首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Pseudomonas aeruginosa to degrade elastin, a major component of connective tissue, likely contributes to its pathogenicity and multiplication in human tissues. Two extracellular enzymes are required for P. aeruginosa elastolytic activity: elastase and LasA. Elastase is a zinc metalloprotease, but little is known about the structure of LasA. When grown under metal ion-deficient conditions, P. aeruginosa culture supernatants were found to exhibit a low level of elastolytic activity, which coincided with production of low levels of the 51-kDa proelastase and no detectable LasA. By using this fact to identify factors that promote elastolytic activity, P. aeruginosa PAO1, FRD2, and DG1 were grown in metal ion-deficient medium supplemented with zinc (10(-4) M ZnCl2), calcium (2.5 x 10(-3) M CaCl2), or iron (10(-4) M FeCl3). High levels of proteolytic and elastolytic activity were exhibited by all strains when cultured in the presence of both zinc and calcium, and this was associated with the production of mature 33-kDa elastase and 21-kDa LasA. Supplementing DG1 and PAO1 cultures with zinc alone stimulated the production of 33-kDa elastase, which, because of the calcium-deficient conditions, exhibited low proteolytic and elastolytic activities. Zinc also stimulated the production of a 41-kDa form of LasA in DG1 and PAO1 culture supernatants. Elastase production by FRD2 cultured in the presence of zinc alone differed from that by the other two strains in that supernatants contained 33-kDa elastase, a 21-kDa form of LasA, and exhibited high proteolytic and elastolytic activities. Such strain-associated differences in LasA processing and elastase activity can be explained by differences in metal ion-scavenging mechanisms adapted by the strains. Supplementing cultures with calcium stimulated the production of elastase but had no effect on LasA production. The elastase produced exhibited variable sizes, possibly resulting from aberrant processing reactions, and showed little proteolytic activity. Proteolytic activity could be recovered from 33-kDa elastase produced in the presence of calcium by inclusion of zinc in the enzymatic assay. Although iron was previously found to exert a repressive effect on P. aeruginosa elastolytic activity, iron exerted little effect on elastolytic activity when added to cultures containing both zinc and calcium. These studies support the conclusion that elastase production and processing are promoted by both zinc and calcium. LasA production, in comparison, is stimulated by zinc, with both zinc and calcium facilitating its processing. The association of 41-kDa LasA with a low level of elastolytic activity and of 21-kDa LasA with a high level of activity supports the conclusion that lasA encodes a larger, precursor protein which is processed to an active 21-kDa form during secretion.  相似文献   

2.
A 22-kilodalton protein purified from the culture supernatant fraction of Pseudomonas aeruginosa (strains PA220 and PAO1) was found to enhance the elastolytic activity of purified P. aeruginosa elastase. N-terminal sequence analysis identified the protein as a fragment of the lasA gene product (P.A. Schad and B.H. Iglewski, J. Bacteriol. 170:2784-2789, 1988). However, comparative analysis with the reported LasA sequence indicated that the purified LasA fragment is longer than the deduced sequence reported. The purified LasA fragment had minimal elastolytic and proteolytic activity and did not enhance the proteolytic activity of purified elastase, yet enhanced the elastolytic activity more than 25-fold. The LasA fragment was found to also enhance the elastolytic activities of thermolysin, human neutrophil elastase, and proteinase K. The results presented here suggest that the LasA protein interacts with the elastin substrate rather than modifying elastase.  相似文献   

