首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loewe A  Einig W  Hampp R 《Plant physiology》1996,112(2):641-649
Annual changes of activity of sucrose-phosphate synthase (SPS) from spruce (Picea abies [L.] Karst.) needles were studied with respect to three regulatory levels: metabolic fine control, covalent modification (phosphorylation), and protein amount. Glucose-6-phosphate served as an allosteric activator of spruce SPS by shifting the Michaelis constant for the substrate fructose-6-phosphate from 4.2 to 0.59 mM, whereas inorganic phosphate competitively inhibited this activation. The affinity for the other substrate, UDP-glucose, was unaffected. Incubation of the crude extract with ATP resulted in a time- and concentration-dependent decrease of the maximal velocity of SPS. This inactivation was sensitive to staurosporine, a potent protein kinase inhibitor, indicating the participation of a protein kinase. Probing SPS protein with heterologous antibodies showed that the subunit of spruce SPS is an approximately 139-kD protein and that changes in the extractable activity during the course of a year were correlated with the amount of SPS protein. High SPS activities in winter were paralleled by increased levels of the activator glucose-6-phosphate and the substrate fructose-6-phosphate, indicating a high capacity for sucrose synthesis that may be necessary to maintain photosynthetic CO2 fixation in cold-hardened spruce needles.  相似文献   

2.
3.
Colobanthus quitensis (Kunth) Bartl. is widely distributed from Mexico to the Antarctic. C. quitensis is a freezing resistant species that accumulates sucrose in response to cold. We tested the hypothesis that low temperature modifies the kinetic properties of C. quitensis sucrose phosphate synthase (SPS) to increase its activity and ability to synthesize sucrose during cold acclimation. Cold acclimation caused a fourfold increment in sucrose concentration and a 100% increase in SPS activity, without changes in the level of SPS protein. Cold acclimation did not affect the optimal temperature and pH for SPS activity. However, it caused a tenfold increase in the inhibition constant (K i) for inorganic phosphate (Pi) calculated as a function of fructose-6-phosphate (Fruc-6-P). SPS from cold acclimated plants also exhibited a higher reduction of its Michaelis constant (K m) for glucose-6-phosphate (Gluc-6-P) with respect to non-acclimated plants. We suggest that the increase in C. quitensis SPS K i for Pi and the increase in activation by Gluc-6-P in response to cold keep SPS activated, leading to high sucrose accumulation. This may be an important adaptation that allows efficient accumulation of sucrose during the harsh Antarctic summer.  相似文献   

4.
Sucrose-phosphate synthase SPS; (EC 2.4.1.14) from maize (Zea mays L. cv. Pioneer 3184) leaves was partially purified and kinetically characterized. Maize SPS was activated by glucose-6-phosphate (G-6-P) due to an increase in Vmax and a decrease in the Km for UDP-glucose. The UDP-glucose saturation profile was biphasic; thus two Km values for UDP-glucose were calculated. Inhibition by inorganic phosphate was observed only in the presence of G-6-P. Chromatography of partially purified maize leaf extracts on hydroxyapatite resolved two forms of SPS activity, which differed in their affinity for UDP-glucose and in the degree of activation by G-6-P. SPS was partially purified from maize leaves that were harvested in the light and in the dark. The light enzyme had a higher specific activity than the enzyme isolated from dark harvested leaves, and this difference persisted during enzyme purification. The apparent molecular weight (Stokes radius) of the light enzyme was 547 kDa, which was greater than that of the dark enzyme (457 kDa). Light and dark SPS differed in their affinities for UDP-glucose in the absence G-6-P. Both the light and the dark SPS were activated by G-6-P; the Km for UDP-glucose of the light enzyme was lowered by G-6-P, while the Km for UDP-glucose for the dark enzyme remained unchanged. These results suggest that light activation involves a conformational change that results in differences in maximum velocity, substrate affinities and regulation by metabolites. Chromatography of either the light or dark SPS on hydroxyapatite yielded two peaks of enzyme activity, suggesting that the occurrence of the two activity peaks was not due to an interconversion of the light and dark forms.  相似文献   

5.
蔗糖磷酸合成酶研究的新进展   总被引:5,自引:0,他引:5  
蔗糖磷酸合成酶(sucrose phosphate synthase,SPS)是高等植物体内控制蔗糖合成的关键酶之一,它主要通过异构调节和磷酸化修饰在酶水平调节蔗糖合成。本文简要介绍SPS家族的成员、SPS蛋白上的3个磷酸化位点,以及SPS的生物学功能、SPS与磷酸蔗糖磷酸酶的关系等。  相似文献   

