mean of 3.20% dry weight. Approximately 86% was glycogen. The presence of free sugars, trehalose and mannose, were determined by thin-layer chromatography. Mannose was synthesized by the nematodes while trehalose was obtained during feeding from the fungal host.  相似文献   

7.
Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine   总被引:3,自引:0,他引:3  
Interactions of six carbohydrates (trehalose, sucrose, glucose, raffinose, inositol, and glycerol) with dry dipalmitoylphosphatidylcholine (DPPC) were studied using differential scanning calorimetry (DSC) and infrared spectroscopy (ir) in order to elucidate the mechanism by which some of these carbohydrates preserve structural and functional integrity of dry membranes. Results with DSC showed that trehalose depressed the main transition temperature (Tmid) of dry DPPC below that of fully hydrated DPPC, and raised the enthalpy of that transition more than did addition of water. Results obtained with ir spectroscopy suggested a potential mechanism for this interaction. In the presence of most of the carbohydrates the ir spectrum for DPPC showed changes similar to those seen when water was added to dry DPPC, and the asymmetric P = O stretching band was diminished in intensity. The degree to which the carbohydrates tested affected the integrated intensity of this band and the Tmid was correlated with the ability of those carbohydrates to preserve dry membranes. Also, bands assigned to -OH deformations in the trehalose and other carbohydrates were depressed in the presence of DPPC. Based on these observations, it is suggested that the mechanism of interaction between the carbohydrate and lipid involves hydrogen bonding between -OH groups on the carbohydrate and the phosphate head group of the phospholipid. The only exceptions to this pattern are glycerol, which depresses Tmid of dry DPPC, and myo-inositol, which has no effect on Tmid or the ir spectrum of DPPC; neither carbohydrate can preserve dry membranes. It is suggested, based on ir spectroscopy and previous results with monolayer preparations, that glycerol interacts with phospholipids by a mechanism different from that shown by the other carbohydrates.  相似文献   

8.
The disaccharide trehalose is accumulated as a storage product by spores of Streptomyces griseus. Growth on media containing excess glucose yielded spores containing up to 25% of their dry weight as trehalose. Spores containing as little as 1% of their dry weight as trehalose were obtained during growth on media containing a limiting amount of glucose. Spores containing low levels of trehalose accumulated this sugar when incubated with glucose. The increase in trehalose content coincided with increases in spore refractility, heat resistance, desiccation resistance, and the time required for spore germination in complex media. Trehalose is accumulated by a wide variety of actinomycetes and related bacteria and may be partially responsible for their resistance properties.  相似文献   

9.
The entomopathogenic fungus Beauveria bassiana was grown in 1% (wt/vol) gelatin-liquid media singly supplemented with a monosaccharide (glucose or fructose), a disaccharide (maltose or trehalose), a polyol (glycerol, mannitol, or sorbitol), or the amino sugar N-acetyl-d-glucosamine. The relative contributions of the carbohydrate, protein, and water contents in the fungal biomass were determined. Carbohydrates composed 18 to 42% of the mycelial dry weight, and this value was lowest in unsupplemented medium and highest in medium supplemented with glucose, glycerol, or trehalose. Biomass production was highest in liquid cultures supplemented with trehalose. When liquid cultures were grown in medium supplemented with 0 to 1% (wt/vol) glucose, trehalose, or N-acetyl-d-glucosamine, there was an increase in the biomass production and the contribution of carbohydrate to mycelial dry weight. Regardless of the glucose concentration in the culture, water content of the mycelia remained about 77.5% (wt/wt). Mycelial storage carbohydrates were determined by capillary gas chromatography. In gelatin-liquid medium supplemented with 1% (wt/vol) glucose, B. bassiana stored glycogen (12.0%, wt/dry wt) and the polyols mannitol (2.2%), erythritol (1.6%), glycerol (0.4%), and arabitol (0.1%). Without glucose, B. bassiana stored glycogen (5.4%), mannitol (0.8%), glycerol (0.6%), and erythritol (0.6%) but not arabitol. To our knowledge, this is the first report of carbohydrate storage in an entomopathogenic fungus, and the results are discussed in relation to other fungi and the potential implications to commercial formulation and insect-fungus interactions.  相似文献   