3.
Sequence specificities of human fibroblast and neutrophil collagenases.   总被引:3,自引:0,他引:3  
The sequence specificities of human fibroblast and neutrophil collagenases have been investigated by measuring the rate of hydrolysis of 60 synthetic oligopeptides covering the P4 through P'5 subsites of the substrate. The choice of peptides was patterned after both known cleavage sites in noncollagenous proteins and potential cleavage sites (those containing Gly-Ile-Ala, Gly-Leu-Ala, or Gly-Ile-Leu sequences) found in types I, II, III, and IV collagens. The initial rate of hydrolysis of the P1-P'1 bond of each peptide has been measured under first-order conditions ([SO] much less than KM), and kcat/KM values have been calculated from the initial rates. The amino acids in subsites P4 through P'4 all influence the hydrolysis rates for both collagenases. However, the effects of substitutions at each site are distinctive and are consistent with the view that human fibroblast and neutrophil collagenases are homologous but nonidentical enzymes. For peptides with unblocked NH2 and COOH termini, occupancy of subsites P3 through P'3 is necessary for rapid hydrolysis. Compared with the alpha 1(I) cleavage sequence, none of the substitutions investigated at subsites P3, P2, and P'4 produces markedly improved substrates. In contrast, many substitutions at subsites P1, P'1, and P'2 improve specificity. The preferences of both collagenases for alanine in subsite P1 and tryptophan or phenylalanine in subsite P'2, is noteworthy. Human neutrophil collagenase accommodates aromatic residues in subsite P'1 much better than human fibroblast collagenase. The subsite preferences observed for human fibroblast collagenase in these studies agree well with the residues found at cleavage sites in noncollagenous substrates. However, the sequence specificities of these collagenases cannot explain the failure of these enzymes to hydrolyze many potentially cleavable but apparently protected sites in intact collagens. This represents additional support for the notion that the local structure of collagen is important in determining the location of collagenase cleavage sites.  相似文献   

4.
The extracellularly secreted endopeptidase elastase (LasB) is regarded as an important virulence factor of Pseudomonas aeruginosa. It has also been implicated in the processing of LasA which enhances elastolytic activity of LasB. In order to investigate the role of LasB in virulence and LasA processing, a LasB-negative mutant, PAO1E, was constructed by insertional mutagenesis of the LasB structural gene, lasB, in P. aeruginosa PAO. An internal 636 bp lasB fragment of the plasmid pRB1803 was ligated into a derivative of the mobilization vector pSUP201-1. The resulting plasmid, pBRMOB-LasB, was transformed into Escherichia coli and transferred by filter matings to the LasB-positive P. aeruginosa strain, PAO1. Plasmid integration in the lasB site of the chromosome was confirmed by Southern blot analysis. Radioimmunoassay and immunoblotting of PAO1E supernatant fluids yielded no detectable LasB (less than 1 ng ml-1 LasB). The absence of LasB in PAO1E was further proven by the inability of its culture supernatant fluid to cleave transferrin or rabbit immunoglobulin G (IgG) after a 72 h incubation. The residual proteolytic activity of PAO1E culture supernatant fluid was attributed to alkaline proteinase (Apr), since it was totally inhibited by specific antibodies against Apr. Residual elastolytic activity in culture supernatant fluid of PAO1E was due to the LasA fragment and to the combined action of the LasA fragment with Apr on elastin. The sizes of purified LasA from PAO1 and PAO1E were identical (22 kDa). These results show that, besides LasB and the LasA fragment, Apr may also act on elastin in the presence of the LasA fragment and that the proteolytic processing of LasA in P. aeruginosa is independent of LasB.  相似文献   

