首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cyanobacterium Synechocystis sp. PCC 6803 contains four members of the FtsH protease family. One of these, FtsH (slr0228), has been implicated recently in the repair of photodamaged photosystem II (PSII) complexes. We have demonstrated here, using a combination of blue native PAGE, radiolabeling, and immunoblotting, that FtsH (slr0228) is required for selective replacement of the D1 reaction center subunit in both wild type PSII complexes and in PSII subcomplexes lacking the PSII chlorophyll a-binding subunit CP43. To test whether FtsH (slr0228) has a more general role in protein quality control in vivo, we have studied the synthesis and degradation of PSII subunits in wild type and in defined insertion and missense mutants incapable of proper assembly of the PSII holoenzyme. We discovered that, when the gene encoding FtsH (slr0228) was disrupted in these strains, the overall level of assembly intermediates and unassembled PSII proteins markedly increased. Pulse-chase experiments showed that this was due to reduced rates of degradation in vivo. Importantly, analysis of epitope-tagged and green fluorescent protein-tagged strains revealed that slr0228 was present in the thylakoid and not the cytoplasmic membrane. Overall, our results show that FtsH (slr0228) plays an important role in controlling the removal of PSII subunits from the thylakoid membrane and is not restricted to selective D1 turnover.  相似文献   

2.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

3.
Recently, construction of strains of Synechocystis sp. PCC6803 having a His(6) extension (His-tag) of the carboxyl terminus of the CP47 protein has been reported (T.M. Bricker et al, Biochim. Biophys. Acta 1409 (1998) 50; M.J. Reifler et al., in: Garab, Pusztai (Eds.) Proc. XIth International Congress on Photosynthesis, 1998). While these initial reports suggest a minimal impact of the His-tag upon Photosystem (PS) II function, a more thorough analysis of the kinetic properties of the modified complex is essential. This communication reports on a more detailed kinetic analysis to assess possible perturbations of PS II due to the genetic addition of the His-tag on the CP47 protein. It was found that: (1) Patterns of flash O(2) yield exhibited normal period four oscillations and the associated fits of the Kok-Joliot S-state cycling parameters were virtually identical to the wild type; (2) O(2) release kinetics during the S(3)-S(0) transition were experimentally indistinguishable from the wild type; (3) S-state decay measurements indicate slightly faster decays of the S(2) and S(3) states compared to the wild type; (4) fluorescence measurements indicate that the kinetics of the forward reaction of electron transfer from Q(A)(-) to Q(B) and back-reactions of Q(A)(-) with PS II electron donors are similar in the His-tag and wild-type strains. It is therefore concluded that the addition of the His-tag results in a minimal perturbation of PS II function.  相似文献   

4.
The Synechocystis sp. PCC 6803 genome encodes four putative homologues of the AAA protease FtsH, two of which (slr0228 and sll1463) have been subjected to insertional mutagenesis in this study. Disruption of sll1463 had no discernible effect but disruption of slr0228 caused a 60% reduction in the abundance of functional photosystem I, without affecting the cellular content of photosystem II or phycobilisomes. Fluorescence and immunoblotting analyses show reductions in PS I polypeptides and possible structural alterations in the residual PS I, indicating an important role for slr0228 in PS I biogenesis.  相似文献   