10.
The distribution of nuclei, RNA, mitochondria, lipid material,protein, and insoluble carbohydrates in the developing sporangiophoresof Peronospora parasitica was demonstrated by cytochemical staining.Nuclei, mitochondria, and protein showed a more or less uniformdistribution throughout the young sporangiophores, but werelocated almost entirely within the mature spores when sporedispersal commenced. Lipid material had a similar distribution,but was absent from the sporangiophore apex and sporangiophorebranch tips during the early stages of development. RNA wasabundant in the sporangiophore apices during early development,but occurred only within the spores, in small quantities, atmaturation. Although insoluble carbohydrates were sparse, theyhad a similar distribution to the nuclei, mitochondria, andprotein. Glycogen was not detected. The major soluble carbohydrates, present in the mature sporesin about equal proportions, were identified by thin-layer chromatographyas trehalose and an aldo-hexose, either glucose or mannose.These sugars were present in about equal quantities in the immaturesporangiophores and spores, while in the mature sporangiophoresfrom which the spores had been removed, trehalose was the majorsugar present. Sugar alcohols were not detected.  相似文献   

11.
Single spores of Saccharomyces cerevisiae were examined during germination and outgrowth by scanning electron and phase-contrast microscopy. Also determined were changes in cell weight and light absorbance, trehalose utilization, and synthesis of protein and KOH-soluble carbohydrates. These studies reveal that development of the vegetative cell from a spore follows a definite sequence of events involving dramatic physical and chemical modifications. These changes are: initial rapid loss in cellular absorbance followed later by an abrupt gain in absorbance; reduction in cell weight and a subsequent progressive increase; modification of the spore surface with concomitant diminution in refractility; elongation of the cell and augmentation of surface irregularities; rapid decline in trehalose content of the cell accompanied by extensive formation of KOH-soluble carbohydrates; and bud formation.  相似文献   

12.
Triacontanol applied to IR-8 rice (Oryza sativa L.) seedlings in nutrient solution caused an increase in dry weight during a 6-hour dark period. This increase was altered by atmospheric CO2 and O2 concentrations. The largest growth response occurred from 200 to 350 μliters/liter CO2 with 5% O2. The treated seedlings did not fix atmospheric CO2 in the dark, and the immediate products of photosynthesis were not involved in the dry weight increase. The growth response was characterized by an increase in soluble and insoluble Kjeldahl-N, and soluble carbohydrates. The response curve for dry weight increase was a linear function of log presentation time of triacontanol. The response exhibited an apparent Kdose of 25 minutes in 10 μg/liter triacontanol in the dark and 18 minutes in the light. Concentrations of 50 μg/liter and higher inhibited growth.  相似文献   

13.
The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 X 10(8) cells/mL) at 37 degrees C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 degrees C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2-3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4-6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3-6%), and carbohydrate (77-85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3-8%), mannan (20-23%), acid-soluble glucan (24-27%), and acid-insoluble glucan (18-26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).  相似文献   