5.
Thrombin Glu-39 restricts the P'3 specificity to nonacidic residues   总被引:6,自引:0,他引:6  
Residue 39 of serine proteases neighbors positions P'2 to P'4 of the substrate. When Glu-39 of thrombin is replaced with Lys, the resultant enzyme (E39K) retains similar P1, P2, and P3 specificities but has altered P'3 and/or P'4 specificities. These conclusions are based on analysis of both p-nitroanilide and synthetic peptide hydrolysis. The activity of E39K is nearly normal toward 17 p-nitroanilide substrates. In peptide substrates, an acidic residue at either the P3 or P'3 position reduces the rate of cleavage by thrombin. A single substitution of Asp with Gly in either the P3 or P'3 position of a peptide corresponding to the P7-P'5 residues of protein C increases the rate of cleavage by thrombin 2-3-fold. Replacement of both Asp residues with Gly increases the rate of cleavage 30-fold. With E39K, the inhibitory effect of Asp in P3 remains unchanged, but Asp in the P'3 site is no longer inhibitory. Significant differences in the catalytic activity of E39K are also seen with respect to protein C activation. In the absence of thrombomodulin, E39K activates protein C 2.2 times faster than thrombin. In the presence of thrombomodulin, the rate of protein C activation is similar for E39K and thrombin. The second order rate constant of inhibition by antithrombin III, where P'4 is a Glu, is slightly increased (1.4-fold). The clotting activity is reduced 2.4-fold due to a lower rate of fibrinopeptides A and B release where P'3 is Arg. These data show that the P'3 position is a determinant of thrombin specificity and suggest that thrombomodulin may function in part by alleviating the inhibitory effects that may arise from the proximity of the Asp in P'3 of protein C with Glu-39 of thrombin.  相似文献   

6.
Further studies on Pseudomonas aeruginosa LasA: analysis of specificity   总被引:4,自引:0,他引:4  
Full elastolytic activity in Pseudomonas aeruginosa is a result of the combined activities of elastase, alkaline proteinase, and the lasA gene product, LasA. The results of this study demonstrate that an active fragment of the LasA protein which is isolated from the culture supernatant fraction is capable of degrading elastin in the absence of elastase, thus showing that LasA is a second elastase produced by this organism. In addition, it is shown that LasA-mediated enhancement of elastolysis results from the separate activities of LasA and elastase upon elastin. The LasA protein does not affect the secretion or activation of a proelastase as previously proposed in other studies. Furthermore, LasA has specific proteolytic capability, as demonstrated by its ability to cleave beta-casein. Preliminary analysis of beta-casein cleavage in the presence of various protease inhibitors suggests that LasA may be classified as a modified serine protease.  相似文献   

7.
The present studies demonstrate the importance of subsite interactions in determining the cleavage specificities of kallikrein gene family proteinases. The effect of substrate amino acid residues in positions P3-P'3 on the catalytic efficiency of tissue kallikreins (rat, pig, and horse) and T-kininogenase was studied using peptidyl-pNA and intramolecularly quenched fluorogenic peptides as substrates. Kinetic analyses show the different effects of D-amino acid residues at P3, Pro at P'2, and Arg at either P'1 or P'3 on the hydrolysis of substrates by tissue kallikreins from rat and from horse or pig. T-Kininogenase was shown to differ from tissue kallikrein in its interactions at subsites S2, S'1, and S'2. As a result of these differences, Abz-FRSR-EDDnp with Arg at P'2 is a good substrate for tissue kallikreins from horse, pig, and rat but not for T-kininogenase. Abz-FRRP-EDDnp and Abz-FRAPR-EDDnp with Pro at P'2 (rat high molecular weight kininogen sequence) are susceptible to rat tissue kallikrein but not to tissue kallikreins from horse and pig. Arg at P'3 increased the susceptibility of the Arg-Ala bond to rat tissue kallikrein. These data explain the release of bradykinin by rat tissue kallikrein and of kallidin by tissue kallikreins from other animal species. Abz-FRLV-EDDnp and Abz-FRLVR-EDDnp (T-kininogen sequence) are good substrates for T-kininogenase but not for tissue kallikrein. Arg at the leaving group (at either P'1, P'2, or P'3) lowers the Km values of T-kininogenase while Val at P'2 increases its kcat values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Pseudomonas aeruginosa is a common cause of corneal infections, particularly among users of soft contact lenses. Previous studies with chemically induced mutants deficient in alkaline protease (AP) or elastase (LasB) suggested that these proteases contributed to the rapid liquifactive stromal necrosis characteristic of P. aeruginosa corneal infections. Because these mutants might harbor other chromosomal changes that could affect virulence, the role of these proteases in the pathogenesis of corneal disease (as well as a second elastase, LasA protease) was reexamined by constructing isogenic mutants deficient only in these enzymes. Allelic exchange was used to construct mutants of P. aeruginosa PAO1-V deficient in AP (PAO1-V AP[ - ]), LasB and LasA protease (PDO801 LasB[ - ]), or all three proteases (PDO801 TM). These mutants were then evaluated for virulence using mouse scratch and rabbit intrastromal injection models of corneal disease. Loss of AP significantly increased disease scores in the rabbit (P < 0.030) but not the mouse (P > 0.060) model of infection. Loss of both elastases had no effect on ocular virulence in either animal model of corneal disease (P > 0.100). The loss of all three proteases significantly decreased disease scores in the rabbit (P < 0.035), but not in the mouse (P > 0.110). Taken together, these data suggest that AP, LasB, and LasA protease are not essential for initiating or maintaining a corneal infection. Furthermore, AP appears to be an important mediator of pathology depending on the location of the organism within the cornea and whether or not concomitant elastolytic activity is present.  相似文献   