5.
Biochemical characterization of intermediates involved in the assembly of the oxygen-evolving Photosystem II (PSII) complex is hampered by their low abundance in the membrane. Using the cyanobacterium Synechocystis sp. PCC 6803, we describe here the isolation of the CP47 and CP43 subunits, which, during biogenesis, attach to a reaction center assembly complex containing D1, D2, and cytochrome b(559), with CP47 binding first. Our experimental approach involved a combination of His tagging, the use of a D1 deletion mutant that blocks PSII assembly at an early stage, and, in the case of CP47, the additional inactivation of the FtsH2 protease involved in degrading unassembled PSII proteins. Absorption spectroscopy and pigment analyses revealed that both CP47-His and CP43-His bind chlorophyll a and β-carotene. A comparison of the low temperature absorption and fluorescence spectra in the Q(Y) region for CP47-His and CP43-His with those for CP47 and CP43 isolated by fragmentation of spinach PSII core complexes confirmed that the spectroscopic properties are similar but not identical. The measured fluorescence quantum yield was generally lower for the proteins isolated from Synechocystis sp. PCC 6803, and a 1-3-nm blue shift and a 2-nm red shift of the 77 K emission maximum could be observed for CP47-His and CP43-His, respectively. Immunoblotting and mass spectrometry revealed the co-purification of PsbH, PsbL, and PsbT with CP47-His and of PsbK and Psb30/Ycf12 with CP43-His. Overall, our data support the view that CP47 and CP43 form preassembled pigment-protein complexes in vivo before their incorporation into the PSII complex.  相似文献   

6.
Yao DC  Brune DC  Vermaas WF 《FEBS letters》2012,586(2):169-173
The half-life times of photosystem I and II proteins were determined using (15)N-labeling and mass spectrometry. The half-life times (30-75h for photosystem I components and <1-11h for the large photosystem II proteins) were similar when proteins were isolated from monomeric vs. oligomeric complexes on Blue-Native gels, suggesting that the two forms of both photosystems can interchange on a timescale of <1h or that only one form of each photosystem exists in thylakoids in vivo. The half-life times of proteins associated with either photosystem generally were unaffected by the absence of Small Cab-like proteins.  相似文献   

7.
Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity.  相似文献   

8.
The light reactions of oxygenic photosynthesis are mediated by multisubunit pigment-protein complexes situated within the specialized thylakoid membrane system. The biogenesis of these complexes is regulated by transacting factors that affect the expression of the respective subunit genes and/or the assembly of their products. Here we report on the analysis of the PratA gene from the cyanobacterium Synechocystis sp. PCC 6803 that encodes a periplasmic tetratricopeptide repeat protein of formerly unknown function. Targeted inactivation of PratA resulted in drastically reduced photosystem II (PSII) content. Protein pulse labeling experiments of PSII subunits indicated that the C-terminal processing of the precursor of the reaction center protein D1 is compromised in the pratA mutant. Moreover, a direct interaction of PratA and precursor D1 was demonstrated by applying yeast two-hybrid analyses. This suggests that PratA represents a factor facilitating D1 maturation via the endoprotease CtpA. The periplasmic localization of PratA supports a model that predicts the initial steps of PSII biogenesis to occur at the plasma membrane of cyanobacterial cells.  相似文献   

9.
We present here a simple and rapid method which allows relatively large quantities of oxygen-evolving photosystem II- (PS-II-) enriched particles to be obtained from wild-type and mutants of the cyanobacterium Synechocystis 6803. This method is based on that of Burnap et al. [Burnap, R., Koike, H., Sotiropoulou, G., Sherman, L. A., & Inoue, Y. (1989) Photosynth. Res. 22, 123-130] but is modified so that the whole preparation, from cells to PS-II particles, is achieved in 10 h and involves only one purification step. The purified preparation exhibits a 5-6-fold increase of O2-evolution activity on a chlorophyll basis over the thylakoids. The ratio of PS-I to PS-II is about 0.14:1 in the preparation. The secondary quinone electron acceptor, QB, is present in this preparation as demonstrated by thermoluminescence studies. These PS-II particles are well-suited to spectroscopic studies as demonstrated by the range of EPR signals arising from components of PS-II that are easily detectable. Among the EPR signals presented are those from a formal S3-state, attributed to an oxidized amino acid interacting magnetically with the Mn complex in Ca(2+)-deficient PS-II particles, and from S2 modified by the replacement of Ca2+ by Sr2+. Neither of these signals has been previously reported in cyanobacteria. Their detection under these conditions indicates a similar lesion caused by Ca2+ depletion in both plants and cyanobacteria. The protocol has also been applied to mutants which have site-specific changes in PS-II. Data are presented on mutants having changes on the electron donor (Y160F) and electron acceptor (G215W) side of the D2 polypeptide.  相似文献   