14.
A humanized clone containing the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase (otsA/B) has been constructed. Using the Gateway Cloning System (Invitrogen, Inc.), the otsA/B genes have been placed under the control of the CMV promoter (pEXPcmv-otsA/B) or the CMV promoter and the tet operator (pEXP cmv TetO-otsA/B). The pEXPcmv-otsA/B clone has been introduced into 293H cells using LIPOFECTAMINE 2000 and the intracellular concentration of trehalose has been evaluated. The 293H cells accumulate 4-5 microg trehalose/mg dry weight and this concentration increases to 7-10 microg trehalose/mg dry weight if trehalose is included in the growth medium. The pEXPcmv TetO-otsA/B clone has been transfected into 293FTetR:Hyg cells which contain the tet repressor integrated into the genome. When these transfected cells are grown in the absence of tetracycline, no intracellular trehalose is detected. Inclusion of 0.3 microg/ml tetracycline in the growth medium results in the accumulation of 11-14 microg trehalose/mg dry weight, a value which increases to 19-20 microg trehalose/mg dry weight if trehalose is included in the growth medium. The data for the 293FTetR:Hyg cells indicate that intracellular trehalose accumulates in response to the addition of tetracycline. This system will allow us to manipulate the intracellular concentration of trehalose and to evaluate the desiccation tolerance of these cells as a function of intracellular trehalose concentration.  相似文献   

15.
Cellulomonas flavigena strain KU (ATCC 53703) is a cellulolytic, Gram-positive bacterium which produces large quantities of an insoluble exopolysaccharide (EPS) when grown in minimal media with a high carbon-to-nitrogen (C/N) ratio. Earlier studies proved the EPS is structurally identical to the linear β-1,3-glucan known as curdlan and provided evidence that the EPS functions as a carbon and energy reserve compound. We now report that C. flavigena KU also accumulates two intracellular, glucose-storage carbohydrates under conditions of carbon and energy excess. These carbohydrates were partially purified and identified as the disaccharide trehalose and a glycogen/amylopectin-type polysaccharide. A novel method is described for the sequential fractionation and quantitative determination of all three carbohydrates from culture samples. This fractionation protocol was used to examine the effects of C/N ratio and osmolarity on the accumulation of cellular carbohydrates in batch culture. Increasing the C/N of the growth medium caused a significant accumulation of curdlan and glycogen but had a relatively minor effect on accumulation of trehalose. In contrast, trehalose levels increased in response to increasing osmolarity, while curdlan levels declined and glycogen levels were generally unaffected. During starvation for an exogenous source of carbon and energy, only curdlan and glycogen showed substantial degradation within the first 24 h. These results support the conclusion that extracellular curdlan and intracellular glycogen can both serve as short-term reserve compounds for C. flavigena KU and that trehalose appears to accumulate as a compatible solute in response to osmotic stress.  相似文献   

16.
alpha-Crystallin in its native state is a large, heterogeneous, low-molecular weight (LMW) aggregate that under certain conditions may progressively became part of insoluble high-molecular weight (HMW) systems. These systems are supposed to play a relevant role in eye lens opacification and vision impairment. In this paper, we report the effects of trehalose on alpha-crystallin aggregates. The role of trehalose in alpha-crystallin stress tolerance, chaperone activity and thermal stability is studied. The results show that trehalose stabilizes the alpha-crystallin native structure, inhibits alpha-crystallin aggregation, and disaggregates preformed LMW systems not affecting its chaperone activity.  相似文献   

17.
Mandels, G. R. (U.S. Army Natick Laboratories, Natick, Mass.), Rasma Vitols, and Frederick W. Parrish. Trehalose as an endogenous reserve in spores of the fungus Myrothecium verrucaria. J. Bacteriol. 90:1589-1598. 1965.-Gross analysis of Myrothecium verrucaria spores showed approximately 3% fat, 33% carbohydrate, and 9.5% nitrogen. The water-soluble carbohydrates were trehalose, glucose, mannitol, and an unidentified phosphorylated compound. Water-soluble amino acids include leucine or norleucine (or both), valine, gamma-amino-n-butyric acid, beta-amino-n-butyric acid, ergothionine, glutamic acid, glutamine, glycine, aspartic acid, asparagine, cystine, and cystathionine. Ergosterol was also present. alphaalpha-Trehalose is the major reserve (20% of the dry weight), although approximately 30% of it appeared to be at the spore surface and was released by nonlethal treatment with 0.1 n HCl. Treatment with toluene or exposure to heat sufficient to kill the spores (20 min at 60 C) caused rapid liberation of all of the trehalose. Although spores could utilize exogenous trehalose with no appreciable lag, some stimulus, such as exposure to heat (10 min at 55 C), incubation with azide, or germination on exogenous substrates, was necessary to effect utilization of trehalose reserves. Spores have trehalase, but it is apparently at the spore surface, since it is inactivated by acid treatment which does not kill the spores. The metabolic pathway for utilization of trehalose is not known, but presumably it is not mediated by trehalase. The involvement of mannitol is indicated, since it tends to increase as trehalose decreases, although the changes are not quantitatively equivalent.  相似文献   