9.
The coordination of the magnesium ion in proteins by triphosphates plays an important role in catalytic hydrolysis of GTP or ATP, either in signal transduction or energy conversion. For example, in Ras the magnesium ion contributes to the catalysis of GTP hydrolysis. The cleavage of GTP to GDP and P(i) in Ras switches off cellular signaling. We analyzed GTP hydrolysis in water, Ras, and Ras·Ras-GTPase-activating protein using quantum mechanics/molecular mechanics simulations. By comparison of the theoretical IR-difference spectra for magnesium ion coordinated triphosphate to experimental ones, the simulations are validated. We elucidated thereby how the magnesium ion contributes to catalysis. It provides a temporary storage for the electrons taken from the triphosphate and it returns them after bond cleavage and P(i) release back to the diphosphate. Furthermore, the Ras·Mg(2+) complex forces the triphosphate into a stretched conformation in which the β- and γ-phosphates are coordinated in a bidentate manner. In this conformation, the triphosphate elongates the bond, which has to be cleaved during hydrolysis. Furthermore, the γ-phosphate adopts a more planar structure, driving the conformation of the molecule closer to the hydrolysis transition state. GTPase-activating protein enhances these changes in GTP conformation and charge distribution via the intruding arginine finger.  相似文献   

10.
In the presence of a procoagulant fraction (Echis carinatus procoagulant) isolated from the venom of the saw-scaled viper Echis carinatus sochureki, purified human prothrombin (P1) is completely converted to thrombin. The first step is the removal of an NH2-terminal peptide (F1) representing approximately one-third of the prothrombin molecule. The remaining peptide (P2) is then cleaved by the action of E.c. procoagulant to yield a two-chain, disulfide-bridged protein (P'2) which has the same molecular weight as P2. P'2 has enzymic (thrombin) activity, as evidence by incorporation of radiolabeled diisopropylphosphate into its heavy chain (TB), hydrolysis of p-toluenesulfonylarginine methyl ester, and clotting of fibrinogen. Relative to thrombin, its esterolytic activity greatly exceeds its clot-promoting activity. Examination of the polypeptide chains obtained by reducing P'2 has shown that its larger chain (TB) is indistinguishable from the heavy chain of thrombin. Its other chain (F2TA) consists of the light chain (TA) of thrombin bound by peptide linkage to the protion of the prothrombin molecule which had been adjacent to F1. Removal of this portion (F2) is catalyzed by thrombin (and, evidently, by P'2), but not by the E.c. procoagulant. When F2 is removed from P'2, the remaining two-chian protein is indistinguishable from thrombin by any of the criteria applied--molecular weight, subunit chain composition, or enzymic activity. Polyacrylamide gel electrophoresis was carried out in sodium dodecyl sulfate before and after disulfide reduction of samples generated in the presence and in the absence of diisopropylphosphorofluoridate, which inhibits thrombin but not the E.c. procoagulant. Such experiments showed that thrombin (and probably P'2), as well as E.c. procoagulant, catalyzes the release of F1. Furthermore, thrombin brings about the cleavage of F1 to yield a two-chain, disulfidebridged protein (F'1). These observations, particularly those made in the course of characterizine P'2, have led to the conclusion that cleavage of the peptide bond connecting the TA and TB portions of the prothrombin molecule (or its derivatives) produces a serine active center and, hence, a molecule possessing thrombin activity. This cleavage is catalyzed by the E.c. procoagulant but not by thrombon itself.  相似文献   