10.
11.
Kufryk GI  Vermaas WF 《Biochemistry》2001,40(31):9247-9255
Mutation of Glu69 to Gln in the D2 protein of photosystem II is known to lead to a loss of photoautotrophic growth in Synechocystis sp. PCC 6803. However, second-site mutants (pseudorevertants) with restored photoautotrophic growth but still maintaining the E69Q mutation in D2 are easily obtained. Using a genomic mapping technique involving functional complementation, the secondary mutation was mapped to slr0286 in two independent mutants. The mutations in Slr0286 were R42M or R394H. To study the function of Slr0286, mutants of E69Q and of the wild-type strain were made that lacked slr0286. Deletion of slr0286 did not affect photoautotrophic capacity in wild type but led to a marked decrease in the apparent affinity of Ca(2+) to its binding site at the water-splitting system of photosystem II and to a reduced heat tolerance of the oxygen-evolving system, particularly in E69Q. Moreover, a small increase in the half-time for photoactivation of the oxygen-evolving complex of photosystem II for both wild type and the E69Q mutant was observed in the absence of Slr0286. The accumulation of photosystem II reaction centers, dark stability of the oxygen-evolving apparatus, stability of oxygen evolution, and the kinetics of charge recombination between Q(A)(-) and the donor side were not affected by deletion of slr0286. Slr0286 lacks clear functional motifs, and no homologues are apparent in other organisms, even not in other cyanobacteria. In any case, Slr0286 appears to help the functional assembly and stability of the water-splitting system of photosystem II.  相似文献   

12.
Carotene isomerase mutant (crtH mutant) cells of Synechocystis sp. PCC 6803 can accumulate beta-carotene under light conditions. However, the mutant cells grown under a light-activated heterotrophic growth condition contained detectable levels of neither beta-carotene nor D1 protein of the photosystem (PS) II reaction center, and no oxygen-evolving activity of PSII was detected. beta-Carotene and D1 protein appeared and a high level of PSII activity was detected after the cells were transferred to a continuous light condition. The PSI activities of thylakoid membranes from mutant cells were almost the same as those of thylakoid membranes from wild-type cells, both before and after transfer to the continuous light condition. These results suggest that beta-carotene is required for the assembly of PSII but not for that of PSI.  相似文献   

13.
14.
15.
《BBA》2022,1863(1):148507
Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron?sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.  相似文献   

16.
Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide. By using native gel electrophoresis, we showed that RC47 is heterogeneous and mainly found as a monomer of 220 kDa. RC47 complexes co-purify with small Cab-like proteins (ScpC and/or ScpD) and with Psb28 and its homologue Psb28-2. Analysis of isolated His-tagged RC47 indicated the presence of D1, D2, the CP47 apopolypeptide, plus nine of the 13 low-molecular-mass (LMM) subunits found in the PSII holoenzyme, including PsbL, PsbM and PsbT, which lie at the interface between the two momomers in the dimeric holoenzyme. Not detected were the LMM subunits (PsbK, PsbZ, Psb30 and PsbJ) located in the vicinity of CP43 in the holoenzyme. The photochemical activity of isolated RC47-His complexes, including the rate of reduction of P680+, was similar to that of PSII complexes lacking the Mn4CaO5 cluster. The implications of our results for the assembly and repair of PSII in vivo are discussed.  相似文献   