6.
Phosphoinositide interconversion in thrombin-stimulated human platelets   总被引:26,自引:0,他引:26  
Stimulation of platelets and other secretory cells by agonists results in the degradation of phosphoinositides by phospholipase C. Kinetic studies suggest that hydrolysis of phosphatidylinositol 4,5-diphosphate (PI-4,5-P2) is an initial event in this process. Platelets contain much larger amounts of phosphatidylinositol (PI) than PI-4,5-P2, and approximately 50% of total phosphoinositides are degraded upon stimulation. We have investigated whether degradation of PI occurs by direct phospholipase C hydrolysis or by phosphorylation to PI-4,5-P2 followed by phospholipase C action on the latter compound. When platelets are incubated for 3 min with 32Pi prior to stimulation, the phosphoinositides are labeled to different specific activities. Under these nonequilibrium conditions, the time course of change in specific activity reflects turnover. The rise in specific activity of phosphatidylinositol 4-phosphate (PI-4-P) is similar in stimulated and unstimulated cells, indicating that there is little increase in the conversion of PI to PI-4-P during thrombin stimulation. In addition, the specific activity of the 4-phosphate in PI-4-P during thrombin stimulation is less than both the 5-phosphate of PI-4,5-P2 and the phosphate group of phosphatidic acid, indicating that the 4-phosphate moiety is not labeled to equilibrium with ATP. This finding is inconsistent with a rapid flux of PI via PI-4-P to PI-4,5-P2 during thrombin stimulation, in which case the 4-phosphate would be at maximum specific activity. We, therefore, conclude that the bulk of PI breakdown that occurs in thrombin-stimulated platelets occurs via direct phospholipase C hydrolysis of PI.  相似文献   

7.
The aim of this work was to investigate the capacity for synthesis of starch and fatty acids from exogenous metabolites by plastids from developing embryos of oilseed rape (Brassica napus L.). A method was developed for the rapid isolation from developing embryos of intact plastids with low contamination by cytosolic enzymes. The plastids contain a complete glycolytic pathway, NADP-glucose-6-phosphate dehydrogenase, NADP-6-phosphogluconate dehydrogenase, fructose-1,6-bisphosphatase, NADP-malic enzyme, the pyruvate dehydrogenase complex (PDC), and acetyl-CoA carboxylase. Organelle fractionation studies showed that 67% of the total cellular PDC activity was in the plastids. The isolated plastids were fed with 14C-labelled carbon precursors and the incorporation of 14C into starch and fatty acids was determined. 14C from glucose-6-phosphate (G-6-P), fructose, glucose, fructose-6-phosphate and dihydroxyacetone phosphate (DHAP) was incorporated into starch in an intactness- and ATP-dependent manner. The rate of starch synthesis was highest from G-6-P, although fructose gave rates which were 70% of those from G-6-P. Glucose-1-phosphate was not utilized by intact plastids for starch synthesis. The plastids utilized pyruvate, G-6-P, DHAP, malate and acetate as substrates for fatty acid synthesis. Of these substrates, pyruvate and G-6-P supported the highest rates of synthesis. These studies show that several cytosolic metabolites may contribute to starch and/or fatty acid synthesis in the developing embryos of oilseed rape.  相似文献   

8.
The role of phospholipids in the glucose-6-phosphatase system, including glucose-6-P phosphohydrolase and glucose-6-P translocase, was studied in rat liver microsomes by using phospholipases C and detergents. In the time course experiments on detergent exposure, the maximal activation of glucose-6-P phosphohydrolase varied according to the nature of the detergent used. On treatment of microsomes with phospholipase C of C. perfringens, the activity of glucose-6-P phosphohydrolase without detergent (i.e. without rupture of translocase activity) was gradually decreased with the progressive hydrolysis of phosphatidylcholine and phosphatidylethanolamine on the microsomal membrane, and was restored by incubation of these microsomes with egg yolk phospholipids. The extent of decrease in this phosphohydrolase activity in the detergent-exposed microsomes (with rupture of translocase activity) also varied depending on the detergent used (Triton X-114 or taurocholate). When 66% of the phosphatidylinositol on the membrane was hydrolyzed by phosphatidylinositol-specific phospholipase C of B. thuringiensis, the inhibition of glucose-6-P phosphohydrolase activity without detergent was very small. Although the inhibition of enzyme activity with detergent was apparently greater than that without detergent, the enzyme activity was stimulated by the breakdown of phosphatidylinositol when the enzyme activity was measured at lower concentration (0.5 mM) of substrate, glucose-6-P. The latency of mannose-6-P phosphohydrolase, a plausible index of microsomal integrity, remained above 70% after the hydrolysis of phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol. The results show that the glucose-6-phosphatase system requires microsomal phospholipids for its integrity, suggesting that there exists a close relation between phosphatidylinositol and glucose-6-P translocase.  相似文献   