11.
Abnormal production of matrix metalloproteinases (MMPs) has been observed in a variety of diseases, such as emphysema, atherosclerosis, and cancer metastasis. Destruction of connective tissue ensues and elastin is often a key target. Three of the main elastolytic MMPs are the gelatinases MMP-2 and MMP-9 and the metalloelastase MMP-12. To investigate the possibility of using peptides to inhibit the elastolytic activity of these enzymes, we mapped the sites within tropoelastin recognized by MMP-9 and MMP-12. Peptides that correspond to regions overlapping these sites were then tested for their ability to inhibit these MMPs. These included an unmodified peptide directed against MMP-9 (peptide PP), cysteine-containing peptides that mimicked either the MMP-9 (peptide NCP) or the MMP-12 (peptide lin24) cleavage sites in tropoelastin and their cyclized forms (CP and cyc24, respectively), and a peptide containing a zinc-chelating hydroxamate group directed against MMP-9 (HP). The presence of a free sulfhydryl or hydroxamate group capable of chelating the zinc ion in the active site of the MMPs was generally found to increase the inhibitory activity of the peptides. The specificity of the inhibitors varied, with some of the inhibitors showing activity against all of the MMPs examined. None of the inhibitors had any significant effect on the activity of the unrelated serine protease, plasmin. K(i) values for the inhibitors were in the micromolar range. Our results suggest ways of developing other MMP inhibitors based on substrate recognition sites that may provide greater levels of inhibition.  相似文献   

12.
The substrate specificity of human collagenase 3 (MMP-13), a member of the matrix metalloproteinase family, is investigated using a phage-displayed random hexapeptide library containing 2 x 10(8) independent recombinants. A total of 35 phage clones that express a peptide sequence that can be hydrolyzed by the recombinant catalytic domain of human collagenase 3 are identified. The translated DNA sequence of these clones reveals highly conserved putative P1, P2, P3 and P1', P2', and P3' subsites of the peptide substrates. Kinetic analysis of synthetic peptide substrates made from human collagenase 3 selected phage clones reveals that some of the substrates are highly active and selective. The most active substrate, 2, 4-dinitrophenyl-GPLGMRGL-NH(2) (CP), has a k(cat)/K(m) value of 4.22 x 10(6) m(-)(1) s(-)(1) for hydrolysis by collagenase 3. CP was synthesized as a consensus sequence deduced from the preferred subsites of the aligned 35 phage clones. Peptide substrate CP is 1300-, 11-, and 820-fold selective for human collagenase 3 over the MMPs stromelysin-1, gelatinase B, and collagenase 1, respectively. In addition, cleavage of CP is 37-fold faster than peptide NF derived from the major MMP-processing site in aggrecan. Phage display screening also selected five substrate sequences that share sequence homology with a major MMP cleavage sequence in aggrecan and seven substrate sequences that share sequence homology with the primary collagenase cleavage site of human type II collagen. In addition, putative cleavage sites similar to the consensus sequence are found in human type IV collagen. These findings support previous observations that human collagenase 3 can degrade aggrecan, type II and type IV collagens.  相似文献   