17.
The Synechocystis sp. strain PCC 6803, which has a T192H mutation in the D2 protein of photosystem II, is an obligate photoheterotroph due to the lack of assembled photosystem II complexes. A secondary mutant, Rg2, has been selected that retains the T192H mutation but is able to grow photoautotrophically. Restoration of photoautotrophic growth in this mutant was caused by early termination at position 294 in the Slr2013 protein. The T192H mutant with truncated Slr2013 forms fully functional photosystem II reaction centers that differ from wild-type reaction centers only by a 30% higher rate of charge recombination between the primary electron acceptor, QA-, and the donor side and by a reduced stability of the oxidized form of the redox-active Tyr residue, YD, in the D2 protein. This suggests that the T192H mutation itself did not directly affect electron transfer components, but rather affected protein folding and/or stable assembly of photosystem II, and that Slr2013 is involved in the folding of the D2 protein and the assembly of photosystem II. Besides participation in photosystem II assembly, Slr2013 plays a critical role in the cell, because the corresponding gene cannot be deleted completely under conditions in which photosystem II is dispensable. Truncation of Slr2013 by itself does not affect photosynthetic activity of Synechocystis sp. strain PCC 6803. Slr2013 is annotated in CyanoBase as a hypothetical protein and shares a DUF58 family signature with other hypothetical proteins of unknown function. Genes for close homologues of Slr2013 are found in other cyanobacteria (Nostoc punctiforme, Anabaena sp. strain PCC 7120, and Thermosynechococcus elongatus BP-1), and apparent orthologs of this protein are found in Eubacteria and Archaea, but not in eukaryotes. We suggest that Slr2013 regulates functional assembly of photosystem II and has at least one other important function in the cell.  相似文献   

18.
G Shen  S Boussiba    W F Vermaas 《The Plant cell》1993,5(12):1853-1863
To design an in vivo system allowing detailed analysis of photosystem II (PSII) complexes without significant interference from other pigment complexes, part of the psaAB operon coding for the core proteins of photosystem I (PSI) and part of the apcE gene coding for the anchor protein linking the phycobilisome to the thylakoid membrane were deleted from the genome of the cyanobacterium Synechocystis sp strain PCC 6803. Upon transformation and segregation at low light intensity (5 microE m-2 sec-1), a PSI deletion strain was obtained that is light tolerant and grows reasonably well under photoheterotrophic conditions at 5 microE m-2 sec-1 (doubling time approximately 28 hr). Subsequent inactivation of apcE by an erythromycin resistance marker led to reduction of the phycobilin-to-chlorophyll ratio and to a further decrease in light sensitivity. The resulting PSI-less/apcE- strain grew photoheterotrophically at normal light intensity (50 microE m-2 sec-1) with a doubling time of 18 hr. Deletion of apcE in the wild type resulted in slow photoautotrophic growth. The remaining phycobilins in apcE- strains were inactive in transferring light energy to PSII. Cells of both the PSI-less and PSI-less/apcE- strains had an approximately sixfold enrichment of PSII on a chlorophyll basis and were as active in oxygen evolution (on a per PSII basis) as the wild type at saturating light intensity. Both PSI-less strains described here are highly appropriate both for detailed PSII studies and as background strains to analyze site- and region-directed PSII mutants in vivo.  相似文献   

19.
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.  相似文献   

20.
Efficient degradation of damaged D1 during the repair of PSII is carried out by a set of dedicated FtsH proteases in the thylakoid membrane. Here we investigated whether the evolution of FtsH could hold clues to the origin of oxygenic photosynthesis. A phylogenetic analysis of over 6000 FtsH protease sequences revealed that there are three major groups of FtsH proteases originating from gene duplication events in the last common ancestor of bacteria, and that the FtsH proteases involved in PSII repair form a distinct clade branching out before the divergence of FtsH proteases found in all groups of anoxygenic phototrophic bacteria. Furthermore, we showed that the phylogenetic tree of FtsH proteases in phototrophic bacteria is similar to that for Type I and Type II reaction centre proteins. We conclude that the phylogeny of FtsH proteases is consistent with an early origin of photosynthetic water oxidation chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号