9.
Evolution of sucrose synthesis   总被引:8,自引:0,他引:8       下载免费PDF全文
Lunn JE 《Plant physiology》2002,128(4):1490-1500
Cyanobacteria and proteobacteria (purple bacteria) are the only prokaryotes known to synthesize sucrose (Suc). Suc-P synthase, Suc-phosphatase (SPP), and Suc synthase activities have previously been detected in several cyanobacteria, and genes coding for Suc-P synthase (sps) and Suc synthase (sus) have been cloned from Synechocystis sp. PCC 6803 and Anabaena (Nostoc) spp., respectively. An open reading frame in the Synechocystis genome encodes a predicted 27-kD polypeptide that shows homology to the maize (Zea mays) SPP. Heterologous expression of this putative spp gene in Escherichia coli, reported here, confirmed that this open reading frame encodes a functional SPP enzyme. The Synechocystis SPP is highly specific for Suc-6(F)-P (K(m) = 7.5 microM) and is Mg(2+) dependent (K(a) = 70 microM), with a specific activity of 46 micromol min(-1) mg(-1) protein. Like the maize SPP, the Synechocystis SPP belongs to the haloacid dehalogenase superfamily of phosphatases/hydrolases. Searches of sequenced microbial genomes revealed homologs of the Synechocystis sps gene in several other cyanobacteria (Nostoc punctiforme, Prochlorococcus marinus strains MED4 and MIT9313, and Synechococcus sp. WH8012), and in three proteobacteria (Acidithiobacillus ferrooxidans, Magnetococcus sp. MC1, and Nitrosomonas europaea). Homologs of the Synechocystis spp gene were found in Magnetococcus sp. MC1 and N. punctiforme, and of the Anabaena sus gene in N. punctiforme and N. europaea. From analysis of these sequences, it is suggested that Suc synthesis originated in the proteobacteria or a common ancestor of the proteobacteria and cyanobacteria.  相似文献   

10.
Mannose-6-phosphate stimulates proliferation of neuronal precursor cells   总被引:1,自引:0,他引:1  
The mitogenic signal function of mannose-6-phosphate (Man-6-P)/insulin-like growth factor II (IGF-II) receptors was studied in neuronal precursor cells from developing rat brain (E15). About 30% of the cellular Man-6-P/IGF-II receptors were present on the cell surface. Man-6-P and IGF-II stimulated DNA synthesis twofold and their effects were additive. Antibody 3637 to the Man-6-P/IGF-II receptor blocked the response to Man-6-P but not that to IGF-II. Other phosphorylated hexoses were also active. Fructose-1-phosphate was equally potent with Man-6-P, whereas glucose-6-phosphate was 5 times less potent. We conclude that Man-6-P-containing proteins and IGF-II act as mitogens in developing brain by interaction with the Man-6-P/IGF-II receptor and the IGF-I receptor, respectively.  相似文献   

11.
It has been investigated whether diurnal rhythms of sucrose-phosphate synthase (SPS) are involved in controlling the rate of photosynthetic sucrose synthesis. Extracts were prepared from spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) leaves and assayed for enzyme activity. The activity of SPS increased in parallel with a rising rate of photosynthesis, and was increased by feeding mannose and decreased by supplying inorganic phosphate. In leaf material where sucrose had accumulated during the photoperiod or when sucrose was supplied exogenously, SPS activity decreased. During a diurnal rhythm, SPS activity increased after illumination, declined gradually during the light period, decreased further after darkening and then recovered gradually during the night. These changes did not involve an alteration of the maximal activity, but were caused by changes in the kinetic properties, revealed as a change in sensitivity to inhibition by inorganic phosphate. In experiments which modelled the response of SPS to changing metabolite concentrations, it was shown that these alterations of kinetic properties would strongly modify the activity of SPS in vivo. It is proposed that SPS can exist in kinetically distinct forms in vivo, and that the distribution between these forms can be rapidly altered. As the rate of photosynthesis increases there is an activation of SPS, which may be directly or indirectly linked to changes in the availability of Pi. This activation can be modified by factors related to the accumulation of sucrose. Under normal conditions there is a balance between these factors, and the leaf contains a mixture of the different forms of SPS.Abbreviations Chl chlorophyll - Frul,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Fru1,6bisPase fructose-1,6-bisphosphatase - Fru6P 2kinase fructose-6-phosphate, 2kinase - Fru2,6bisPase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - Pj inorganic phosphate - SPS sucrose-phosphate synthase - UDPGLc uridine 5-diphosphate glucose  相似文献   