13.
The cleavage mechanism has been studied for nuclear RNase P from Saccharomyces cerevisiae, Homo sapiens sapiens and Dictyostelium discoideum, representing distantly related branches of the Eukarya. This was accomplished by using precursor tRNAs (ptRNAs) carrying a single Rp or Sp-phosphorothioate modification at the normal RNase P cleavage site (position -1/+1). All three eukaryotic RNase P enzymes cleaved the Sp-diastereomeric ptRNA exclusively one nucleotide upstream (position -2/-1) of the modified canonical cleavage site. Rp-diastereomeric ptRNA was cleaved with low efficiency at the modified -1/+1 site by human RNase P, at both the -2/-1 and -1/+1 site by yeast RNase P, and exclusively at the -2/-1 site by D. discoideum RNase P. The presence of Mn(2+ )and particularly Cd(2+) inhibited the activity of all three enzymes. Nevertheless, a Mn(2+ )rescue of cleavage at the modified -1/+1 site was observed with yeast RNase P and the Rp-diastereomeric ptRNA, consistent with direct metal ion coordination to the (pro)-Rp substituent during catalysis as observed for bacterial RNase P enzymes. In summary, our results have revealed common active-site constraints for eukaryotic and bacterial RNase P enzymes. In all cases, an Rp as well as an Sp-phosphorothioate modification at the RNase P cleavage site strongly interfered with the catalytic process, whereas substantial functional interference is essentially restricted to one of the two diastereomers in other RNA and protein-catalyzed hydrolysis reactions, such as those catalyzed by the Tetrahymena ribozyme and nuclease P1.  相似文献   

14.
A recombinant streptococcal C5a peptidase was expressed in Escherichia coli and its catalytic properties and thermal stability were subjected to examination. It was shown that the NH2-terminal region of C5a peptidase (Asn32-Asp79/Lys90) forms the pro-sequence segment. Upon maturation the propeptide is hydrolyzed either via an autocatalytic intramolecular cleavage or by exogenous protease streptopain. At pH 7.4 the enzyme exhibited maximum activity in the narrow range of temperatures between 40 and 43 degrees C. The process of heat denaturation of C5a peptidase investigated by fluorescence and circular dichroism spectroscopy revealed that the protein undergoes biphasic unfolding transition with Tm of 50 and 70 degrees C suggesting melting of different parts of the molecule with different stability. Unfolding of the less stable structures was accompanied by the loss of proteolytic activity. Using synthetic peptides corresponding to the COOH-terminus of human complement C5a we demonstrated that in vitro peptidase catalyzes hydrolysis of two His67-Lys68 and Ala58-Ser59 peptide bonds. The high catalytic efficiency obtained for the SQLRANISHKDMQLGR extended peptide compared to the poor hydrolysis of its derivative Ac-SQLRANISH-pNA that lacks residues at P2'-P7' positions, suggest the importance of C5a peptidase interactions with the P' side of the substrate.  相似文献   

15.
Pseudomonas aeruginosa LasA protease is a secreted metalloendopeptidase that can lyse Staphylococcus aureus cells by cleaving the pentaglycine bridges of their peptidoglycan. It can also degrade elastin and stimulate shedding of cell-surface proteoglycans, activities implicated in pathogenesis of P. aeruginosa infections. The activity of LasA protease can be assayed spectrophotometrically by following the reduction in turbidity of S. aureus cell suspensions. This assay, however, does not permit kinetic studies and its reproducibility is poor. Here we describe a two-stage enzymatic reaction for the continuous measurement of LasA protease activity using a defined substrate, succinyl-Gly-Gly-Phe-4-nitroanilide, supplemented with Streptomyces griseus aminopeptidase. Cleavage of the Gly-Phe bond by LasA protease is followed by hydrolysis of the product Phe-4-nitroanilide by the aminopeptidase and the rate of release of the chromophore (4-nitroaniline) is measured spectrophotometrically using a 96-well microplate reader. Activity of nanogram amounts of LasA protease could be determined within a few minutes. Furthermore, this assay permitted the determination of Km and kcat values for LasA protease, which were 0.46 mM and 11.8s(-1), respectively. Pseudomonas elastase was also active in the assay. However, it was less effective than LasA protease and its activity was inhibited by phosphoramidon. The assay is highly sensitive and reproducible, providing a convenient tool for further studies of LasA protease function(s) and mechanism of action.  相似文献   