18.
The aim of this study was to examine how the pools of non-structural carbohydrates in soybean nodules are affected under water stress conditions depending on the nature of the symbiont strains with particular emphasis on the plant-borne carbohydrates sucrose and pinitol, and on trehalose, a compatible solute synthesized by the bacteroids. Soybean ( Glycine max [L.] Merr. cv. Maple Arrow) plants were inoculated with the nitrogen-fixing strains Bradyrhizobium japonicum 61-A-101 or USDA 110 spc4 and cultivated axenically under conditions in which nodules formed in an upper soil compartment while roots for water supply grew into a compartment filled with nutrient solution. When the nodules were well established (1 month post inoculation), 10% (w/v) PEG 6000 was added to the nutrient solution. This led to a slowly progressing, moderate water stress, as determined by measuring the decrease of transpiration, and to a decrease in nitrogen fixation. The pool sizes of the major non-structural nodule carbohydrates changed during progression of water stress. Sucrose, the major soluble carbohydrate in nodules of unstressed plants (2 and 4%, respectively of nodule dry weight depending on symbiont strain), strongly increased in nodules of stressed plants, reaching nearly 10% of dry weight. The activities of two major sucrose-consuming enzymes, sucrose synthase and alkaline invertase, decreased markedly in nodules of stressed plants. Starch decreased only transiently upon water stress. Pinitol, a cyclitol serving as compatible solute in many plants, increased more than 4 times, reaching about 1% of nodule dry weight during the stress. Trehalose, the major soluble carbohydrate synthesized by the bacteroids, increased in nodules colonized by USDA 110 spc4 from about 0.2 to 0.8% of nodule dry weight, while in nodules colonized by 61-A-101 it amounted to more than 1.5% of dry weight both with and without stress.  相似文献   

19.
Carbohydrate metabolism and symbiont survival were studied in nodules of soybean (G. max [L.] Merr. cv. Maple Arrow infected with Bradyrhizobium japonicum 61-A-101), induced to senesce simultaneously by application of the photosynthesis inhibitor dichloromethyl urea (DCMU). The plant-borne carbohydrates sucrose and starch started to decline after 2 d and reached background levels after 8 d, in parallel with the decline of nitrogenase. However, the microsymbiont-borne disaccharide trehalose declined only by about 40% and subsequently remained at a constant level of c. 6 mg x g(-1) dry weight up to 14 d, when nodules softened and decayed. The number of re-isolated viable bacteria was not significantly decreased in senescent nodules as compared to control nodules. These results indicate that during terminal senescence of nodules an appreciable part of the bacteria conserve their trehalose pools and survive.  相似文献   

20.
Streptomyces brasiliensis ATCC 23727 showed extensive sporulation when cultured in a liquid medium containing galactose and glutamic acid as carbon and nitrogen sources. Under such conditions, glycogen and trehalose are accumulated in the hyphae coinciding with spore formation. The results reported here suggest that glycogen accumulated in sporogenic hyphae is converted into trehalose during the final period of spore maturation. Glycogen is also accumulated in the hyphae when S. brasiliensis is cultured under conditions which did not support sporulation. Under such conditions, however, glycogen degradation is not accompanied by accumulation of trehalose. This suggest that the conversion of glycogen into trehalose might be a sporulation-specific event in streptomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号