12.
Highly purified human-liver fatty acid synthetase complex was used to study the effect of several potential modifiers. Adenosine 3',5'-phosphate did not alter the activity of either purified synthetase or of multienzyme present in 700 times g supernates. Its dibutyryl derivative was also ineffective when incubated with liver slices. Fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate stimulated significantly the activity of the purified enzyme. Fructose 1,6-diphosphate, which was most effective, decreased the Km of the synthetase for NADPH. Phosphoenolpyruvate, rac-glycero-3-phosphate and potassium phosphate were ineffective; All longg-chain fatty acyl-CoA thioesters tested were inhibitory, but this effect was not observed until the regions of their critical micellar concentrations were reached. Free myristate, palmitate, and stearate did not inhibit synthetase activity up to the highest concentration tested (1 mM)qn enzyme preparation derived from livers of fasted rats inactivated purified rat-liver 4'-phospho[14-C]pantetheine-fatty acid synthetase by releasing its prosthetic group. It also decreased the activity of the purified human-liver complex.  相似文献   

13.
The inhibitory effects of sucrose on rates of sucrose synthesis by sucrose phosphate synthase (SPS) from the maize scutellum and on net rates of sucrose production in maize scutellum slices from added glucose or fructose were studied. Scutellum extracts were prepared by freezing and thawing scutellum slices in buffer. The extracts contained SPS and sucrose phosphate phosphatase, but were free of sucrose synthase. SPS activity was calculated from measurement of UDP formation in the presence of UDPG, fructose-6-P and sucrose. The ranges of metabolite concentrations used were those estimated to be in scutellum slices after incubation in water or fructose for periods up to 5 hr. UDPG and fructose-6-P also were added at concentrations that saturated SPS. At saturating substrate levels, sucrose inhibition of SPS was less than that when tissue levels of substrates were used. With tissue levels of substrates and sucrose concentrations up to ca 166 mM, sucrose inhibitions of sucrose synthesis in vitro by SPS were similar to those observed in vivo. However, as the sucrose concentration rose above 166 mM, SPS activity was not inhibited further, whereas there was a further sharp decline in sucrose production by the slices. It is concluded that sucrose synthesis in vivo is controlled by sucrose inhibition of SPS over a considerable range of internal sucrose concentrations.  相似文献   

14.
1. The activity of a particulate enzyme prepared from encysting cells of Acanthamoeba castellanii (Neff), previously shown to catalyze the incorporation of glucose from UDP-[14C]glucose into both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans, was stimulated several fold by glucose-6-phosphate and several related compounds. 2. Incorporation was observed when [14C]glucose-6-P was incubated with the particles in the presence of UDP-glucose. The results of product analysis by partial acid hydrolysis indicated that glucose-6-P stimulates the formation of both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans from UDP-[14C]glucose and was itself incorporated into an alkali-insoluble beta-(1 leads to 4)glucan. 3. When particles incubated with UDP-[14C]glucose and glucose-6-P were reisolated and then reincubated with unlabeled UDP-glucose and glucose-6-P, a loss of counts from the alkali-soluble fraction was detected along with a corresponding rise in the radioactivity of the alkali-insoluble fraction. This suggests that the alkali-soluble beta-glucan was converted to an alkali-insoluble product and possibly may be an intermediate stage in cellulose synthesis.  相似文献   

15.
A CDPK type protein kinase is involved in rice SPS light modulation   总被引:3,自引:0,他引:3  
A protein kinase activity that can phosphorylate and inactivate rice ( Oryza sativa ) sucrose-phosphate synthase (SPS; UDP-glucose: d -fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.14) was measured in extracts prepared from leaves exposed to light-dark transitions. Enzyme activity present in extracts from dark leaves was about 5-fold higher than the activity in extracts from leaves that had been collected in the light. The protein kinase (named R-SPSK) was purified about 100-fold from dark leaves and its biochemical properties were studied. The micromolar dependence of Ca2+ exhibited by R-SPSK, and its response to calmodulin antagonists was similar to the properties associated with members of the plant Calcium-Dependent Protein Kinase (CDPK) family. Two modulators of SPS activity, Pi and Glc-6-P, were examined for an effect on R-SPSK. While Glc-6-P did not affect R-SPSK activity, Pi drastically increased the kinase activity. Taken together, these data provide evidence that SPS may be regulated by a CDPK type protein-kinase whose activity is modulated by light-dark transitions and stimulated by Pi, the negative effector of SPS activity.  相似文献   