16.
The three tetrapeptides Ac-Phe-Arg-Arg-Val-NH2 (I), Ac-Phe-Arg-Arg-Pro-NH2 (II) and Ac-Phe-Lys-Arg-Val-NH2 (III) were shown to form a most convenient substrate system for the discrimination of the serine proteinases listed below. Tissue kallikreins (porcine pancreatic, horse and human urinary) have the unique feature of cleaving well the Arg-Arg bond in peptide I (P'2 = Val), hardly splitting it in peptide II (P'2 = Pro). The kcat/Km for the hydrolysis of peptide II by horse urinary kallikrein was 600-fold lower than that for peptide I. Trypsin, plasma kallikreins (human and rat), tonin and rat urinary kallikrein were distinguished from each other by the sequence of the N-terminal fragments formed in the hydrolysis of peptides I and/or II. Differences in the cleavage sites in these peptides are explained by differences in the specificities of the proteinase subsite S2 and/or in their preference for Arg or Lys residues. The three tetrapeptides were not substrates for plasmin.  相似文献   

17.
Angiotensin-converting enzyme was solubilized from bovine lung with detergent and purified over 2300-fold to physical homogeneity by a combination of ammonium sulfate fractionation, molecular sieve chromatography, and ion exchange chromatography. The purified enzyme had an apparent molecular weight of 126,000 in both the denatured, and reduced, denatured forms as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 13.6 units/mg. It was inhibited by EDTA and activated by chloride ion. Chloride functioned as a nonessential activator by raising the Vmax 4.26-fold and lowering the KM 5.99-fold under saturating conditions. Under these conditions, the Vmax was 1.2 mumol/min/unit and the KM was 1.3 mM. Three series of peptides having the general structures, Hip-His-X, Hip-X-Leu, and Hip-X-His-Leu were synthesized and used to examine the binding specificity and substrate specificity of the enzyme for amino acids in the COOH-terminal (P'2), penultimate COOH-terminal (P'1), and antepenultimate COOH terminal (P1) peptide positions. These studies indicated that in terms of binding specificity, the relative importance of these three positions was P'2 > P'1 > P1, while the reverse order P1 > P'1 > P'2 was observed for the relative contribution to substrate specificity. Three peptides, Hip-His-D-Leu, Hip-D-His-Leu, and Hip-D-Phe-His-Leu, were also synthesized and used to examine the stereochemical requirements of the enzyme in terms of both peptide binding and hydrolysis. Hydrolysis was found to require an L amino acid in all three positions. In contrast, all three peptides bound to the enzyme.  相似文献   

18.
A method has been developed to determine preferred residue substitutions in the P' position of peptide substrates for proteolytic enzymes. The method has been validated with four different enzymes; the angiotensin I-converting enzyme, atrial dipeptidyl carboxyhydrolase, bacterial dipeptidyl carboxyhydrolase, and meprin A. A mixture of N-acylated potential peptide-substrates for each of the enzymes was prepared in a single synthesis procedure on the same solid-phase synthesis resin. The peptides were identical in all residue positions except the P' position to be studied, into which numerous amino acid residues were incorporated on a theoretical equimolar basis. After cleavage and extraction of the peptides from the resin, no attempt was made to purify them individually; the exact concentration of each peptide in the mixture was determined by quantitative amino acid analysis. Incubation of an enzyme with its peptide-substrate mixture at [S] much less than Km yielded peptide hydrolytic products with newly exposed N-termini. The identity and amount of each hydrolysis product was determined by automated N-terminal sequence analysis. One cycle of sequencing revealed preferred amino acid substitutions in the P'1 position, two cycles the P'2 position, and so forth. Comparison of the rates of production of the various products indicates the preferred substitution in that particular P' position. New information on the substrate specificities of each of the enzymes tested was obtained and it is clear that this approach can be applied to any protease with a defined (or suspected) point of cleavage in a peptide substrate.  相似文献   

19.
Sauna ZE  Müller M  Peng XH  Ambudkar SV 《Biochemistry》2002,41(47):13989-14000
The human MDR1 (ABCB1) gene product, P-glycoprotein (Pgp), functions as an ATP-dependent efflux pump for a variety of chemotherapeutic drugs. In this study, we assessed the role of conserved glutamate residues in the Walker B domain of the two ATP sites (E556 and E1201, respectively) during the catalytic cycle of human Pgp. The mutant Pgps (E556Q, E556A, E1201Q, E1201A, E556/1201Q, and E556/1201A) were characterized using a vaccinia virus based expression system. Although steady-state ATP hydrolysis and drug transport activities were abrogated in both E556Q and E1201Q mutant Pgps, [alpha-(32)P]-8-azidoADP was trapped in the presence of vanadate (Vi), and the release of trapped [alpha-(32)P]-8-azidoADP occurred to a similar extent as in wild-type Pgp. This indicates that these mutations do not affect either the first hydrolysis event or the ADP release step. Similar results were also obtained when Glu residues were replaced with Ala (E556A and E1201A). Following the first hydrolysis event and release of [alpha-(32)P]-8-azidoADP, both E556Q and E1201Q mutant Pgps failed to undergo another cycle of Vi-induced [alpha-(32)P]-8-azidoADP trapping. Interestingly, the double mutants E556/1201Q and E556/1201A trapped [alpha-(32)P]-8-azidoADP even in the absence of Vi, and the occluded nucleotide was not released after incubation at 37 degrees C for an extended period. In addition, the properties of transition state conformation of the double mutants generated in the absence of Vi were found to be similar to that of the wild-type protein trapped in the presence of Vi (Pgp x [alpha-(32)P]-8-azidoADP xVi). Thus, in contrast to the single mutants, the double mutants appear to be defective in the ADP release step. In aggregate, these data suggest that E556 and E1201 residues in the Walker B domains may not be critical as catalytic carboxylates for the cleavage of the bond between the gamma-P and the beta-P of ATP during hydrolysis but are essential for the second ATP hydrolysis step and completion of the catalytic cycle.  相似文献   

20.
Metal ions are essential cofactors for precursor tRNA (ptRNA) processing by bacterial RNase P. The ribose 2'-OH at nucleotide (nt) -1 of ptRNAs is known to contribute to positioning of catalytic Me2+. To investigate the catalytic process, we used ptRNAs with single 2'-deoxy (2'-H), 2'-amino (2'-N), or 2'-fluoro (2'-F) modifications at the cleavage site (nt -1). 2' modifications had small (2.4-7.7-fold) effects on ptRNA binding to E. coli RNase P RNA in the ground state, decreasing substrate affinity in the order 2'-OH > 2'-F > 2'-N > 2'-H. Effects on the rate of the chemical step (about 10-fold for 2'-F, almost 150-fold for 2'-H and 2'-N) were much stronger, and, except for the 2'-N modification, resembled strikingly those observed in the Tetrahymena ribozyme-catalyzed reaction at corresponding position. Mn2+ rescued cleavage of the 2'-N but also the 2'-H-modified ptRNA, arguing against a direct metal ion coordination at this location. Miscleavage between nt -1 and -2 was observed for the 2'-N-ptRNA at low pH (further influenced by the base identities at nt -1 and +73), suggesting repulsion of a catalytic metal ion due to protonation of the amino group. Effects caused by the 2'-N modification at nt -1 of the substrate allowed us to substantiate a mechanistic difference in phosphodiester hydrolysis catalyzed by Escherichia coli RNase P RNA and the Tetrahymena ribozyme: a metal ion binds next to the 2' substituent at nt -1 in the reaction catalyzed by RNase P RNA, but not at the corresponding location in the Tetrahymena ribozyme reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号