16.
The regulation of sucrose-phosphate synthase (SPS) and nitrate reductase (NR) activities from mature spinach (Spinacia oleracea L.) leaves share many similarities in vivo and in vitro. Both enzymes are light/dark modulated by processes that involve, at least in part, reversible protein phosphorylation. Experiments using desalted crude extracts show that the ATP-dependent inactivation of spinach SPS and NR is sensitive to inhibition by glucose-6-phosphate. Also, a synthetic peptide homolog of the spinach SPS phosphorylation site inhibits the ATP-dependent inactivation of both enzymes with a similar concentration dependence. We have addressed the possibility that SPS and NR are regulated by the same protein kinase by partially purifying the protein kinases involved. Three unique kinase activities can be separated by anion-exchange and size-exclusion chromatography. Each peak of activity has a different substrate specificity. By gel filtration, they have apparent molecular masses of approximately 45, 60, and 150 kD. Additionally, the activities of the two smaller kinases are dependent on micromolar concentrations of Ca2+, whereas the 150-kD kinase is not. Finally, the 150-kD kinase has a subunit molecular mass of about 65 kD as determined by renaturing the kinase activity in situ following sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

17.
The purpose of this study was to identify the factors that control sucrose-phosphate synthase (SPS)-kinase and SPS-protein phosphatase (SPS-PP) activity in situ, and thereby mediate the activation of SPS by light or mannose. Feeding mannose to excised spinach (Spinacia oleracea) leaves in darkness resulted in a general sequestration of cellular phosphate (as evidenced by accumulation of mannose-6-P and depletion of glucose-6-P [Glc-6-P] and fructose-6-P [Fru-6-P]) and a relatively slow activation of SPS (maximum activation achieved within 90 min). Supplying exogenous inorganic phosphate (Pi) with mannose reduced sequestration of cellular Pi (as evidenced by mannose-6-P accumulation without depletion of hexose-P) and substantially reduced mannose activation of SPS. Thus, depletion of cytoplasmic Pi may be required for SPS activation; accumulation of mannose-6-P alone is clearly not sufficient. It was verified that Glc-6-P, but not mannose-6-P, was an inhibitor of partially purified SPS-kinase, and that Pi was an inhibitor of partially purified SPS-PP. Total extractable activity of SPS-kinase did not vary diurnally, whereas a pronounced light activation of SPS-PP activity was observed. Pretreatment of leaves in the dark with cycloheximide blocked the light activation of SPS-PP (assayed in vitro) and dramatically reduced the rate of SPS activation in situ (in saturating light and carbon dioxide). We conclude that rapid activation of SPS by light involves reduction in cytosolic Pi, an inhibitor of SPS-PP, and light activation of SPS-PP, by a novel mechanism that may involve (directly or indirectly) a protein synthesis step. An increase in cytosolic Glc-6-P, an inhibitor of SPS-kinase, would also favor SPS activation. Thus, the signal transduction pathway mediating the light activation of SPS involves elements of “fine” and “coarse” control.  相似文献   

18.
New complexities in the synthesis of sucrose   总被引:10,自引:0,他引:10  
  相似文献   

19.
P. Bachmann  K. Zetsche 《Planta》1979,145(4):331-337
The synthesis of cell wall mannan and the activities of guanosine-diphosphate-mannose-pyrophosphorylase (EC2.7.7.13) and mannan synthetase were studied during the development of nucleate and enucleated cells of the alga Acetabularia mediterranea. The activities of both enzymes are relatively high as long as the cells grow and synthesize mannans. With termination of growth and mannan synthesis, the activities of both enzymes, but especially of mannan synthetase, drop to a low value. Furthermore, the activities of both enzymes are distributed in the cell along an apical-basal gradient. High activities are present in the apical regions of the cell where growth and mannan synthesis mainly occur, whereas in the basal region, growth, mannan synthesis and the activity of the two enzymes are slight. Since the in vitro activity of GDP-Man-pyr is at least 100 times higher than that of mannan synthetase, it was concluded that mannan synthetase activity is the limiting factor in mannan synthesis. This conclusion is supported by the determined pool sizes of Fru 6-P, Man 6-P, Man 1-P and GDP-Man during the development of the cells. The control of mannan synthesis and with it cell wall formation and growth through the regulation of mannan synthetase activity is discussed.Abbreviations DD dark-dark regime - Fru 6-P fructose-6-phosphate - GDP-Man guanosine-diphosphate-mannose - GDP-Manpyr GDP-diphosphate-mannose-pyrophosphorylase - GTP guanosine-triphosphate - LD light-dark regime - Man 1-P mannose-1-phosphate - Man 6-P mannose-6-phosphate - TCA trichloracetic acid  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号